

Timing Analysis Solutions for Multicore
Systems

Demo

CISTER-TR-170601

Luis Miguel Pinho

Demo CISTER-TR-170601 Timing Analysis Solutions for Multicore Systems

© CISTER Research Center
www.cister.isep.ipp.pt

1

Timing Analysis Solutions for Multicore Systems

Luis Miguel Pinho

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

This project has received funding from the European Union's Seventh Framework Programme

for research, technological development and demonstration under grant agreement nº 611016

Timing analysis solutions for multicore systems

Luis Miguel Pinho

ISEP

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 2

Outline

• P-SOCRATES at a glance

• Time predictability and high-performance on parallel

architectures

• Quick review of WCET estimation techniques

• pros & cons and their applicability in P-SOCRATES

• The methodology in the P-SOCRATES SDK

Quick fact sheet

• P-SOCRATES: Parallel SOftware framework for time-

CRitical mAny-core sysTEmS

• Three-year FP7 STREP project (Oct-2013, Dec-2016)

• Website: www.p-socrates.eu

• Budget: 3.6 M€
• Partners

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 3

http://www.p-socrates.eu/

Industrial Advisory Board

• Review and prioritize requirements, ensure that the

project is kept on focus, analyze and validate the

results

• Members:

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 4

City of Bratislava

Motivation

Demand of increased performance with

guaranteed processing times

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 5

Embedded

Computing
High Performance

Computing

Vision

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 6

next-generation embedded

many-core accelerators

programmability of

many-core from

high-performance computing

real-time

methodologies

to provide time

predictability

Vision

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 7

D
y

n
a

m
ic

Vision

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 8

D
y

n
a

m
ic

S
ta

ti
c

Innovation

• A generic framework, integrating models, tools and system

software, to parallelize applications with high performance

and real-time requirements

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 9

P-SOCRATES (Grant agreement nº 611016) 10

P-SOCRATES TA Objectives

31-05-2017

for(int i=0; i<3; i++) {

for(int j=0; j<3; j++) {

if(i==0 && j==0) { // Task T1

#pragma omp task depend(inout:m[i][j])

compute_block(i, j);

} else if (i == 0) { // Task T2

#pragma omp task depend(in:m[i][j-1], inout:m[i][j])

compute_block(i, j);

} else if (j == 0) { // Task T3

#pragma omp task depend(in:m[i-1][j], inout:m[i][j])

compute_block(i, j);

} else { // Task T4

#pragma omp task depend(in:m[i-1][j],m[i][j-1],

m[i-1][j-1], inout:m[i][j])

compute_block(i, j);

P-SOCRATES TA Objectives

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 11

Compiler

Annotate every node

with a WCET estimate

Schedulability

analysis

Project developed new

schedulability analysis for

parallel graphs

Challenges

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 12

Safety-critical systems

͞“iŵple͟ fuŶĐtioŶs
Programming and design guidelines

Well written and structured code

Simple and predictable hardware

More complex

More powerful

No guidelines

Business-critical systems

Performance-critical systems

strong and reliable V&V processes and tools ?

Reviewed WCET techniques

P-SOCRATES (Grant agreement nº 611016) 13

• Static WCET techniques

• Measurement-based techniques

• Hybrid techniques

• Probabilistic WCET

31-05-2017

Static WCET techniques

P-SOCRATES (Grant agreement nº 611016) 1431-05-2017

Not this way

Not this way

Not this way

Phase 1: Flow analysis

Identify the feasible execution path in a program

Static WCET techniques

P-SOCRATES (Grant agreement nº 611016) 15

void main (X) {

A = funcA(X) ;

if (A > 10) {

B = B - A;

} else {

B = B + A;

}

}

void main (X) {

A = funcA(X) ;

eval (A > 10);

B = B - A;

}

void main (X) {

A = funcA(X) ;

eval (A > 10) ;

B = B + A;

}

31-05-2017

Phase 1: Flow analysis

Identify the feasible execution path in a program

Static WCET techniques

P-SOCRATES (Grant agreement nº 611016) 16

void main (X) {

A = funcA(X) ;

if (A > 10) {

B = B - A;

} else {

B = B + A;

}

}

void main (X) {

A = funcA(X) ;

eval (A > 10);

B = B - A;

}

void main (X) {

A = funcA(X) ;

eval (A > 10) ;

B = B + A;

}

31-05-2017

Phase 1: Flow analysis

Identify the feasible execution path in a program

Static WCET techniques

P-SOCRATES (Grant agreement nº 611016) 17

void main (X) {

A = funcA(X) ;

eval (A > 10);

B = B - A;

}

void main (X) {

A = funcA(X) ;

eval (A > 10) ;

B = B + A;

}

Pipeline Cache[s]200 ns

5500 ns

50 ns

∑ = 5750 ns

Pipeline Cache[s]1500 ns

5500 ns

50 ns

∑ = 7050 ns

31-05-2017

Phase 2: Low-level analysis

Pros & cons

P-SOCRATES (Grant agreement nº 611016) 1831-05-2017

No need to have the actual hardware available

Years of experience, reliability proven for simple embedded

processors -> very efficient for SC applications

Little support for multicores

Long time-to-market due to the inherent complexity

V&V issues and associated cost

Accuracy for more complex platforms? (how to deal with IPs

in COTS?)

Measurement-based techniques

P-SOCRATES (Grant agreement nº 611016) 19

Output

Input

31-05-2017

Pros & cons

P-SOCRATES (Grant agreement nº 611016) 2031-05-2017

Estimations available immediately (also, average, etc.)

No need to design accurate model -> reduced effort and cost

Requires the hardware to be available, which may not be the

case if the HW is developed in parallel with the SW

Difficult to set up an environment which acts like the final

system

Intrusive instrumentation code

Exhaustive testing is impossible

Hybrid techniques

P-SOCRATES (Grant agreement nº 611016) 21

• Combine the merits of static and measurement-based analysis

techniques.

Output

Input

31-05-2017

X, Y = read();

If (X < 50) then

// some code

Else

if Y > 100 then

// some code

else

// some code

end if

End if

Pros & cons

P-SOCRATES (Grant agreement nº 611016) 2231-05-2017

Do not rely on complex models

Provide accurate estimates

Intrusive instrumentation code

Exhaustive testing is impossible

Probabilistic WCET techniques

P-SOCRATES (Grant agreement nº 611016) 23

• Static pWCET

31-05-2017

void main (X) {

A = funcA(X) ;

eval (A > 10);

B = B - A;

} Pipeline Cache[s]200 ns

5500 ns

50 ns

∑ = 5750 ns

0 5500 0 50 0 200

Probabilistic WCET techniques

P-SOCRATES (Grant agreement nº 611016) 24

• Measurement-based

31-05-2017

T
IM

E

RUN

Pros & cons

P-SOCRATES (Grant agreement nº 611016) 2531-05-2017

Require specific hardware support (randomization)

Not mature enough and controversial

Allow to derive estimates with confidence level

 Assessed existing tools and methodologies against

these new settings and requirements

Challenges

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 26

Static analysis is out the window

Not because of the complexity of the architecture!

Because of the architecture, the programming

model, the OS and runtime, the man-power,

the rapid eǀolutioŶ of the hardǁare…

Challenges

P-SOCRATES (Grant agreement nº 611016) 2731-05-2017

 Portable (out-of-the-box)

The provided tools should be

͞easilǇ͟ portable from one platform

to another

Static models

Portability

Guarantees

Develop a measurement-based trace-collecting tool

What we have done

P-SOCRATES (Grant agreement nº 611016) 2831-05-2017

Collecting runtime execution traces is fully automatic

(process of 12 subsequent steps for the Kalray MPPA)

Develop a measurement-based trace-collecting tool

What we have done

P-SOCRATES (Grant agreement nº 611016) 2931-05-2017

Every step is well defined and is adaptable to other

platforms with minimal effort

Written in Python 3.4

 cross-platform language

 Can be easily combined with other programming

languages

Develop a measurement-based trace-collecting tool

What we have done

P-SOCRATES (Grant agreement nº 611016) 3031-05-2017

Python

 A new approach to tackle the interference problem

Methodology

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 31

Not one but two WCET estimates

One estimate is obtained by running every task in

complete isolation (runs on 1 core, the rest of the

system stays quiet)

task
task

task
task

WCET ISO

 A new approach to tackle the interference problem

Methodology

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 32

Not one but two WCET estimates

The other is obtained by running every task in complete

contention (runs on 1 core, the rest of the system does

everything possible to interfere with its execution)

WCET

CONT

task
task

task
task

WCET CONT

 A new approach to tackle the interference problem

Methodology

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 33

The gap between ISO and CONT is sometimes huge!

Slow down factor between 7 and 8 in average

Very negative impact on the global schedulability analysis

Methodology

P-SOCRATES (Grant agreement nº 611016) 34

• Measurements taken in isolation are not safe as the execution

time is subject to variation due to the shared resources

• Measurements taken in a totally congested system are not

meaningful

 Design processes that creates a controllable interference on

every shared resource

 Investigate how we can re-create a system activity similar to

that of the final system

31-05-2017

Methodology

• Processes to perform
schedulability analysis

– Based on both intrinsic
and extrinsic WCET estimates

– One process for the dynamic project approach

• Task-to-thread mapping is with global queue

• Thread scheduling is global with limited preemption

• Maximize average performance

– Another for the static process approach

• Fixed task-to-thread mapping (heuristics to minimize makespan)

• Partitioned per-core scheduling (with limited preemption)

• Minimize guaranteed response time

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 35

D
y

n
a

m
ic

S
ta

ti
c

Sched Yes

No

Time

Compiler phase

0100010

1100101

1100110

Compiler phase

The big picture (dynamic)

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 36

for(int i=0; i<3; i++) {

for(int j=0; j<3; j++) {

if(i==0 && j==0) { // Task T1

#pragma omp task depend(inout:m[i][j])

compute_block(i, j);

} else if (i == 0) { // Task T2

#pragma omp task depend(in:m[i][j-1], inout:m[i][j])

compute_block(i, j);

} else if (j == 0) { // Task T3

#pragma omp task depend(in:m[i-1][j], inout:m[i][j])

compute_block(i, j);

} else { // Task T4

#pragma omp task depend(in:m[i-1][j],m[i][j-1],

m[i-1][j-1], inout:m[i][j])

compute_block(i, j);

Annotate the graph with the
WCET in CONTENTION

WCET

CONT

Yes

No
Sched

WCET

CONT

Map

The big picture (static)

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 37

Time

for(int i=0; i<3; i++) {

for(int j=0; j<3; j++) {

if(i==0 && j==0) { // Task T1

#pragma omp task depend(inout:m[i][j])

compute_block(i, j);

} else if (i == 0) { // Task T2

#pragma omp task depend(in:m[i][j-1], inout:m[i][j])

compute_block(i, j);

} else if (j == 0) { // Task T3

#pragma omp task depend(in:m[i-1][j], inout:m[i][j])

compute_block(i, j);

} else { // Task T4

#pragma omp task depend(in:m[i-1][j],m[i][j-1],

m[i-1][j-1], inout:m[i][j])

compute_block(i, j);

Annotate the graph with the
WCET in CONTENTION

Compiler phase

0100010

1100101

1100110

WCET

CONT

The big picture (static)

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 38

WCET

CONT

Time

for(int i=0; i<3; i++) {

for(int j=0; j<3; j++) {

if(i==0 && j==0) { // Task T1

#pragma omp task depend(inout:m[i][j])

compute_block(i, j);

} else if (i == 0) { // Task T2

#pragma omp task depend(in:m[i][j-1], inout:m[i][j])

compute_block(i, j);

} else if (j == 0) { // Task T3

#pragma omp task depend(in:m[i-1][j], inout:m[i][j])

compute_block(i, j);

} else { // Task T4

#pragma omp task depend(in:m[i-1][j],m[i][j-1],

m[i-1][j-1], inout:m[i][j])

compute_block(i, j);

Annotate the graph with the
WCET in CONTENTION

Compiler phase

0100010

1100101

1100110

Map

Yes

No

WCET

CONT

Sched

Yes

No
Sched

WCET

ISO

Map

Time

0100010

1100101

1100110
Yes

No

The big picture (static)

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 39

WCET

CONT

Map

Sched

Annotate the graph with the
WCET in ISOLATION

WCET

ISO

SUCCESS!

FAILURE!

The big picture (static)

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 40

Yes

No
Sched

WCET

ISO

Map

Time

0100010

1100101

1100110
Yes

No

WCET

CONT

Map

Sched

Annotate the graph with the
WCET in ISOLATION

WCET

ISO

WCET

OBS.

Map

Yes

SUCCESS!

The big picture (static)

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 41

Yes

No
Sched

WCET

ISO

Map

Time

0100010

1100101

1100110

Annotate the graph with the
WCET observed

WCET

OBS.
WCET

OBS.

Sched

No

User-guided

The dynamic configuration approach achieves the

same average performance than the default SDK

Static approach achieves higher Guaranteed

Performance, with similar average performance

(~10%)

All-in-one

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 42

 Reduce the pessimism of the WCET estimates

Open research problems

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 43

task
task

task
task

task
task

task
task

task
task

task
task

task
task

task
task

Signature

reproducer

 Reduce the pessimism of the WCET estimates

Open research problems

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 44

task
task

task
task sign sign sign

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 45

• Intrinsic: missing a path that leads to the WCET

– Little we can do here  apart froŵ iŵproǀiŶg the ͞path
eǆploratioŶ͟ proĐess.

– Powerful tools exist to guarantee code coverage. Those may
turn to be useful to help find the longest path.

• Extrinsic: not observing the maximum interference
– Extremely likely to happen, if not certain

– CaŶ ǁe use this iŶforŵatioŶ? CaŶ ǁe sort of ͞eǆtrapolate͟ the
observations to guess the worst-case and possibly adjust/define
the safety margin accordingly?

Similar problem as on single-core systems

Open research problems

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 46

From the traces obtained in isolation and contention

modes, we want to analyze how sensitive to concurrent

activity the analyzed task really is

 Define safety margin accordingly

 Make recommandation to set up the environment

in an appropriate way: dynamic vs. static mapping,

PREM, ...

 Restrict the runtime, capture the maximum activity

and map it to a pre-defined level of inteference

iŶteŶsitǇ Đreated ďǇ a ͞tuŶaďle IG͟

Open research problems

Thank you

31-05-2017 P-SOCRATES (Grant agreement nº 611016) 47

Post-project work partially supported by National Funds through FCT/MEC (Portuguese Foundation for Science and Technology) and co-financed by ERDF
(European Regional Development Fund) under the PT2020 Partnership, within the CISTER Research Unit (CEC/04234).

http://www.upscale-sdk.com/

