P

&
CISTER

Research Center in

Computing Systems

Conference Paper

The CONCERTO methodology for
model-based development of avionics SW

Andrea Baldovin
Alessandro Zovi
Geoffrey Nelissen*
Stefano Puri

*CISTER Research Center
CISTER-TR-150309

2015/06/22

Conference Paper CISTER-TR-150309 The CONCERTO methodology for model-based development of ...

The CONCERTO methodology for model-based development of avionics SW

Andrea Baldovin, Alessandro Zovi, Geoffrey Nelissen*, Stefano Puri

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Ant6nio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail: baldovin@math.unipd.it, grrpn@isep.ipp.pt
http://www.cister.isep.ipp.pt

Abstract

The development of high-integrity real-time systems, including their certification, is a demanding endeavour in
terms of time, skills and effort involved.This is particularly true in application domains such as the avionics, where
composable design is to be had to allow subdividing monolithic systems into components of smaller complexity, to
be outsourced to developers subcontracted down the supply chain. Moreover, the increasing demand for
computational power and the consequent interest in multicore HW architectures complicates system
deployment.For these reasons, appropriate methodologies and tools need to be devised to help the industrial
stakeholders master the overall system design complexity, while keeping manufacturing costs affordable.

In this paper we present some elements of the CONCERTO platform, a toolset to support the end-to-end system
development process from system modelling to analysis and validation, prior to code generation and deployment.
The approach taken by CONCERTO is demonstrated for an illustrative avionics setup, however it is general enough
to be applied to a number of industrial domains including the space, telecom and automotive. We finally reason
about the benefits to an industrial user by comparing to similar initiatives in the research landscape.

© CISTER Research Center 1
www.cister.isep.ipp.pt

The CONCERTO methodology for
model-based development of avionics software

Andrea Baldovin!, Alessandro Zovi', Geoffrey Nelissen? and Stefano Puri®

! Department of Mathematics, University of Padua
via Trieste, 63 - 35121 Padua, Italy
{baldovin, azovi}@math.unipd.it

2 CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto
Rua Dr. Antonio Bernardino de Almeida 431 - 4249-015 Porto, Portugal
grrpn@isep.ipp.pt
3 INTECS
via Umberto Forti, 5 - 56121 Pisa, Italy
stefano.puri@intecs.it

Abstract. The development of high-integrity real-time systems, includ-
ing their certification, is a demanding endeavour in terms of time, skills
and effort involved. This is particularly true in application domains such
as the avionics, where composable design is to be had to allow sub-
dividing monolithic systems into components of smaller complexity, to
be outsourced to developers subcontracted down the supply chain. More-
over, the increasing demand for computational power and the consequent
interest in multicore HW architectures complicates system deployment.
For these reasons, appropriate methodologies and tools need to be de-
vised to help the industrial stakeholders master the overall system design
complexity, while keeping manufacturing costs affordable.

In this paper we present some elements of the CONCERTO platform,
a toolset to support the end-to-end system development process from
system modelling to analysis and validation, prior to code generation
and deployment. The approach taken by CONCERTO is demonstrated
for an illustrative avionics setup, however it is general enough to be
applied to a number of industrial domains including the space, telecom
and automotive. We finally reason about the benefits to an industrial
user by comparing to similar initiatives in the research landscape.

Keywords: Model-based engineering, CONCERTO, IMA, ARINC 653,
partitioned multicore

1 Introduction

The behaviour of real-time software must be proved correct not only in the
functional dimension, as it is the case for any software system, but also in the
time dimension to ensure proper interaction with the physical world. The re-
quirements that need to be met by those systems extend much beyond func-
tional behaviour, to include timeliness, energy consumption, robustness. Those

2 Andrea Baldovin, Alessandro Zovi, Geoffrey Nelissen and Stefano Puri

additional requirements are globally understood to designate extra-functional
properties. Interestingly, while functional behaviour embodies the logic required
to solve a specific problem and lends itself to reuse, extra-functional proper-
ties are usually strictly contingent on the specific deployment platform and the
stipulated execution conditions.

Because of their inherent complexity, the delivery of high-integrity real-time
systems is seldom the result of a single player following a strictly sequential
development process from requirements to deployment. Rather, it is the result
of the collective effort of numerous subcontractors, which eventually needs to
be incrementally integrated into a coherent system and ascertained to satisfy
the applicable certification requirements. To enable the involvement of multi-
ple development parties, the system needs to be designed in a way that favours
its decomposition into elementary parts. This buys into the principle of com-
positionality, which considers the system top-down to describe it as a function
of its constituting components. Compositionality at system level is facilitated
by composability at lower levels of the system stack, to guarantee that the be-
haviour of individual components as determined in isolation stays the same upon
composition in the final system.

Unfortunately, while compositionality and composability of functional prop-
erties are comparatively easy to achieve, ensuring composable behaviour in the
extra-functional dimension is a more challenging problem. This is because of the
complexity of precisely characterising the interactions among different entities
executing in the HW/SW stack. Consequently, designing and assessing extra-
functional properties becomes harder and the resulting systems tend to represent
very specific solutions tailored to the problem they address, often based on spe-
cific industrial practices. In this situation, dimensioning a system very precisely
becomes impractical and over-provisioning emerges as the only solution to meet
the wished integrity levels at the expense of manufacturing and operation costs.

Model-driven engineering. Research conducted in the context of the CHESS
project! suggested that resorting to a reference software architecture in combi-
nation with a model-based component-oriented development process can be a
very effective strategy for the industrial development of real-time embedded
software [11]. A reference software architecture can be thought of as a template
architectural blueprint defining the methodology and architectural practices that
form a common baseline solution for software systems of a specific domain. A
reference architecture exhibits at least the following traits, as defined in [10].

1. A component model, to define software building blocks encapsulating pure
functional and reusable logic.

2. A computational model, to map the entities in the component model to a
framework of analysis techniques.

3. A programming model, to define a limited subset of programming language
constructs that can be automatically generated from the component model.

! http://www.chess-project.org/

The CONCERTO methodology for model-based development of avionics SW 3

4. An execution platform capable of preserving the properties ascertained at
the analysis stage and monitoring their possible violation.

5. A development process inspired by Model-Driven Engineering (MDE) [14], to
promote a disciplined approach capable of mastering complexity by enforcing
separation of concerns [5].

6. The provisioning of domain-specific views on the system to satisfy different
stakeholders.

The methodology developed by CONCERTO builds on the foundation of
the CHESS research, embracing a model-based component-oriented approach to
system design, a model-based analysis framework with back propagation and
automatic generation of application code.

The avionics use case. Modern avionics systems are designed around an in-
tegrated system architecture known as Integrated Modular Avionics (IMA) [12],
where several software subsystems are allowed to share the available physical
resources, provided that some constraints on space and time isolation are re-
spected. This is imposed mainly for safety reasons, i.e., to avoid faults in any
executing application, called partition, to propagate to the whole system. IMA
architectures are hierarchically organised into two layers: at the top level, execu-
tion requirements for partitions are considered to determine the schedule of the
whole system. That schedule allocates time slots to partitions, within the bound-
aries of which every partition is guaranteed to execute in isolation from others.
Within any partition a local scheduler is in charge of executing application tasks
with no knowledge needed about the system-level schedule.

Interestingly, partitioned design naturally promotes composability, which in
turn enables incremental development and verification of the system. However,
when a reference architecture is considered, some specific requirements from the
avionics domain need to be supported.

1. Hybrid design approach. The system design process usually proceeds top-
down, starting from the definition of higher-level requirements and subsys-
tems and mapping them down to cohesive functional components of finer
granularity. However, designing a hierarchical system demands additional
support bottom-up to define partitions as aggregates of individual compo-
nents. The component model needs therefore to support multiple levels of
abstraction and aggregation.

2. Semi-automated schedule design. As a matter of practice, the generation
of the system level schedule is performed by the system integrator taking
into consideration the execution requirements of the individual partitions.
This risks to be a time-consuming and error-prone activity in the absence
of appropriate supporting tools. For example, if the timing requirements of
one partition were to change, this potentially affects the whole schedule.
However, as discussed later in Section 3.2, this job need not be carried out
by hand: rather, a number of execution constraints may be inferred from the
execution needs of the individual tasks, and a valid system-level schedule
can be semi-automatically built.

4 Andrea Baldovin, Alessandro Zovi, Geoffrey Nelissen and Stefano Puri

3. Multicore HW architectures. Although the IMA architecture addresses single-
core systems only, the avionics industry has shown some interest for the re-
cent advances in HW architectures and the potential of multicores in partic-
ular. Among the possible multiprocessor configurations, the partitioned ap-
proach seems to be the most interesting in this context, since inter-processor
interference can be contained and controlled to some extent by the system
designer. A partitioned system therefore lends itself more easily to incre-
mental verification and certification. However, little industrial experience is
available from real-world systems running on multicore processors, which
motivates the need for suppport tools.

4. Model analysis. Assessing the behaviour of partitioned systems after their
deployment may reveal itself a hard job in the absence of suitable tech-
niques. Analysing the system model and verifying its validity early at design
time with automated tools brings the advantage of promptly detecting any
inconsistencies and identifying the parts of the architecture to be revised.

In the remainder of this paper we present the solutions devised within CON-
CERTO to meet the challenges above. The paper is organised as follows: Sec-
tion 2 gives an insight on existing research on modelling tools and execution
platforms for partitioned systems supporting the ARINC 653 standard for the
avionics [1]. Section 3 presents our methodology and toolset, starting from the
CONCERTO component model, then illustrating the added-value tools provided
for system configuration, analysis and code generation. Finally in Section 4 our
approach is compared to MultiPARTES, a similar research initiative.

2 Background

This section introduces recent research dealing with model-driven methodologies
and platforms for avionics software. In a first time we look at MultiPARTES,
a research project that addresses model-driven development in the context of
partitioned architectures. Then, we discuss an execution platform for IMA that
proved to foster time composability in avionics applications.

MultiPARTES. The MultiPARTES research project? addressed the develop-
ment of mixed-criticality embedded systems on heterogeneous multicore plat-
forms. Its approach was developing a model-based software development method-
ology and the related toolset for building partitioned applications on top of the
XtratuM hypervisor [7].

According to the MultiPARTES methodology [13], a system model is first
created, later elaborated by a partitioning tool and finally validated by a number
of tools. Those tools check the correctness with respect to different criteria, for
example response time. The output of the partitioning tool is a deployment
model which is amenable to code generation and can be deployed to a dedicated

2 http://www.multipartes.cu/

The CONCERTO methodology for model-based development of avionics SW 5

platform. The main component of the platform is the XtratuM hypervisor which
stands in between the multicore hardware and the partitions. Each of them
contains a subsystem which comprises a real-time operating system and the
software applications.

The system model consists of three different models: (i) the application model
represents the functional description of the system, enriched with non-functional
attributes related to criticality, timing and partition configuration; (ii) the plat-
form model represents the hardware description and the OS available for deploy-
ment; (iii) the partitioning restriction model represents the relations between
the application and platform models and specifies partitioning constraints to be
taken into account by the partitioning tool to generate the deployment model.
Only the application model conforms to the UML2 metamodel and the MARTE
profile [17], whereas the others are defined by non-standard domain-specific lan-
guages.

The XtratuM hypervisor uses paravirtualization, which means that its oper-
ations are as close to the target hardware as possible. Any OS to be deployed
on top of this kind of hypervisor needs to be modified to replace some privi-
leged part of the Hardware Abstraction Layer with the corresponding calls to
the hypervisor. The design of XtratuM borrows the concept of partition from
IMA, and the cyclic scheduling of partitions and the inter-partition communica-
tion mechanisms from ARINC 653. However while an IMA partition is in charge
of managing the processes inside it, an Xtratum partition — which is a virtual
computer — delegates such management to the virtualised operating system.

PROARTIS sim and TiCOS. The avionics case study considered in CON-
CERTO needs to be deployed on a PowerPC (PPC) architecture, which is widely
adopted by leading manufacturers in that domain [8]. To this end we consider
the execution platform developed within the scope of the EU-FP7 PROARTIS
project?. This includes (i) PROARTIS _sim, a highly configurable and timely ac-
curate PPC-750 simulator developed by Barcelona Supercomputing Center, and
(if) TiCOS [3], developed at the University of Padova and providing basic OS
services and implementing the ARINC 653 API on top of it. PROARTIS sim
can be deployed to build a partitioned multicore configuration as a number of
identical single-core replicas executed side-by-side, with no direct communica-
tion allowed between applications running on different nodes. TiCOS meets the
usual time and space partitioning requirements of IMA systems by implementing
a significant part of the ARINC 653 API. At the same time it shows reduced
execution jitter and enforces time composability. When running on a partitioned
multicore HW configuration, one TiCOS replica is deployed on each core. Those
multiple instances are completely unaware of each other and all provided API
services have only local effects.

Considering the sources of unpredictability present in typical HW and SW
used for embedded systems, [18,19] showed that the execution stack made up
of PROARTIS sim processor and TiCOS causes much reduced interference on

3 http://www.proartis-project.eu/

6 Andrea Baldovin, Alessandro Zovi, Geoffrey Nelissen and Stefano Puri

the execution of user-level applications and further makes them amenable to
probabilistic analysis of worst-case execution time. Those results come in handy
in our context to prove that it is possible in fact to preserve the extra-functional
properties defined at the modelling level, and execution time guarantees in par-
ticular, down to the execution stack, so long as the latter is well-behaved versus
the applications running on top of it.

3 The CONCERTO methodology

Components with
functional behavior

.
Containers and
connectors

erating System TiCOS (ARINC-653) TiCOS (ARINC-653)

PROARTIS_sim

Fig. 1. Decomposition of an avionics system developed with CONCERTO .

In this section we describe how it is possible to model an avionics use case like
the one shown in Figure 1 with CONCERTO. In doing this we introduce the con-
stituting parts of the platform starting from the component model (Section 3.1)
and the additional plugins assisting system deployment (Section 3.2). We then
present the analysis we are able to carry on the system model (Section 3.3) and
the technology enabling automatic code generation (Section 3.4).

3.1 Modelling

MARTE is the language chosen by CONCERTO for modelling extra-functional
properties, and timing in particular. Although MARTE does not provide explicit
guidelines or stereotypes for modelling ARINC 653 partitions, it defines a num-
ber of fine-grained stereotypes that can be collectively used to model partitions
and their properties. CONCERTO uses those artifacts to model the spatial and
temporal isolation requirements of partitions.

Partition modelling. In CONCERTO the spatial isolation property of a par-
tition is modelled by using the «MemoryPartition» MARTE stereotype. The
stereotype is defined as a virtual address space ensuring that only resources as-
sociated to it can access and modify it. This is compliant with the definition given
by ARINC 653. Concerning temporal isolation, the runtime of each partition, i.e.
its virtual processor, is modelled by using both the MARTE «SwSchedulableRe-
source» and «ProcessingResource» stereotypes. The former makes it possible to

The CONCERTO methodology for model-based development of avionics SW 7

«Components
«functionalPartition, memoryPartition»
=] Partition

Fig. 2. Functional Partition in CONCERTO.

represent the virtual processor as a schedulable resource executing in parallel
with others. The latter is used to represent the logical entity capable of schedul-
ing and executing the tasks within the partition running on the virtual processor.
The virtual processor must then be mapped to a physical processor, annotated
by the «<HWProcessor» MARTE stereotype.

Beside temporal and spatial isolation, we are also interested in modelling
the functional behaviour of partitions. This requires support for modelling hi-
erarchical components, which is provided by UML through composite structure
diagrams. The user of CONCERTO is given the possibility to define partitions
either prior or after the definition of their owned sub-components, in a top-down
or a bottom-up fashion respectively. In practice however, application design in-
fluences the partitioning decisions taken at system level. Therefore, from the
methodological point of view, partition modelling builds upon the functional
specification of applications. For this reason, partitions are initially modelled
as empty composite components, acting as wrappers of application-specific sub-
components that implement the required functionality. Partitions further seg-
regate the behaviour of child components that should not be visible to others
deployed in different partitions. Instead, the behaviour to be provided to or
required from the external world is exposed by the partition through specific
interaction points, i.e. UML provided and required ports respectively. Thus, a
partition does not provide any behaviour on its own, but rather delegates all
the exposed and required functionality to its internal components. All the con-
straints above are enforced at model level by means of a dedicated UML Com-
ponent stereotype called «FunctionalPartition», which represents the functional
concern of CONCERTO partitions (Figure 2).

In our solution the «MemoryPartition» and «FunctionalPartition» stereo-
types are applied together on the same component to induce the spatial isola-
tion property. A possible alternative would be to use the «MemoryPartition»
stereotype for the hardware modelling, as a distinct entity associated to the vir-
tual processor. In our current implementation, however we have discarded that
choice to keep hardware modelling simpler. Finally, the partition is allocated to
a virtual processor through the «Assign» MARTE stereotype (Figure 3).

Partition decoration. For each virtual processor timing information can be
specified to enable timing analysis. A table-driven schedule can be associated to
a MARTE «HWProcessor» stereotype by attaching a «Scheduler» entity to it.
The latter is equipped with (i) a schedule parameter that describes the absolute
ordering of the referenced virtual processors, and consequently of the partitions;

8 Andrea Baldovin, Alessandro Zovi, Geoffrey Nelissen and Stefano Puri

E] HwProcessor

«assign» «assign»

«Assign»
from=[Partition2]
to=[virtualProc2]

«Assign»
from=[Partition1]
to=[virtualProc1]

«swSchedulableResource, processingResource» «swSchedulableResource, processingResource»
&) + virtualProcl: VirtualProcessor [1] [&) + virtualProc2: VirtualProcessor [1]

Fig. 3. Virtual Processor in CONCERTO.

[— «scheduler»
«hwProcessor» Q PartitionsScheduler
Q HwProcessor «Scheduler»
«HwProcessor» schedule={(VirtualProcessor1,
mainScheduler=PartitionsScheduler (budget=100, unit=ms)),
(VirtualProcessor2, (budget=50,
unit=ms))}

Fig. 4. Partition timing decoration in CONCERTO.

(ii) the budget assigned to each virtual processor, computed as a measure of the
processing resource utilisation (Figure 4). The utilisation can be either provided
top-down by the system designer or alternatively computed bottom-up by the
schedule generation tool described in Section 3.2.

3.2 Deployment

Deployment is of paramount importance to ensure system feasibility and cor-
rectness. At this stage the software architecture, as designed in the modelling
phase, meets the constraints and the limitations imposed by real target plat-
forms. Moreover, opportunities for optimisation may emerge at this stage, which
is fundamental to limit over-provisioning of system resources and contain costs.
When considering partitioned multiprocessor avionics systems, decisions have
to be taken about where and when partitions should execute. The former is the
problem of finding an allocation of partitions to cores, the latter requires to draw
a top-level schedule for partitions.

Allocation to cores. By definition, task migration across cores is not allowed
on a partitioned multicore system. In our understanding partition migration
should be avoided as well, since this would have severe implications on the achiev-
able time and space isolation. In fact task migration is the most notable drawback
of global scheduling approaches because of the HW state pollution caused and

The CONCERTO methodology for model-based development of avionics SW 9

the consequent additional execution time overheads introduced. Those undesired
effects would be even amplified in a scenario where partitions, as collections of
tasks, were allowed to migrate across processors.

Creating the partitioning, i.e. deciding where each task or partition will ex-
ecute, is known to be a NP-hard problem as an instance of the general graph
partitioning problem [6]. In fact, sub-optimal choices at this stage may easily im-
pair system performance and in the worst case even its feasibility. CONCERTO
provides the technology to semi-automate this step by proposing a partitioning
for the system based on the execution requirements of the partitions defined in
the modelling step. This is achieved by implementing a modified version of the
worst-fit bin packing heuristic?. Modifications to the base heuristic need to be
considered to account for the inter-partition communication protocol allowed by
ARINC 653 [1]. More precisely, we need to take care of the following implicit
constraint emanating from the component model: when two partitions are meant
to communicate via sampling or queuing ports, then they must be allocated for
execution on the same physical processor. This is enough to generate a valid
partitioning, whereas its efficiency, expressed as the minimal number of process-
ing units needed to schedule the system, directly depends on the bin packing
technique used and the specific task set. Alternative partitioning choices might
have been considered to execute a partition on more than one processor. How-
ever such configurations, while promising better theoretical performance, allow
concurrent execution of tasks within a partition. Consequently additional con-
tention on shared hardware resources and interference are introduced, eventually
breaking the time composability property enforced between the layers of our ex-
ecution stack. This would make it harder — if not impossible at all — to precisely
characterize the execution time of user applications, i.e. partitions, hampering
their assembly into the final system. For this reason those setups are not consid-
ered in this discussion. Similarly, inter-partition communication across different
processors is not considered, as this mandates a careful assessment of how shared
memory affects the time analysability of the system. Communication between
partitions residing in the same node instead is dealt with as prescribed by IMA
for single-core platforms.

Schedule generation. ARINC 653 prescribes a round-robin policy with flexible
quanta for the top-level scheduling of partitions, which substantially corresponds
to drawing a table-driven schedule offline. This is a critical step, since (i) the
number of partitions may grow considerably in a real-world system, (ii) a wrong
schedule may easily lead to violations of process deadlines and (iii) any change in
the requirements of any partition may potentially impair the validity of a previ-
ously computed schedule. CONCERTO provides a plugin to semi-automate the
schedule generation process by computing a base schedule for the system, that
can be later modified and refined by the system designer according to her specific
needs. In fact, the deadline/period and worst-case execution time (WCET) pa-
rameters of the individual tasks indirectly constrain the top-level schedule of the

4 Any user-defined heuristic may be implemented with little impact on the platform.

10 Andrea Baldovin, Alessandro Zovi, Geoffrey Nelissen and Stefano Puri

system and restrict the search space of the problem. The tool assumes the map-
ping between tasks and partitions is known: this is not unrealistic in fact, since
partitions are designed to encapsulate cohesive functional logic and are treated
as atomic blocks when their development is outsourced. In case the individual
utilisation of partitions has not been specified explicitly by the system designer
as explained in Section 3.1, an initial schedule for the system is built as follows.
Initially the Major Frame (MAF), i.e. the system hyperperiod in ARINC speak,
and the total slack available in the system are computed. Then the execution
demand of each partition is calculated at any time instant of the MAF, by con-
sidering the request bound function (rbf) of the tasks in the partition. We then
look for a couple of values (budget, period) such that their ratio, corresponding
to the utilisation of the partition, is minimised. After repeating this process for
all partitions, the earliest schedule for the system can be easily drawn by sorting
partitions according to the earliest-deadline-first (EDF) policy. However, unless
the system is fully utilised, some slack is available in the system and has not
been assigned by the algorithm so far. This reserve of computation resources is
very useful in practice, to serve as a buffer to accommodate overruns of modest
magnitude. Our plugin redistributes the remaining slack uniformly across those
partitions for which utilisation was not specified by design. This process starts
from the end of the MAF and proceeds backwards until either there is no re-
maining slack in the system or assigning more slack would make it unfeasible as
a consequence of violating some deadlines.

In the case of communication between partitions with blocking semantics, the
ARINC 653 specification does not prescribe any specific execution ordering of
producer and consumer partitions. Rather, in the event of writes on a full buffer
or reads from an empty buffer, execution is blocked and the blocking condition is
re-checked on the next scheduling slot. Although inverting the execution ordering
of reader and writer would be a more efficient solution, one must be careful to not
compromise system feasibility. For this reason this kind of optimisation is left to
the user at the moment. More generally, the user is given the chance to modify
the proposed schedule to meet any specific need that an automated process can
hardly capture. Also, slack distribution can be optimised to allocate extra-time
for any special needs, e.g. to partitions performing the most critical operations.
Validation of the new schedule is performed in the later step of analysis and
back propagation of results to the user model.

3.3 Analysis and back-propagation

Once the deployment of the partitions done and their schedule generated in
a semi-automated manner, a timing analysis of the processes mapped on each
partition is performed. The timing analysis computes the worst-case response
time (WCRT) of each process, which can then be compared against the process
deadlines in order to assert their schedulability. If a deadline should not be met,
that result is back propagated to the component model. The system integrator
can then use this information to revise the component model or tailor the par-
tition deployment in a way that would increase the partition supply and hence

The CONCERTO methodology for model-based development of avionics SW 11

allow all the processes to eventually respect their deadlines. The timing analysis
of the system model is thus a critical step in the design of embedded software
with timing requirements as its results may initiate multiple iterations on the
description of the application model.

The timing analysis is performed using an augmented version of MAST®, a
schedulability and timing analysis tool developed and maintained by the Uni-
versity of Cantabria. CONCERTO extended MAST to model IMA architectures
and compute the worst-case response time of processes running in partitions. To
that end, the input model of MAST has been improved in order to represent
multicore processors as well as partitions, their mapping and their generated
schedule. Those inputs are provided to the extended version of MAST directly
from the result of the deployment phase by means of a model-to-text transforma-
tion based on Acceleo®, an engine implementing the MOFM2T specification [16]
defined by the Object Management Group (OMG).

From an analysis viewpoint, MAST did not support the analysis of pro-
cesses running in IMA partitions. MAST was thus extended using results of a
similar problem, namely the hierarchical scheduling problem, which has been
extensively studied in the literature [2,4]. The state-of-the-art on hierarchical
scheduling provides techniques to compute the WCRT of periodic or sporadic
tasks to be scheduled using a fixed priority scheduling algorithm within a par-
tition characterised by a given budget and replenishment period. Note however
that none of the related works considers periodic tasks with release offsets. Yet,
CONCERTO’s component model is generic enough to model both periodic and
sporadic processes and, in conformity with the ARINC 653 specification, pe-
riodic processes can be associated a release offset. Due to the lack of existing
timing analysis for IMA systems composed of periodic tasks with offsets, the
timing analysis implemented in the extended version of MAST is based on [4]
thus assuming all the tasks to be sporadic. Although restrictive and pessimistic,
this assumption provides a safe upper bound on the worst-case response times,
even for systems that are partially or completely composed of periodic tasks. Yet,
in an attempt to improve the accuracy of the results, researches are currently
pursued in the CONCERTO project to extend the analysis to IMA partitions
composed of a mix of sporadic and periodic processes with or without offsets.

3.4 Code generation and execution

After the user has performed all desired analyses and the model-based descrip-
tion of the system has been validated, most of the conceptual work has been
already performed to shape the system and the effort shifts to implementation
and deployment on a real target. At this point a number of heterogeneous tech-
nologies come into play to take the system blueprint and implement it in the
form of human-readable code as a first approximation, then translating it into
machine code for execution on a HW platform. Unfortunately, the abstraction

® http://mast.unican.es
S http://eclipse.org/acceleo/

12 Andrea Baldovin, Alessandro Zovi, Geoffrey Nelissen and Stefano Puri

gap existing between those architectural layers risks to invalidate the guaran-
tees so hardly obtained on the modelling side and eventually undermines the
whole development process. Additionally, another serious obstacle to system de-
velopment comes from execution on top of unpredictable HW and OS layers,
i.e., in the presence of components whose behaviour and interference are hard
to characterise and consequently make it difficult to preserve extra-functional
properties such as execution timing. Neglecting these considerations early in the
development process may inflate the verification process and manufacturing costs
consequently, or in the worst case lead to malfunctioning of the delivered sys-
tem. The methodology defined by CONCERTO suggests how to mitigate both
problems, i.e. the preservation of extra-functional properties at lower layers of
the architecture and execution on a predictable platform.

For the preservation of timing properties ascertained at the model level our
toolset includes an automated code generation facility, following the approach
successfully implemented in CHESS and illustrated in [9]. That work demon-
strated that it is possible to preserve the semantics of constructs defined at the
modelling level, i.e., by the component model, down to implementation and de-
ployment by resorting to a programming model, that is a limited set of code
archetypes in the programming language of choice . The automatic code genera-
tion approach is useful not only to retain the guarantees obtained at the model
level, but it also helps reduce the development effort required in the event of
multiple deployments or even of re-targeting to different HW architectures. This
is because from one single model of the system any implementation can be auto-
matically generated, provided that the mapping from the component model to a
programming model has been specified. Automatic code generation is realised in
CONCERTO by means of model-to-text transformations run with the support
of Acceleo.

For what concerns predictability of the execution platform, CONCERTO
decided to adopt PROARTIS sim and TiCOS in its execution stack, that proved
to cause reduced interference to user applications as explained in Section 2.

4 Discussion

The methods and tools presented in Section 3 address the avionics-specific re-
quirements presented in Section 1. Specifically, hierarchical components enable
hybrid top-down and bottom-up design, the schedule generation and partitioning
tools support deployment on complex hardware, and timing analysis of the model
is made possible by modifications to MAST. We now compare our approach to
MultiPARTES, since the latter addresses similar concerns although starting from
slightly different premises, i.e. the intent of supporting mixed-criticality systems
and heterogeneous multicore architectures.

Methodology and modelling. Not surprisingly the methodologies defined
by CONCERTO and MultiPARTES present significant similarities, as a conse-
quence of sharing the common background of CHESS. The approach taken by

The CONCERTO methodology for model-based development of avionics SW 13

MultiPARTES requires an additional step to model in detail the HW configu-
ration of choice via a platform view. In return, support is given to asymmet-
ric multiprocessor (AMP) architectures, although their adoption in real-world
avionics systems is still to come. Conversely, in CONCERTO there is no need for
this facility since execution on a symmetric multiprocessor (SMP) is assumed.
One advantage of CONCERTO is certainly its metamodel, which is fully compli-
ant with MARTE and UML2, whereas MultiPARTES makes use of proprietary
entities that may hardly fit together with standard specifications and tools.

Execution stack. Although both define a partitioned architecture, the exe-
cution stacks of CONCERTO and MultiPARTES differ significantly because of
their different goals. While both are capable of ensuring the required degree of
space and time isolation, whether to enforce it by means of a hypervisor or a par-
titioning kernel needs to be carefully evaluated. One advantage of the hypervisor
approach over a standard OS is its capability of encapsulating large subsystems
— including user applications and the OS running them — as black boxes, and
to make the interactions with the HW platform transparent. Nonetheless, the
paravirtualization implementation of XtratuM requires some effort to port the
guest OS to a different execution environment, by transforming system calls into
hypercalls and redirect them to the hypervisor. Moreover, the introduction of
an additional layer in the execution stack is very likely to introduce new over-
heads and cause more interference to applications at the user level. On the other
hand, if a partitioning kernel is deployed, full control can be retained on the
deployed HW and system SW, whose interactions are known to highly affect
time composability and system analysability in turn.

The XTratuM architecture silently tries to enforce time composability by
providing low-jitter hypercalls and allocating partitions to virtual processors
statically, thus limiting interference by creating isolated HW/SW silos. These
are similar principles to those inspiring the development of TiCOS. However,
one may argue that if the design of the guest OS has negative effects on the
application side, the introduction of a hypervisor alone is not sufficient to solve
those problems but rather moves them one layer below in the architecture. In
fact, existing studies [15] confirmed by our research on TiCOS have shown how
tight coupling between applications and the OS hopelessly complicates timing
analysis. For these reasons putting TiCOS at the centre of the execution stack
is a better solution, since it makes it possible to achieve true time composable
execution.

Similarly, the possibility of assigning more than one virtual processor to one
partition in XtratuM poses no limits on the kind of scheduling policy chosen
within partitions. In particular, if global scheduling is chosen, the open issues re-
lated to the amount of interference generated by task migrations are still present
and moved one step above in the architecture, from the hypervisor layer to the
partition internals. The choice of pinning partitions to cores as in TiCOS in-
stead enforces partitioned scheduling of applications, providing a realistic setup
for multicore execution with guarantees.

14 Andrea Baldovin, Alessandro Zovi, Geoffrey Nelissen and Stefano Puri
Target || Metamodel Execution stack
system Effects on time
Architecure| Scheduling | composability
strictly time-composable
MARTE/ ||partitioning| partitioned | execution stack
CONCERTO || SMP UML2- oS (1 partition (TiCOS +
compliant on 1 core) |PROARTIS sim)
any coupling
(1 partition between
MultiPARTES|| AMP ||proprietary|| hypervisor on>1 app and OS
vitual cores)| + hypervisor
overheads

Table 1. Distinguishing elements of CONCERTO and MultiPARTES.

In conclusion, the approach to modelling partitioned systems advocated by
CONCERTO and MultiPARTES is very similar, as summarized in Table 1. How-
ever, the reasons to prefer a virtualisation architecture need to be justified by
specific needs, such as the execution on AMPs or the integration of systems with
different criticality levels on the same machine. It is questionable whether these
trends will dominate future avionics systems. Yet the known issues concerning
time composability and scheduling of applications encountered in traditional OS
design need to be addressed in both scenarios.

Acknowledgements. The authors are grateful to the people at Barcelona Su-
percomputing Center for their supply of PROARTIS sim. This work was par-
tially supported by National Funds through FCT/MEC (Portuguese Founda-
tion for Science and Technology) and when applicable, co-financed by ERDF
(European Regional Development Fund) under the PT2020 Partnership, within
project UID/CEC/04234/2013 (CISTER Research Centre); also by FCT/MEC
and the EU ARTEMIS JU within project ARTEMIS/0003/2012 - JU grant nr.
333053 (CONCERTO).

References

1. Aeronautical Radio, Inc.: ARINC Specification 653-1: Avionics Applicaiton Soft-
ware Standard Interface (2003)

2. Almeida, L., Pedreiras, P.: Scheduling within temporal partitions: Response-time
analysis and server design. In: Proc. of the 4™ ACM International Conference on
Embedded Software (2004)

3. Baldovin, A., Mezzetti, E., Vardanega, T.: A Time-composable Operating System.
In: 12°® WCET Workshop. OpenAccess Series in Informatics (OASIcs), vol. 23,
pp. 69-80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

The CONCERTO methodology for model-based development of avionics SW 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Davis, R., Burns, A.: Hierarchical fixed priority pre-emptive scheduling. In: Proc.
of the 26" TEEE Real-Time System Symposium (2005)

. Dijkstra, E.: On the role of scientific thought. In: Selected Writings on Computing:

A personal Perspective, pp. 60-66. Texts and Monographs in Computer Science,
Springer New York (1982)

Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman (1979)

Masmano, M., Ripoll, 1., Crespo, A., Metge, J.: Xtratum: a hypervisor for safety
critical embedded systems. In: Proc. of the 11" Real-Time Linux Workshop (2009)
Moir, I., Seabridge, A., Jukes, M.: Civil avionics systems. Wiley-Blackwell (2013)
Panunzio, M., Vardanega, T.: Ada ravenscar code archetypes for component-based
development. In: Reliable Software Technologies — Ada-Europe 2012, Lecture Notes
in Computer Science, vol. 7308, pp. 1-17. Springer Berlin Heidelberg (2012)
Panunzio, M., Vardanega, T.: An architectural approach with separation of con-
cerns to address extra-functional requirements in the development of embedded
real-time software systems. Journal of Systems Architecture 60(9), 770 — 781 (2014)
Panunzio, M., Vardanega, T.: A component-based process with separation of con-
cerns for the development of embedded real-time software systems. Journal of
Systems and Software 96(0), 105 — 121 (2014)

Radio Technical Commission for Aeronautics: Integrated Modular Avionics (IMA)
Development Guidance and Certification Considerations (2005)

Salazar, E., Alonso, A., Garrido, J.: Mixed-criticality design of a satellite software
system. In: Proc. of the 19*" TFAC World Congress (2014)

Schmidt, D.: Guest editor’s introduction: Model-driven engineering. Computer
39(2), 25-31 (2006)

Schneider, J.: Why you can’t analyze RTOSs without considering applications and
vice versa. In: Proc. of the 2°¢ WCET Workshop (2002)

The Object Management Group: MOF Model to Text Transformation Language,
v1.0 (2008), http://www.omg.org/spec/MOFM2T/1.0/

The Object Management Group: UML Profile for MARTE: Modeling and Analysis
of Real-time Embedded Systems (2011), http://www.omg.org/spec/MARTE/1.1/
Wartel, F. et al.: Measurement-based probabilistic timing analysis: Lessons from
an integrated-modular avionics case study. In: Proc. of the 8" IEEE International
Symposium on Industrial Embedded Systems (SIES). pp. 241-248 (2013)

Wartel, F. et al.: Timing analysis of an avionics case study on complex hardware/-
software platforms. In: Proc. of the 18" Design, Automation & Test in Europe
Conference and Exhibition (DATE) (2015)

