Towards Timing Analysis of Multi-core Platforms for Hard Real-Time Systems

Syed Aftab Rashid, Geoffrey Nelissen, Eduardo Tovar {syara,grrpn,emt}@isep.ipp.pt

Motivation

- Commercially available Off-The-Shelf (COTS) multi-core processors (MCPs) have become main stream.
- Several advantages over single-core/custom build hardware.
- Design mantra of "average case faster" makes MCPs a popular choice in low-criticality/soft real-time systems.
- The performance oriented design of MCPs makes them nondeterministic, e.g. multiple-cores, pipelines, multi-level cache.

The non-determinism of MCPs restricts their use in hard real-time

Last Level Cache (LLC) Main Memory Multicore Processor

WCET of a task executing on one core of a MCP not only depends on the task itself but also on the behavior of tasks executing in parallel on the other cores

The intra- and inter-core interference due to contention for shared resources between concurrently executing task must be bounded in order to provide deterministic bounds on the WCET and WCRT of tasks running on a MCP

2. Objectives

- We intend to provide solutions that can be used to quantify and analyze the non-determinism arising from the sharing of two main resources in MCPs, i.e., caches and interconnects.
- Accurately quantify the cache related contention in single core platforms.
- Bounding the interference due to cache hierarchy and last-level shared cache (LLC) in multicore platforms.
- Model the inter-core interference due to the sharing of Bus/interconnects in a MCP.
- Develop a new timing analysis taking into account the interference caused by both caches and interconnects and their impact on the timing properties of tasks running on MCPs

3. Completed Work

3.2 Integrated Analysis of Cache Related Preemption Delay (CRPD) and Cache Persistence Reload Overhead (CPRO)

4. Ongoing Work

4.1 Optimize task layout in memory to reduce CRPD/CPRO and improve schedulability

Task set {T₁,T₂,T₃} with cache requirements {CS,CS/2,CS/2}

- Use cache coloring to assign cache space to tasks.
- Optimize cache color assignment of tasks by using an optimization algorithm, e.g., Simulated Annealing.

6. Future Work

- Extending the cache persistence analysis to cache hierarchy and last-level shared cache (LLC) in multicore platforms.
- To **bound** the interference generated by **interconnects** used in MCPs by assuming a more **predictable** task execution **model** e.g., PREM, 3-phase/AER task model
- Combined analysis of the interference caused by both caches and interconnects considering the cascading effect between

