pd

CISTER

Research Centre in
Real-Time & Embedded
Computing Systems

PhD Thesis

Towards Timing Analysis of Multi -core
Platf orms for Hard Real -Time Systems

Syed Aftab Rashid

CISTERTR-210403

2021/04/09

PhD Thesis CISTERR210403 Towards Timing Analysis of Multbre Platforms for Hard ...

Towards Timing Analysis of Multore Platforms for Hard Realime Systems
Syed Aftab Rashid

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)
Rua Dr. Antonio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail: syara@isep.ipp.pt

https:/lwww.cister{abs.pt

Abstract

Modern processors provide enhared performance with reduced power, size and cost in averagase
and are becoming mainstream in almost all application domains including réahe embedded
systems. However, the use of modern computing platforms in hard réiate systems, i.e.systems wih
stringent timing requirements, is still under scrutiny of the retilne systems communitydue to their
unpredictable nature. This is mainly due to resources such as, caches and themory bus that are
shared among several tasks executing on the processds tasks can run concurrentlgn the
processor, consequently, simultaneous use of any of these shared resources cesult in intertask
resource contention which can significantly affect the timing behavior of te&ecuting tasks. To safely
conclude tha any task executing on the platform may or may not fulfil timing requirements, it is
essential to first compute accurate bounds on the shared resouroentention that may be experienced
by that task.

The main objective of this dissertation is to pride software-based solutions that can be usedo
accurately quantify the shared resource contention between tasks due to two main resourdes,
caches and the memory bus.

We start by identifying the pessimism in the existing analysis that focus on bounding intertaakhe
contention for directmapped caches. We show that this pessimism mainly com&sem a unidirectional
focus on the negative perspective of caches, i.e., deed from a preemptingask invalidating cache
OLQHV XVHIXO WR WKH SUHHPSWHG WDVN exxacitiattichE\InEdMiasQ GLQJ D
we identify a different positive perspective of caches, i.e., cacpersistence, which refers to the reise
of cache content between different job executions of a taskeading to a tighter bound on the total
memory access demand of the task. We propose a n@nreciser analysis that accounts for both the
negative and the positive perspective of caches wheomputing intertask cache contention, and
UHVXOWY LQ VLJQLILFDQWO\ LPSURYLQJ WDVN:-V VFKHGXODELOLW)\
We then extend our analysis to setssociative caches and show that the previously developadalysis
for directmapped cachescannotbe used as is for sefassociative. We present severalifferent
approaches to bound intetask contention considering setissociative caches. Our analys@ccurately
determines cache blocks that may suffer additional cache reloads due to intask cache conflicts even
in the presence of cache persistence and eliminates substantial pessimiswith respect to former
analyses.

We highlight additional challenges that stem from analyzing intxsk cache conflicts in thepresence of
a cache hierarchy and propose an analysis to bound émtask cache contention consideringnultilevel
caches. We identify the sources of overestimation in a preceding analysis tfatus on bounding inter
task contention for multilevel caches and propose solutions to minimiteat overestimation.

Finally, wepresent a holistic analysis that considers the interdependence between cache contention
and memory bus contention and evaluate their cumulative impact on the timingguirements of tasks.
We show that the analysis that tightly bounds the intéask cache contention mayalso result in
significantly reducing the memory bus contention suffered by thasks, thereby,improving
schedulability.

© 2021 CISTER Research Center 1
www.cisterlabs.pt

IBPORTO

FEU P FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Towards Timing Analysis of Multi-core
Platforms for Hard Real-Time Systems

Syed Aftab Rashid

Supervisor: Prof. Eduardo Manuel Medicis Tovar
Co-Supervisor: Prof. Geoffrey Nelissen

Co-Supervisor: Prof. Luis Miguel Pinho de Almeida

Programa Doutoral em Engenharia Electrotécnica e de Computadores

April, 2021

© Syed Aftab Rashid: April, 2021

Faculdade de Engenharia da Universidade do Porto

Towards Timing Analysis of Multi-core Platforms for
Hard Real-Time Systems

Syed Aftab Rashid

Dissertation submitted to Faculdade de Engenharia da Universidade do Porto
to obtain the degree of

Doctor Philosophiae in Electrical & Computer Engineering

President: Dr. José Alfredo Ribeiro da Silva Matos
External Referee: Dr. Sebastian Altmeyer

External Referee: Dr. Claire Maiza
Internal Referee: Dr. Jodo Paulo de Castro Canas Ferreira
Internal Referee: Dr. Mério Jorge Rodrigues de Sousa

Supervisor: Dr. Eduardo Manuel Medicis Tovar

April, 2021

To my mother,
And for whom do we achieve extraordinary feats in our lives if not for our mothers?

Abstract

Modern processors provide enhanced performance with reduced power, size and cost in average
case and are becoming mainstream in almost all application domains including real-time embed-
ded systems. However, the use of modern computing platforms in hard real-time systems, i.e.,
systems with stringent timing requirements, is still under scrutiny of the real-time systems com-
munity due to their unpredictable nature. This is mainly due to resources such as, caches and the
memory bus that are shared among several tasks executing on the processor. As tasks can run con-
currently on the processor, consequently, simultaneous use of any of these shared resources can
result ininter-task resource contentiomhich can signi cantly affect the timing behavior of the
executing tasks. To safely conclude that any task executing on the platform may or may not ful Il
its timing requirements, it is essential to rst compute accurate bounds on the shared resource
contention that may be experienced by that task.

The main objective of this dissertation is to provide software based solutions that can be used
to accurately quantify the shared resource contention between tasks due to two main resources,
i.e., caches and the memory bus.

We start by identifying the pessimism in the existing analysis that focus on bounding inter-
task cache contention fatirect-mappedcaches. We show that this pessimism mainly comes
from a unidirectional focus on theegativeperspective of caches, i.e., derived from a preempting
task invalidating cache lines useful to the preempted task, thereby extending a preempted task's
execution time. In contrast, we identify a differgmbsitive perspective of caches, i.eache
persistencewhich refers to the re-use of cache content between different job executions of a task,
leading to a tighter bound on the total memory access demand of the task. We propose a new
preciser analysis that accounts for both the negative and the positive perspective of caches when
computing inter-task cache contention, and results in signi cantly improving task's schedulability.

We then extend our analysis $et-associativeaches and show that the previously developed
analysis for direct-mapped caches can not be used as is for set-associative. We present several
different approaches to bound inter-task contention considering set-associative caches. Our anal-
ysis accurately determines cache blocks that may suffer additional cache reloads due to inter-task
cache conicts even in the presence of cache persistence and eliminates substantial pessimism
with respect to former analyses.

We highlight additional challenges that stem from analyzing inter-task cache con icts in the
presence of a cache hierarchy and propose an analysis to bound inter-task cache contention con-
sideringmultilevelcaches. We identify the sources of overestimation in a preceding analysis that
focus on bounding inter-task contention for multilevel caches and propose solutions to minimize
that overestimation.

Finally, we present a holistic analysis that considersnterdependencbetweencache con-
tentionand memorybus contentiorand evaluate their cumulative impact on the timing require-

ments of tasks. We show that the analysis that tightly bounds the inter-task cache contention may
also result in signi cantly reducing the memory bus contention suffered by the tasks, thereby,
improving schedulability.

Keywords: Hard real-time systems, Shared resources, Cache Contention, Bus contention,
Timing analysis.

Resumo

Processadores modernos, em geral, fornecem desempenho aprimorado com energia, tamanho, e
custo reduzidos, e estdo a se tornar comuns em quase todos os dominios de aplicacéo, incluindo
sistemas embarcados em tempo real. No entanto, o uso de plataformas de computacdo modernas
em sistemas de tempo real rigidos, ou seja, sistemas com requisitos temporais rigorosos, ainda
esta sob escrutinio da comunidade de sistemas de tempo real devido a sua natureza imprevisivel.
Isso se deve principalmente a recursos como memoérias caches e o barramento de memdria que
sdo compartilhados entre véarias tarefas em execucdo no processador. Como as tarefas podem
ser executadas simultaneamente no processador, consequentemente, o uso simultaneo de qualquer
um desses recursos compartilhados pode resultaroeencdo de recursos entre tarefasque

pode afetar signi cativamente o comportamento de temporizacdo das tarefas em execucdo. Para
concluir com seguranca que qualquer tarefa em execucdo na plataforma pode ou ndo cumprir
seus requisitos de tempo, é essencial primeiro calcular limites precisos na contencéo de recursos
compartilhados que pode ser experimentada por essa tarefa.

O principal objetivo desta dissertacao é fornecer solugbes baseadas em programas que pos-
sam ser usadas para quanti car com precisdo a contencdo de recursos compartilhados entre
tarefas devido a dois recursos principais, caches e o barramento de meméria.

Comecamos por identi car o pessimismo nas analises existente que se concentram na lim-
itacdo da contencdo de cache entre tarefas garlaes mapeados diretamentdostramos que
esse pessimismo vem principalmente de um foco unidirecional na perspectiva negativa de caches,
ou seja, derivado de uma tarefa preemptiva invalidando linhas de cache Uteis para a tarefa in-
terrompida, estendendo assim o tempo de execucdo de uma tarefa interrompida. Em contraste,
identi camos uma outra perspectiva positiva de caches, chamada de persisténcia de cache, que se
refere a reutilizacdo do conteddo do cache entre diferentes execu¢des de trabalho de uma tarefa,
levando a um limite mais rigido na demanda total de acesso a memoéria da tarefa. Propomos uma
nova analise mais precisa que leva em conta as perspectivas negativa e positiva dos caches ao cal-
cular a contencéo de cache entre as tarefas e resulta em uma melhora signi cativa na capacidade
de escalonamento da tarefa.

Em seguida, estendemos nossa analise pemaodrias-caches de conjuntos associatigos
mostramos que a analise desenvolvida anteriormente para memérias cache diretamente mapeadas
ndo pode ser usada da mesma maneira para conjuntos associativos. Apresentamos varias aborda-
gens diferentes para limitar a contencao entre tarefas, considerando memdarias cache de conjunto
associativo. Nossa analise determina, com preciséo, os blocos de cache que podem sofrer recar-
regamentos de cache adicionais devido a con itos de cache entre tarefas, mesmo na presenca de
persisténcia de cache, e elimina o pessimismo substancial em relacdo as andlises anteriores.

Destacamos desa os adicionais que resultam da analise de con itos de cache entre tarefas na
presenca de umgierarquia de cache propomos uma andlise para limitar a contencao de cache

iv

entre tarefas considerando caches multinivel. Identi camos as fontes de superestimacdo em uma
analise anterior que enfoca a contencao de limites entre tarefas para caches multinivel e propomos
solucdes para minimizar essa superestimacao.

Finalmente, apresentamos uma analise holistica que consitéeed@pendénciantre acon-
tencao do cache aconteng¢do do barramento de memdaiavaliamos seu impacto cumulativo nos
requisitos de temporizacdo das tarefas. Mostramos que a andlise que limita fortemente a contengéo
do cache entre tarefas também pode resultar na reducéo signi cativa da contencao do barramento
de memoria sofrida pelas tarefas, resultando assim em uma melhora na escalonabilidade.

Acknowledgments

PhD is a roller coaster ride and no worthwhile roller coaster provides a smooth ride. But this does
not mean it cannot be enjoyed, especially, when you are surrounded by a bunch of exceptional
people to help, motivate and encourage you. | would start by offering my heartfelt gratitude to
my supervisors, Prof. Eduardo Tovar and Dr. Geoffrey Nelissen, for their guidance and support at
every step during my PhD. Prof. Eduardo is the person who selected me for the PhD position at
CISTER and although it took me almost six months to join CISTER and start my PhD, he persisted
with me and allowed me to join. Without his understanding, things might have been very different.
He has been an amazingly supportive supervisor during the course of my PhD.

Dr. Geoffrey Nelissen my co-supervisor, is the main force in the transformation of my PhD
progress into a growth function. His dedication, sharp insights, attention to detail, and compre-
hensive assistance has really helped me throughout my research journey. He always strives for
perfection and expects the same from his students, which is very inspiring. | have learned a lot
from him. | would also like to thank Prof. Luis Almeida for helping with FEUP's Administration.

I would also like to acknowledge the help of Damien Hardy, Benny Akesson, Isabelle Puaut,
Sebastian Altmeyer and Robert I. Davis, with whom | have had the privilege of collaborating at
the early phase of my PhD.

My fellow students, researchers and administrative staff at CISTER have been supportive in
many ways. | would like to thank Giann Nandi for translating the abstract of the thesis in Por-
tuguese. | would also like to mention Harrison Kurunathan, my best lab mate and a very good
friend. His company is never boring and we always have great discussions on academic and non-
academic issues. During all these years, we have shared some very memorable moments. | would
also like to thank Muhammad Ali Awan for his valuable advices on professional and personal mat-
ters. |1 would like to add that | feel fortunate to have known Hazem Ismail Ali, Patrick Meumeu
Yomsi, Claudio Maia, Humberto Carvalho, Jodo Loureiro, Shashank Gaur, Mubarak Ojewale and
Ishfaq Hussain during these years. | would also like to extend my sincere gratitude to all the
administrative staff at CISTER.

| would also like to thank Niaz, Mushtaq, Zahid, Ajmal, Asif, Saad, Alam, and Saglain for
creating an excellent social environment with great parties and delicious food.

Last and the most important, none of this would have been possible without the love, support
and patience of my family. My parents have always been an invariable support during my entire
educational career. Especially, my mother, Munazza Parveen, she is the motivation behind all my
achievements and | owe her what | am right now. |1 would also like to express my heartfelt gratitude
to my sisters for their continuous encouragement during my long research journey. | would also
like to thank my uncle Syed Asim Hussain and my aunt Nighat Firdous, who always supported
and encouraged me. Finally, I would like to thank my wife and my daughter, who bare with me
during the ups and downs of my PhD.

vi

This work was partially supported by FCT (Fundagédo para a Ciéncia e Tecnologia) under the
individual doctoral grant SFRH/BD/119150/2016

Syed Aftab Rashid

List of Author's Publications

The following list of publications re ects the results achieved during the development of this
dissertation. A signi cant part of this thesis is compiled from these publications.

Conference Publications

» Syed Aftab Rashid Geoffrey Nelissen, Damien Hardy, Benny Akesson, Isabelle Puaut,
and Eduardo Tovar,Cache-persistence-aware response-time analysis for xed-priority
preemptive systerhgOutstanding Paper Award) in ECRTS, 2016, pp. 262-272.
https://ieeexplore.ieee.org/document/7557886

» Syed Aftab Rashid Geoffrey Nelissen, Sebastian Altmeyer, Robert I. Davis, and Eduardo
Tovar, “Integrated analysis of cache related preemption delays and cache persistence
reload overheadsin RTSS, 2017, pp. 188-198.
https://ieeexplore.ieee.org/document/8277292

» Syed Aftab Rashid Geoffrey Nelissen, and Eduardo Tovafrdding Between Intra- and
Inter-Task Cache Interference to Improve SchedulabilityRTNS, 2018, pp. 125-136.
https://doi.org/10.1145/3273905.3273924

» Syed Aftab Rashid"Server Based Task Allocation to Reduce Inter-Task Memory
Interference in Multicore Systefnis FIT, 2019, pp. 322-327.
https://doi.org/10.1109/FIT47737.2019.00067

» Syed Aftab Rashid Geoffrey Nelissen, and Eduardo Tovatdche Persistence-Aware
Memory Bus Contention Analysis for Multicore Systeim©DATE, 2020, pp. 442-447.
https://ieeexplore.ieee.org/document/9116265

« Syed Aftab Rashid Geoffrey Nelissen, and Eduardo TovaBdunding Cache Persistence
Reload Overheads for Set-Associative Catlj@utstanding Paper Award) in RTCSA,
2020, pp. 1-10. https://ieeexplore.ieee.org/document/9203583

« Jatin Arora, Claudio MaiaSyed Aftab Rashid Geoffrey Nelissen and Eduardo Tovar,
“Bus-Contention Aware Schedulability Analysis for the 3-Phase Task Model with
Partitioned Schedulingn RTNS, 2021. https://easychair.org/publications/preprint/gdNJ

Journal Publications

» Syed Aftab Rashid Geoffrey Nelissen, and Eduardo TovaFightening the CRPD Bound
for Multilevel non-Inclusive Caché# IEEE Access(Under Submission).

viii

https://ieeexplore.ieee.org/document/7557886
https://ieeexplore.ieee.org/document/8277292
https://doi.org/10.1145/3273905.3273924
https://doi.org/10.1109/FIT47737.2019.00067
https://ieeexplore.ieee.org/document/9116265
https://ieeexplore.ieee.org/document/9203583
https://easychair.org/publications/preprint/gdNJ

« Syed Aftab Rashid Zeeshan Haider, S.M. Chapal Hossain, Kashan Memon, Fazil
Panhwar, Momoh Karmah Mbogba, Peng Hud, Gang ZhRetrb tting low-cost heating
ventilation and air-conditioning systems for energy management in builtdingsoplied
Energy, 2019, volume. 236, pp. 648-661.

Work-in-Progress and Posters

» Syed Aftab Rashid Geoffrey Nelissen, and Eduardo TovaPoster Abstract: Cache
Persistence Aware Response Time Analysis for Fixed Priority Preemptive Syistems
RTAS, 2016. https://ieeexplore.ieee.org/document/7461347

« Syed Aftab Rashid Geoffrey Nelissen, and Eduardo Tovantégrating the calculation of
preemption and persistence related cache overh@a®TSS, 2016.
https://ieeexplore.ieee.org/document/7809873

« Syed Aftab Rashid Geoffrey Nelissen, and Eduardo TovaRésilienceP Analysis:
Bounding Cache Persistence Reload Overhead for Set-Associative Cicb&3E, 2019.
https://cister.isep.ipp.pt/docs/resiliencep_analysis___bounding_cache_persistence_reload_
overhead_for_set_associative _caches/1528/view.pdf

« Syed Aftab Rashid Geoffrey Nelissen, and Eduardo TovaFpivards Timing Analysis of
Multi-core Platforms for Hard Real-Time Systénrs CPS Week 2018.
https://cister.isep.ipp.pt/docs/towards_timing_analysis_of multi_core_platforms_for_
hard_real_time_systems/1362/view.pdf

« Syed Aftab Rashid Geoffrey Nelissen, and Eduardo TovaRésilienceP Analysis:
Bounding Cache Persistence Reload Overhead for Set-Associative CaicB€RTS,
2019. https://cister.isep.ipp.pt/docs/resiliencep_analysis _bounding_cache_persistence__
reload_overhead_for_set associative_caches/1520/view.pdf

« Jatin Arora, Claudio MaigSyed Aftab Rashid Geoffrey Nelissen and Eduardo Tovar,
“Work-In-Progress: WCRT Analysis for the 3-Phase Task Model in Partitioned
Schedulingjin RTSS, 2016. https://ieeexplore.ieee.org/document/9355505

https://ieeexplore.ieee.org/document/7461347
https://ieeexplore.ieee.org/document/7809873
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1528/view.pdf
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1528/view.pdf
https://cister.isep.ipp.pt/docs/towards_timing_analysis_of_multi_core_platforms_for_hard_real_time_systems/1362/view.pdf
https://cister.isep.ipp.pt/docs/towards_timing_analysis_of_multi_core_platforms_for_hard_real_time_systems/1362/view.pdf
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1520/view.pdf
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1520/view.pdf
https://ieeexplore.ieee.org/document/9355505

Contents

List of Figures XVi
List of Tables XVii
List of Algorithms XViii
List of Abbreviations XX
1 Introduction 1
1.1 ContributionsofthisThesis 3
1.2 ThesisStructure e e 4
2 Theoretical Background 6
2.1 Real-Time Systems e 6
2.2 Basic Organization of a Real-Time System 7
2.2.1 Applications 7
2.2.2 Real-Time Operating System (RTOS) 9
2.23 HardwarePlatform 10
2.3 Ensuring Temporal CorrectnessofaRTS 18
231 TimingAnalysis 18
2.3.2 Schedulability Analysis 20
2.3.3 Cachesand Timing Analysis 21
2.3.4 SystemBusand Timing Analysis 22
2.4 ChapterSummary o e e e e e 23
3 Related Work 24
3.1 Intra-task Cache Interference Analysis 24
3.1.1 MustAnalysis e 26
3.1.2 MayAnalysis 27
3.1.3 Persistence Analysis 28
3.1.4 Intra-task Cache Analysis for Multilevel Caches 28
3.2 Inter-task Cache Interference Analysis 30
3.2.1 CRPD Computation for Single-level Direct-mapped Caches 32
3.2.2 CRPD Computation for Single-level Set-associative LRU Caches 35
3.2.3 CRPD Computation for Multi-level Caches 36
3.24 FromCRPDtoTimingAnalysis 39
3.3 Other Approaches to Handle Intra- and Inter-task Cache Interference 40
3.3.1 Cache Partitioningand Locking 40
42

3.3.2 Task Layout Optimization

CONTENTS Xi

4

3.3.3 Enhanced SchedulingModels 43
3.4 Memory Bus Contention Analysis 44
3.5 Different Perspectiveof Caches., 46
Analysis of Single-level Direct-mapped Caches 48
Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference 50
4.1 Assumptions onthe SystemModel 51
4.2 ProblemDenition 53
4.2.1 Motivational Example L e 53
4.2.2 Problem Formalization 55
4.3 CPRO-union Approach e 57
4.3.1 Computation of Cache Persistence Reload Overhead 57
4.3.2 WCRTAnNalysis e 58
4.4 CPRO Multi-Set Approach 60
4.41 Computationof U(t) 60
4.4.2 Improving the Accuracy #ISS® 63
443 WCRTAnalysis e 63
4.5 Static Analysis e 64
4.6 Experimental Evaluation, 64
4.6.1 Total Utilization 66
46.2 NumberofTasks 67
46.3 CacheSize 68
47 ChapterSummary e 70
Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
Overheads 71
5.1 Problem Formalization 73
5.2 Integrated CRPD-CPRO Analysis 76
5.3 Multi-set Approach to Integrated CRPD-CPRO analysis. 79
5.4 Experimental Evaluation 0.0 83
5.4.1 CoreUtilization. 84
542 Cachesize 87
5.4.3 BlockReload Timedmer) - - -« -« v v v o o o o s 87
5.4.4 Task Priority and Memory footprint 89
55 ChapterSummary e e 90
Evaluating the Impact of Memory Layout of Tasks on Schedulability 92
6.1 CacheColoring e 93
6.2 Assumptionsonthe SystemModel 94
6.3 Cache Interference Aware WCRT Analysis 97
6.4 Bounding Intra-Task Cache Interference 98
6.5 Bounding Inter-task Cache Interference 99
6.5.1 Inter-Task Cache Interference duetoCRPDs 100
6.5.2 Inter-Task Cache Interference duetoCPROs 104
6.6 Optimizing Cache Color Assignment 107
6.6.1 Working Example 110

6.7 Experimental Evaluation 112

Xii

CONTENTS

6.8 ChapterSummary 116
Analysis of Single- and Multi-level Set-associative Caches 117
CPRO Analysis for Set-associative Caches 119
7.1 Assumptionsonthe SystemModel, 120
7.2 Finding PCBs for set-associative caches 122
7.3 CPRO Analysis for Set-Associative Caches 124
7.3.1 PCB-ECBApproach 124
7.3.2 ResilienceP Analysis 126
7.4 Multi-path ResilienceP Analysis 127
7.4.1 Buildingthe CPRO-table 129
7.4.2 Boundingthe CPRO i 131
75 WCRTAnalysis e 133
7.6 Experimental Evaluation 000, 133
7.7 Chapter SUMMAry o e e 137
Tightening the Bound on Inter-task Cache Interference for Multilevel Caches 138
8.1 Assumptions onthe SystemModel o oL 139
8.2 State-of-the-Art CRPD Analysis for Multilevel Caches (Chattopadhyay and Roy-
choudhury, 2014) e 143
8.2.1 Calculating the Indirect Effect of Preemption 145
8.2.2 CRPDComputation 147
8.3 Multilevel Useful CacheBlocks 148
8.3.1 FindingL1/L2-UCBS e 149
8.4 Tightening the Bound on the Indirect Effect of Preemption 150
8.4.1 Handling Nested/Multiple Preemptions 153
8.5 Improved CRPD Analysis for Multilevelcaches 156
8.5.1 CRPDduetoEvictionof L1-UCBs 156
8.5.2 CRPDdueto Evictionof L2-UCBs 157
8.5.3 Computation of total CRPD and WCRT Analysis 163
8.6 Experimental Evaluation, 164
8.6.1 Deriving Parameters forthe Analyses 164
8.6.2 EXperiments e 165
8.7 ChapterSummary e 173
Extension to Multicore Platforms 174

Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention

in Multicore Systems 176

9.1 Assumptionsonthe SystemModel 177

9.2 CRPD-aware Memory Bus Contention Analysis 179

9.3 Cache Persistence-aware Memory Bus Contention Analysis 182

9.4 Bus Contention-Aware Worst-case Response Time (WCRT) Analyses 185

9.5 Experimental Evaluation 186
9.5.1 Multicore Platforms with Single-levelCaches 187

9.5.2 Multicore Platforms with Multilevel Caches 190

CONTENTS Xiii

9.6 ChapterSummary o e e e e 194
10 Thesis Summary, Limitations and Future Directions 195
10.1 Summary of Contributions 195
10.2 Limitations of Current Work and Future Directions 196
10.2.1 Cache Persistence Analysis for Multilevel Caches 196
10.2.2 Inter-task Cache Interference Analysis for Last-level Shared Caches . . . 197
10.2.3 Holistic Memory Contention Analysis for Preemptive Systems 198
10.2.4 Cache Persistence-aware Inter-task Cache Interference Analysis consider-
ing Dynamic Priority Scheduling, 198
10.3 Conclusions 199
200

Bibliography

List of Figures

2.1
2.2
2.3
2.4

2.5
2.6

2.7

3.1
3.2
3.3
3.4
3.5

3.6

3.7

4.1

4.2

4.3

4.4
4.5
4.6

Different components of a Real-timesystem 7
Common Memory Architecture 12
Different types of cache associativity 13
Example access sequence of memory blocks in a 4-way set-associative cache using
aLRU replacementpolicy 14
Basic abstraction of the systemBus 15
Work ow between different components of a timing-analysis tool (Wilhelm et al.,
20088) . . . 19
Basic interface between timing and schedulability analysis 21

Intra-task ache analysis is one of the main components in the timing analysis (Pha-
vorinand Richard) e 25
Join and Update functions for the Must, May and Persistence analysis 27
Update function to handle U accesses for multilevel caches (Hardy and Puaut, 2008) 30
Visual representation of cache related preemption delay (CRPD) 31
lllustration of the maximum LRU-age of a UGB. The dashes (from left to right)

denote the sequence of memory accesses during the executionftask. . . 36
lllustration of the indirect effect of preemption suffered by a memory biodkie

to eviction of another memory bloek by preemption. Both L1 and L2 caches are

assumed to be two-way set-associative having only one cache set and the cache

replacement policy isLRU. 38
Example schedule to highlight re-usable cache blocks between different jobs of
taskti e e e e 46

Schedule and cache contents for a tasksett ,g with C; = 100, C, = 400,
MD; = 60,MD, = 80,ECB, = f5;6;7;8;9;109, ECB, = f 1,2; 3;4;5; 69, UCB; =
f6;79, UCB, = f5;69, PCB; = 5;6;7;8;10g andPCB, = f 1;2g. The schedule

assumes thdt; releases its rst job with an offset of 100 time units. 54
lllustration of the pessimism associated with Equation (4.6) using the task set
ftq;tot3gwhent andt, releasing their rstjobs with an offset. 60

lllustration of the maximum number of times the tasks irfigfj and hegj) n

tj can execute between two successive jobs;ofWhen calculating 23, t1 2
he(2) nt, can release maximally 3 jobs (with each job loading all its ECBs in
the worst case). In contrast, the one job releasei} yaff(3;2) can execute and

load its ECBs maximum 4times. 61
Number of tasksets that are deemed schedulable for a for a varying total utilizations. 67
Weighted schedulability measure by varying the number of tasks from5t025.. . 68
Weighted schedulability measure by varying the number of cache sets 69

Xiv

LIST OF FIGURES XV

51

5.2

5.3
5.4

6.1
6.2

6.3

6.4

6.5

6.6
6.7

7.1

7.2
7.3
7.4
7.5
7.6

7.7

8.1

8.2

8.3

8.4
8.5

Schedules maximizings's response time whe@; = 1,C, = 2,C3= 9, Ty = 6,
T,=6,T3= 25,ECB, = 7;8;9;109, ECB, = f7;8;9;10g, ECB; = f 1;2; 3;4; 59,

UCB, = 17;8;9;10g, PCB, = 7;8;9;10g andUCB; = UCB3 = PCB, = PCB; =

O e 75
lllustrating the pessimism associated with the separate UCB-union multi-set and
CPRO multi-set analysis using the taskfdgtto;tsgwithCy = 1,Co = 2,C3= 5,

B rbimAndis wifrespect to fotal core utifization ™. . """, """ 8056
Weighted schedulability measure by varying cache utilization, block reload time
dmema@nd cachesize e e 88
A visual representation of cache coloring (Kimetal.,2013) 94
Increase in execution demand and memory access demand nfdaskto reduc-

tion in number of cache colors assignedito 98
Worst-case memory access demdtidi[k] of taskt; w.r.t the number of cache
colorsassignedth. 102
Variation in the worst-case and residual memory access demand bf task the

number of cache colorsassigned. L oL 106
Different cache color assignments of task setinTable6.2. 112
Schedulability w.r.t core utilization and cachesize 114
Schedulability w.r.t number of cache sets per color and number of tasks 115
Example execution of a task(from left to right) considering (a) a direct-mapped

cache with 4 cache sets, i.€5;S1; $; S3g and (b) a 4-way set-associative cache
having one cache s& using a Least-Recently-Used (LRU) cache replacement
policy. The LRU age of a bloch refers to how many accesses were performed to

the cache set in whichis saved since the lastaccesdto 120
Maximum LRU-age of memory blocks of taigka) over the execution of two jobs

of tj, and (b) under the assumption thatscyclic. 124
Example scenario to highlight the pessimism in the PCB-ECB approach 126
Highlighting the pessimism in the ResilienceP analysis 128
Task sets schedulability by varying (a) total task set utilization and (b) the total
number of tasksinataskset 132
Weighted schedulability results by varying (a) number of cache Wagsd (b)

memory reload tim&mem L 134
Performance of ResilienceP and multi-path ResilienceP analysis w.r.t the number

of executionpaths L 136

Highlighting the pessimism in the calculation of indirect effect of preemption

by (Chattopadhyay and Roychoudhury, 2014). 150
Multiple preemption scenarios with collaborating and isolated preemptions. The
indirect effect of preemption suffered by memory bleuklue to consecutive pre-

emptions, i.e., aP, andP,, is higher than the indirect effect caused by individual
PreemptionsS. 155
Example scenario to demonstrate the pessimism of (Chattopadhyay and Roychoud-
hury, 2014) when calculating the CRPD due to L2 cache misses resulting from
preemption. e e 158
Number of task set deemed schedulable by varying total task set utilization . . . 167
Wighted schedulability measure by varying the total number of tasks in a task set 168

XVi

LIST OF FIGURES

8.6 Weighted schedulability measure by varying number of ways in the L1 cache. The

number of ways in the L2 cache were setto 32,i.= 32 169

8.7 Weighted schedulability measure by varying number of ways inthe L2 cache . . 170

8.8 Weighted schedulability measure by varying number of sets in the L1 cache. The
number of sets in the L2 cache were xedto 512, i8j=512 171

8.9 Weighted Schedulability measure by varying number of sets in the L2 cache. The
number of sets in the L1 cache were set to their default valuejS¢5 32 . . . 171

8.10 Weighted schedulability results by varyichg andd, > 172

9.1 Execution of task; andt, on corepyx and tasktz on corepy. Task parameters
of interest arePD1=PD3 = 4, PD,= 32,MD1=MD3 = 6, MD, = 8, MD|=MD§ = 1,
ECB=ECB:=f5;6;7;8;9;109, ECB, =1 1,2; 3;4;5; 69, PCB=PCB3 = 5; 6; 7; 8; 10g

andUCB, =15;60. e 182
9.2 Schedulability ratio of different bus arbitration policies by varying total core uti-
lizations e 186
9.3 Wighted schedulability measure by varying the total numberofcores 187

9.4 Wighted schedulability measure by varying the value of memory reloaddjgye 188
9.5 Wighted schedulability measure by increasing cache size between 2kB to 32kB . 189
9.6 Wighted schedulability measure by varying the RR/TDMAslotssge (. . . . 190
9.7 Schedulability ratio of different bus arbitration policies by varying total core uti-
lizations for multicore architectures with two-level caches. 191
9.8 Wighted schedulability measure by varying the total number of cores in multicore
platforms with two-levelcaches, 192
9.9 Wighted schedulability measure by varying the RR/TDMA slot ssbef¢r mul-
ticore platforms with two-levelcaches. 193

10.1 Cache persistence-aware analysis of multiple cache levels may lead more tighter
WCRT bounds. e 197

10.2 Under preemptive scheduling, simultaneous analysis of intra- and inter-core cache
interferenceisachallenge. L 198

List of Tables

3.1
3.2

4.1
4.2

5.1
5.2
5.3

6.1
6.2

7.1
7.2

8.1
8.2

9.1

Categorization of memory references L. 26
Computation of CAC of a memory refererrcat cache level (Hardy and Puaut,

2008) .. e 29
List of important symbols used in Chapter4 52
Task parameters for a selection of benchmarks from the Malardalen Benchmark
Suite (Gustafssonetal.,2010) e 66
List of important symbols used in Chapter5 72
Task parameters for the benchmarks used during the experiments 85
Relative gaim§®" for the CRPD-CPRO union and multi-set approaches by in-
creasingthe numberof ECBstof 90

List of important symbols used in Chapter6 95
Task set parameters used in the workingexample 110
List of important symbols used in Chapter7 121
CPRO-table for every PClj of taskt; 129

List of important symbols used in Chapter8 140
Benchmarks parameters from the Malardalen Benchmark Suite (Gustafsson et al.,
2010) used during the experimental evaluation 166
List of important symbols usedinChapter9 178

XVii

List of Algorithms

6.1
7.1
7.2
8.1

8.2

8.3

Simulated annealing based algorithm to optimize cache color assignment of tasks 108
Building the CPRO-table for PG of taskt; 130
Computing the total CPRO of tagkin a time interval of length 131
Calculating the indirect effect of preemption caused due to preemption dfitask
bytjataprogrampointP 151
Calculating the indirect effect of preemption that can be suffered by all memory

blocks used by task when considering multiple preemptions by higher priority

tasks in2 hp(i) w.r.t preemptionpointP 156
Algorithm to calculate the total CRPD cost due to eviction of L2-UCBs of task

w.rtapreemptionpointP 163

List of Abbreviations

Al Abstract Interpretation

ACS Abstract Cache State

ACU Air-bag Control Unit

AH Always-Hit

AM Always-Miss

CAST Certi cations Authorities Software Team
CAC Cache Access Classi cation

CFG Control Flow Graph

CHCM Cache Hit/Miss Classi cation

COTS Commercially available Off-The-Shelf
CPRO Cache Persistence Reload Overhead
CPU Central Processing Unit

CRPD Cache Related Preemption Delay
CSTG Cache State Transition Graph
DC-UCB De nitely-Cache Useful Cache Block
DJP Dynamic Job Priority

DM Deadline Monotonic

DRAM Dynamic Random Access Memory
ECB Evicting Cache Block

EDDP Earliest Deadline Deferrable Portion
EDF Earliest Deadline First

FCFS First-Come First-Serve

FEUP Faculdade de Engenharia da Universidade do Porto
FIFO First-In First-Out

FJP Fixed Job Priority

FM First-Miss

FP Fixed Priority

FPPS Fixed Priority Preemptive System
FSB Front-side Bus

FTP Fixed Task Priority

HRTS Hard Real-Time System

HVAC Hard Ventilation and Air-conditioning

XiX

ILP
IMA
IPET
LLF
LLC
LRU
MCP
MIPS
MMU
MRTA
NC
nPCB
oS
PCB
PLRU
PS
RAM
RM
ROM
RR
RT
RTES
RTOS
RTS
SA
SMART
SRTS
TDMA
uCB
WCET
WCRT
WSS

Integer Linear Programming
Integrated Modular Avionics
Implicit Path Enumeration Technique
Least Laxity First
Last Level Cache
Least Recently Used
Multi-Core Processor
Microprocessor without Interlocked Pipelined Stages
Memory Management Unit
Multicore Response Time Analysis
Not-Classi ed
non-Persistent Cache Block
Operating System
Persistent Cache Block
Pseudo Least Recently Used
Persistent
Random Access Memory
Rate Monotonic
Read Only Memory
Round Robin
Real Time
Real-Time Embedded System
Real-Time Operating System
Real-Time System
Simulated Annealing
Strategic Memory Allocation for Real-Time
Soft Real-Time System
Time Division Multiple Access
Useful Cache block
Worst-Case Execution Time
Worst-Case Response Time
Working Set Size

Chapter 1

Introduction

In recent years, embedded systems have become an integral part of our everyday lives. These
systems interact with the environment and perform a set of dedicated operations. An embedded
system can be formally de ned as a system composed of hardware, software and/or mechanical
components to perform a dedicated function or a range of functions (Kamal, 2011). These dedi-
cated functions vary from a simple task of toasting a slice of bread to an air traf c control system
that involves numerous workstations, networks and radar sites. Nowadays, the use of embedded
systems span across several domains including consumer electronics, medical equipment, avion-
ics, automotive industry, banking, and defense industry etc.

An embedded system is different from a general purpose computer system that is designed
to satisfy a variety of end-user requirements. A general purpose computer is usually designed to
make the average case faster and is end-user con gurable, whereas, the set of operations to be
performed by an embedded system are usually known a priori at design time. In this sense, an
embedded system is custom-made for a speci ¢ application and is subjected to concerns regarding
functional and non-functional requirements of that application.

The primary requirement of an embedded system is to correctly perform a desired function-
ality. However, there are embedded systems that have an additional constraimpaofralcor-
rectness to be met on top of the functional requirements of the system. In the scienti c literature,
this kind of systems are refereed toReal-Time Embedded SystefRSES) or simplyReal-Time
SystemgRTS). Real-time systems are de ned as systems in which the correctness of the system
behavior depends not only on the logical result of the computation, but also dmthat which
the results are produced (Stankovic, 1988). Applications of RTS can be found in many indus-
trial domains where timeliness is important. For example, an airbag controller system in a car
is not only responsible to decide whether or not to in ate the airbags, but also to ensure that the
airbags will be in ated in a timely manner, i.e., before causing an injury to the driver. Similarly, in
airplanes the ight control system is responsible for a timely compensation of all external distur-
bances that may affect a stable ight operation (Davis et al., 2018a; Baufreton et al., 2020). Many
other examples of RTS can be found in space, transportation and control industry (Cecere et al.,
2016; Koo and Kim, 2018).

2 Introduction

Functionalities of a RTS are managed by a set of entities called procegssk®Each task
has a timing constraint associated to it which represents the time before which that task must
perform its assigned operations. As timing behavior is one of the most important property of a
RTS, ensuring timing correctness for every task in the system is of utmost importance in order to
prove the timing correctness of the complete system. However, due to the massive technological
advancements, tasks are often executed on complex performance oriented software and hardware
architectures. These modern software/hardware platforms often produce signi cant performance
improvements but at the cost of an increased complexity of tracing and analyzing the system. For
example, the use of cache memories signi cantly improve the performance of modern processors
however, in systems with cache memories, the completion time of tasks may vary depending on the
availability of content in the cache. Therefore, to ensure that a task satis es its speci ed timing
requirements it is important to analyze the behavior of all software/hardware components, e.g.,
caches, pipelines, interconnects, main memory and 1/O devices, that can impact the execution of
that task.

Indeed, analyzing the temporal behavior of all these performance oriented software/hardware
components is every challenging due to very brief design documentation provided by the hard-
ware vendors. The analysis complexity is even more ampli ed in multi-tasking systems where
different tasks executing on the platform may share resources such as cache, main memory, /O
devices and interconnects. As a result, the temporal behavior of tasks is signi cantly affected due
to contentionin accessing the shared resources. It has been identi ed in (Authority, 2016) that
sharing of resources, such as caches and interconnect (i.e., usually a bus) among tasks executing
on a modern processing unit makes the temporal and functional behavior of the system highly
complex and interdependent. This highlights the need of an analysis framework that provides a
holistic solution by considering the impact of shared resource contention on the timing behavior
of applications comprising a RTS. The analysis should also provide both safe and precise bounds
on the shared resource contention that may be experienced by all tasks in the system in order to
accurately conclude that the overall system may or may not ful Il its timing requirements.

A safe bound on the shared resource contention means that the values returned by the analysis
will always be larger than or equal to the shared resource contention that may occur at run-time
under any possible scenario. While a precise bound is the one whose values are as close as possible
to the actual shared resource contention that may be experienced at run-time. Unfortunately, most
of the existing works in literature that focus on bounding the shared resource contention prioritize
the safety aspect and often lead to the situation where the conclusion of the analysis is that the
system does not comply with its timing requirements, while in reality it indeed does. For exam-
ple, in systems where tasks are schedylesemptivelyi.e., task's execution can be temporarily
interrupted, shared resources such as cache memory is viewed from an exclsgagiyeper-
spective, i.e., derived from a preempting task invalidating cache lines useful to the preempted task,
thereby extending a preempted task's execution time. This increase in the execution time of the
preempted task is due to tier-task cache interferencguiffered by the preempted task due to
cache con icts with the preempting task and is often referred waake related preemption delay

1.1 Contributions of this Thesis 3

(CPRD). Several works have been proposed in literature (Lv et al., 2015; Maiza et al., 2019) that
account for CRPDs when analyzing systems that use preemptive task scheduling. However, a dif-
ferentpositiveperspective of cache memory is often overlooked in the existing literature, which
refers to the cache re-use between different job executions of a task. For example, considering
multiple jobs of a particular task; the next job of the task can bene t from the presence in cache of
memory blocks that were loaded by a previous job of the same task and that have remained in the
cache until the next job executes and can make use of those blocks. Analysis of cache re-use can
be used to signi cantly reduce pessimism in the computation of inter-task cache interference from
multiple jobs of a preempting task that can execute during the response time of the preempted task.

Another important problem that has not been fully addressed in the existing analysis on shared
resource contention is to consider the dependency between the behavior of different shared re-
sources. For example, most of the existing works in the state-of-the-art that focus on bounding
contention due to shared interconnects (or memory bus) are based on the assumption of non-shared
caches (Dasari et al., 2011a, 2016) or consider a x number of memory bus requests (Schliecker
and Ernst, 2011; Kim et al., 2014, 2016) that can be generated by a task during its execution.
Both these approaches can lead to pessimistic/optimistic bounds considering the fact that the ac-
tual number of main memory (or bus) requests of tasks depend on the cache misses suffered by
the tasks which, in turn, depends on the inter-task cache interference experienced by tasks during
their executions. Therefore, to effectively bound memory bus contention, it is important to de-
velop holistic timing analysis techniques that consider the interference caused by both caches and
memory bus and evaluate their cumulative impact on the timing properties of tasks.

Building on the above observations, the high-level goal of this thesis is to provide solutions
that can be used to accurately quantify the shared resource contention between tasks due to two
main resources, i.e., caches and the memory bus.

1.1 Contributions of this Thesis
In support of this thesis, the following contributions are made.

 Accurately quantify inter-task cache interference for direct-mapped caches

We identify substantial pessimism in the existing analysis that focus on bounding inter-task
cache interference for direct-mapped caches. This pessimism mainly comes from a unidi-
rectional focus on the negative perspective of caches, i.e., CRPD. We propose a new preciser
model that accounts for both the negative perspective, i.e., CRPDs, and the positive perspec-
tive of caches, i.egache persistencevhen computing the inter-task cache interference of
tasks. Cache persistence refers to the re-use of cache content between different jobs of the
same task. This allows to capture re-usable cache blocks between different job executions
and neutralizes the negative impact of CRPDs in systems that allow preemptive task exe-
cutions. We prove the correctness of this new model and propose a static program analysis
to derive the parameters required by the analysis. Furthermore, we also show how to in-

4 Introduction

corporate bounds on the total inter-task cache interference in the schedulability analysis for
xed-priority preemptive systems (FPPS).

« Accurately quantify inter-task cache interference considering set-associative caches
We improve the bounds on inter-task cache interference for set-associative caches by adapt-
ing the notion of cache persistence to set-associative caches. First, we show that the previ-
ously developed analysis for direct-mapped caches can not be used as is for set-associative
caches and may lead to optimistic results. We then present a new analysis that accurately
determines cache blocks that may suffer additional cache reloads due to preemptions even
in the presence of cache persistence. We also provide an overview of the static program
analysis techniques that are used to derive the parameters needed to adapt persistence-aware
cache contention analysis to set-associative caches.

» Bounding inter-task cache interference for multilevel caches
We show that the literature on the computation of inter-task cache contention for multilevel
caches is relatively scarce due to the additional challenges that stem from analyzing inter-
task cache con icts at different cache levels. Few existing analysis that focus on bounding
inter-task contention for multilevel caches are very pessimistic as they overestimate the
number of times cache blocks can be evicted from a particular cache level and therefore
needed to be reloaded from the main memory. We improve on the existing analysis by
accurately determining which cache blocks can be impacted due to inter-task conicts at a
particular cache level and how many times these cache blocks can be evicted and reloaded
from the main memory. We also prove the correctness of the new analysis and provide a
static analysis approach to obtain parameters needed by the analysis.

» Cache interference-aware memory bus contention analysis
We present a holistic overview of the relationship between inter-task cache contention and
the memory bus contention suffered by the tasks. We show that the memaory bus contention
that can be suffered by a task during its execution strongly depends on the number of cache
misses suffered by that task, which, in turn, depends on the inter-task cache interference
experienced by the task. Evaluations show that the analysis that tightly bound the inter-
task cache contention also results in a more accurate bound on the memory bus contention
suffered by tasks, which results in improving schedulability.

1.2 Thesis Structure

The thesis is organized as follows: Chapter 2 provides the necessary background needed for the
understanding of this thesis. The related work presented in Chapter 3 brie y explains the existing
approaches in the state-of-the-art that are in-line with the problems addressed in this dissertation.
The main contribution of the thesis are then divided into three parts.

Part | focus on the analysis of inter-task cache contention for single-level direct-mapped caches
and comprises Chapter 4, 5 and 6. In Chapter 4, we formally introduce the notion of cache per-

1.2 Thesis Structure 5

sistence and use it to compute a tighter bound on the inter-task cache interference for single-level
direct mapped caches. The key focus of Chapter 5 is to integrate the computation of CRPD with
the computation of persistence related cache overheads. The integrated analysis provides a tighter
bound on the total inter-task cache interference in comparison to the analysis in Chapter 4. In
Chapter 6, we evaluate the impact of memory layout of tasks on inter-task cache interference and
on schedulability.

Part 1l comprises Chapter 7 and 8 and focus on the analysis of inter-task cache interference
considering single-level and multilevel set-associative caches. Chapter 7 provides solutions that
analyze the impact of cache persistence on the schedulability of tasks considering set-associative
caches and presents different approaches to compute persistence related cache overheads for set-
associative caches. In Chapter 8, we present the CRPD analysis for multilevel caches that provides
a tighter bound than the existing analysis in the state-of-the-art.

In Part Il we present a holistic overview of the shared resource contention in modern com-
puting platforms by focusing on the relationship between cache contention and memory bus con-
tention. It comprises Chapter 9 that evaluates how inter-task cache interference can impact the
contention due to sharing of memory bus in modern processors and what is their cumulative affect
on schedulability. Finally, Chapter 10 concludes this thesis by providing some future research
directions.

Chapter 2

Theoretical Background

2.1 Real-Time Systems

Real-time systems fall into the category of embedded systems in which ensuring timing correct-
ness of the system is of utter importance. A real-time system runs several real-time processes that
are triggered in a sporadic/aperiodic fashion. A real-tpracesss a software entity that is exe-
cuted by the processing unit in a parallel/sequential fashion and has a timing constraint associated
to it (Buttazzo, 2011). This constraint on the timing is commonly known asléaelling which
represents the time before which a process should complete its execution to not cause any damage
to the system (Buttazzo, 2011). It is important to note that in this thesis, thedekis used as
synonym of process.

Depending on the consequences of a missed deadline, real-time systems are broadly catego-
rized in the following two categories:

« Hard Real-Time systems (HRTS) Hard Real-Time systems are the class of RTS in which
missing the deadline may cause catastrophic consequences on the system under control,
surrounding environment or people. In HRT systems, the results obtained after a given time
interval (or deadline) are considered useless. One such example can be the air-bag control
unit (ACU) in modern cars. In case of an accident, the ACU must be able to in ate the air
bags within 60-80 milliseconds, otherwise the persons inside the car are at a risk of an injury
which can be severe.

» Soft Real-Time systems (SRTS) In contrast to HRT systems, in soft real-time system,
missing a deadline might still have some utility for the system, although causing a perfor-
mance degradation. In SRT systems, missing a deadline does not have dire consequences.
For example, a degradation in the quality of the on-line audio/video streaming applications
is annoying but not life threatening.

This work focuses on HRT systems.

6

2.2 Basic Organization of a Real-Time System 7

2.2 Basic Organization of a Real-Time System

A basic RTS is composed of three main components, i.e., applications, software module to run the
applications (i.e., a real-time operating system (RTOS)) and the underlying hardware platform.
In the context of this work, we brie y discuss the basic functionality of the components involved

in the design of RTSs.

Applications

Real-Time Operating System
(RTOS)

Hardware Platform

Figure 2.1: Different components of a Real-time system

2.2.1 Applications

Real-Time applications are an abstract representation of the workload used while analyzing a
real-time system. The functionality of a RT application is usually modeled as a collections of
nite, simple and repetitive abstract entities called real-time tasks (Baruah and Goossens, 2004).
These real-time tasks are recurrent in nature where each instance of the task is jailedlh

jobs related to a particular task are semantically related and represents a basic unit of work that
executes on the physical hardware platform (Liu). In the context of this thesis, the functionality
of a RT application is represented as aGetf n tasks called d@ask seti.e.,G= fty;t,;:::;th0.
Depending on the frequency with which a task releases its jobs, it can be categorized into the
following three types:

* Periodic Task: A task isperiodicif it releases its jobs periodically, i.e., the time interval
between different jobs of the task is constant. The xed time between two consecutive job
releases of the task is called theriod of the task.

» Sporadic Task: A task that releases its jobs at some arbitrary time instant however, con-
secutive jobs of the task are separated by a minimum inter-arrival time is called a sporadic
task.

» Aperiodic Task: An aperiodic task can release its jobs at any arbitrary time instant and their
activations are not regularly interleaved.

8 Theoretical Background

In this work, we focus on sporadic tasks. ‘

Any real-time taskj 2 Gcan be formally de ned by several parameters that castatc i.e., set

before executing the task and do not change during run-time of the systelynamig i.e., task
parameters that may change during the execution of the task. In the context of this work, general
parameters used to de ne a taslare:

» Ci: Worst-case execution time (WCEF)The maximum amount of time required by any
instance or job of task; to complete its execution without any interruptions.

* Ti: Minimum inter-arrival time or period- The minimum inter-arrival time between two
consecutive instances or jobs of tagk

* D;: Deadline— The time before which task should be completed in order to avoid any
damage to the system.

« U;: Utilization — Utilization of a task is de ned as the fraction of the processor time required
by the task. Utilizatioru; of a taskt; is given byU; = G=T;.

* Ri: Worst-case response time (WCRT)he maximum value of the difference between the
arrival time and completion time amongst all instances or jobs released bty task

It is important to note that deadlines are relative to the nature of the application. For example, the
air-bag control application installed in a car might have a relative deadline of 60-80 milliseconds
to in ate the air-bags, whereas a room temperature monitoring application can have a relative
deadline of a few seconds to change the temperature on the HVAC thermostat. Depending on the
relation between the deadlifg and period of a task;, t; can be categorized into following three
classes:

« Implicit deadline task: The deadline of a tagk is equal to the minimum inter-arrival time
between two jobs df;, i.e.,Dj = T;.

« Constrained deadline task:The deadline of a tasl is less than or equal to the minimum
inter-arrival time between two jobs of, i.e.,D; T,.

« Arbitrary deadline task: The deadline of a task can be less than, equal to, or greater
than the minimum inter-arrival time between two jobs of task

In this work, we focus on tasks with constrained deadlines

A RT application usually consists of one or more RT tasks working together to achieve a certain
functionality. However, these tasks can have precedence constraints and data dependencies be-
tween them. For example, in the air-bag control applicaticserssor data acquisitiotask must

always be executed before theate air bagstask in order to have the most recent value of the
intensity of the impact in case of an accident. Similarly, depending on the nature of the application

2.2 Basic Organization of a Real-Time System 9

different tasks can have different precedence constraints or data dependencies. However, in this
work, we only focus onindependentasks, i.e., tasks that can be executed without ensuring any
precedent constraints. Also, these tasks do not depend on the outcome of any other task in order
to initiate their execution.

In this work, we only focus on independent tasks.

2.2.2 Real-Time Operating System (RTOS)

In general, an operating system (OS) performs basic operations such as memory management,
process scheduling, inter-process communication and Input/Output management and a RT oper-
ating system (RTOS) is no different. However, the most important functionality of a RTOS is to
provide reliability and predictability in the system. Reliability refers to the ability of the system to
perform its required functions under stated conditions for a speci ed period of time (Deck, 1998).
Whereas, predictability means the ability of the system to guarantee the timing properties at design
time. Few examples of RTOS include RTEMS, VxWorks and PikeOS.

As discussed earlier a RTOS can perform many functionalities, however, in this section we
limit our discussion to task management or scheduling function of the RTOS.

Every RT task needs to use the hardware platform at some point in time to achieve its de-
sired functionality, which is mainly performed by requesting some execution resources from the
processing element (i.e., processor) present at the hardware level. When a single processor has
to execute a set of tasks that can overlap in time, the RTOS has to allocate the processor to each
task based on a prede ned criteria. This functionality is achieved by a specialized service of the
operating system kernel called theheduler Scheduler is responsible for deciding which task (or
job of the task) should be executing at any particular time and the set of rules that determine the
order in which tasks are executed on the processor is cabetieduling algorithm Scheduling
algorithms can be categorized into many classes based on different factors, i.e., off-line or on-line,
preemptive or non-preemptive, static or dynamics etc. However, in this thesis we primarily focus
on thepriority driven scheduling algorithms

When using priority driven scheduling algorithms tasks/jobs are executed based on their priori-
ties. These priorities can be assigned to tasks or jobs based on different criterion such as deadlines,
arrival rate, execution time and laxity etc. Priority driven scheduling algorithms can be further di-
vided into following categories:

 Fixed Task Priority (FTP): As the name suggests, in xed task priority scheduling algo-
rithms, priorities are assigned to tasks and the priority of all instances of a task (i.e., all its
jobs) is the same and remains xed throughout the execution of the task. Prominent exam-
ples of FTP based scheduling algorithms are Rate-Monotonic (RR) (Liu and Layland, 1973)
and Deadline-Monotonic(DM) (Leung and Whitehead, 1982) algorithms.

 Fixed Job Priority (FJP): In this category, priorities are assigned to jobs rather than tasks,
meaning that different jobs of the same task may execute on the processor with different

10 Theoretical Background

priorities. However, the priority of a job does not change between its release time and dead-
line. Examples of such algorithms include Earliest-Deadline First (EDF) (Liu and Layland,
1973), Earliest Deadline Deferrable Portion (EDDP) (Kato and Yamasaki, 2008) and EDF
with C = D (Burns et al., 2012).

» Dynamic Job Priority (DJP): In dynamic job priority based scheduling algorithms, prior-
ity of a job can change dynamically at any instant during its execution. Least-laxity rst
(LLF) (Mok, 1983) is an example of DJP based scheduling algorithms. In LLF, priority of
a job depends on the job's laxity (its deadline minus its remaining execution time). A job
with the minimum laxity is allocated the highest priority and vice versa.

This work focuses on priority based scheduling algorithms and in particular
use xed task priority based algorithms such as RM and DM.

Independent of the priority assignment used, a scheduler can either be preemptive or non-preemptive.
In preemptive schedulers, a preemption occurs when the execution of a job on a processor is sus-
pended in order to execute another higher priority job. Whereas, non-preemptive schedulers allow

a job to complete its execution once started without any interruption. In preemptive scheduling,
the process of preempting the job of one task and activating the other involves a switch of the
job execution context potentially inducing an extra overhead as the preempted job has to save its
status to resume its execution later in time. In literature, this overhead is usually referred to as the
preemption overheadSeveral techniques have been introduced in literature to effectively bound
preemption overheads and consider their affect when analyzing the system. Some prominent ap-
proaches presented in this context will be discussed later in Chapter 3.

This work focuses only on preemptive scheduler#.

2.2.3 Hardware Platform

A hardware platform is a set of physical components on which a RT application executes to achieve
its desired functionality. In RTS, a basic hardware platform typically consists of a processing
unit or processor (to perform computations), memories (main memory and caches to load/store
instructions/data), 1/0 devices (to perform input/output operations) and an interconnect or system
bus (to transfer instructions/data between processor and the main memory). Below we brie y
explain the functionality of hardware components that are most relevant in the context of this
thesis.

2.2.3.1 Processors

The Central Processing Unit (CPU) or processor is the main electronic circuitry within a system
that executes instructions that make up a RT task. It performs basic arithmetic, logic, controlling,
and input/output (I/0O) operations speci ed by tasks executing on the processsinghe-core
processor has only one on-chip CPU or processing core and is capable of executing only a single

2.2 Basic Organization of a Real-Time System 11

task at a time. Amulti-core processor (MCP) is an integrated circuit with a set of independent
processors (or cores) fabricated on a single chip. Typically, a MCP can have two to eight cores on
a chip and is capable of executing multiple tasks in parallel.

On a MCP, the scheduler can schedule tasks on any of the available processors. Ef ciently
scheduling tasks on a MCP is complex in comparison to scheduling them on a single processor
since different jobs of a task can be scheduled to execute on any one of the available processors.
This phenomenon of suspending the execution of a job from one processor and later resuming it
on another processor is calledigration Based on whether migration is allowed or not multi-
processor scheduling algorithms can be broadly categorized into three main classes.

« Global Scheduling Algorithms: In global scheduling, tasks/jobs are allowed to migrate
from one processor to another. All tasks within the system are maintained in a single global
ready queue anth high priority tasks in the ready queue are allocated tonthevailable
processors. Task assignment to processors is not static and hence, a task may start its ex-
ecution on one processor but as a result of preemptions may later resume its execution on
another processor.

« Partitioned Scheduling Algorithms: In partitioned scheduling migrations are not allowed.
A given task-set is distributed among the processors based on some criterion, e.g., rst-
t, best- t, next- t etc. This task to processor assignment is static and tasks/jobs can only
execute on the assigned processors. In partition scheduling, the most important phase is task
to processor mapping and once the mapping is done any uniprocessor scheduling algorithm
can be used to schedule tasks on individual processors.

» Semi-partitioned Scheduling Algorithms: Semi-partitioned scheduling algorithms are a
combination of global and partitioned scheduling approaches. At rst, some tasks from a
given task-set are assigned to speci ¢ processors and are not allowed to migrate. Remaining
tasks (those that can not be mapped to a speci ¢ processor) are split between processors
effectively allowing them to migrate from one processor to another. Detailed survey on
multi-processor scheduling algorithms can be found in (Davis and Burns, 2011a).

In the context of this work, we use partitioned task-level xed priority
scheduling algorithms to schedule tasks on a MCP.

2.2.3.2 Cache Memory

Memories are an essential components of an embedded RTS. Where processors are used to make
the computations fast and ef cient, memories, e.g., off-chip Random Access Memaries (RAM) or
non-volatile Read Only Memory (ROM), are required to effectively manipulate instructions and
data. However, the techniques in designing memory systems did not catch up with the processor
speeds and hence, memory access latencies were non-negligibly high leading to large processor
stalls. To bridge this gap between processor and main memory operating speeds, hardware plat-
forms used in modern RT embedded systems employ on-chip cache memories or caches.

12 Theoretical Background

Caches are high speed memories that reside between the processor and the main memory and
hold data/instructions that can be used by the processor in a speedy manner. Depending on the
kind of resources they store, caches can be categorized agnstgictioncachesdata caches
or uni ed caches. As the name suggests, instruction caches are used only to hold instructions,
similarly, data caches are used for data only. A uni ed cache can hold both data and instructions.
The rationale behind the need for caches is that frequently accessed data/instructions must be kept
closer to the processing source or in other words can be “cached", to reduce processor stall cycles.
Assuming an empty cache, the rst access to a particular address resuttadheamisgwhen the
required data/instruction is not in the cache). Therefore, the required data or instruction is fetched
from the off-chip main memory and a copy is also stored on the local caches. On subsequent
accesses to the same address, the cache is checked and if the required data/instruction is found
(called acache hi}, it is retrieved from the cache itself without incurring the (high) latency to
fetch that data/instruction all the way from the main memory.

Cache Organization

In a basic RTS architecture, cache are organized in a stacked hierarchy. Figure 2.2 shows a basic
memory architecture that depicts a trade-off between size and speed. The processor is at the top
of the hierarchy with very high operating speeds followed by two layers of caches and then the
main memory. The cache that is closest to the processor is the fastest and it is called level one or
L1 cache. L1 caches can be further divided iimependeninstruction and data caches as shown

in Figure 2.2. L1 caches can have a typical capacity of upto 32 KB with an access latency of 1-2
cycles. Level two or L2 cache is only queried if the required data/instructions are not available
in L1 caches. L2 caches are usuallyi ed caches, i.e., capable of holding both instructions and
data, with a storage capacity ranging from hundreds of KB to several MB. Access latency of an L2
cache is typically around 10 cycles. Some modern high performance processors may also have a

0DLQ PHPR
% L 601
% XV
&DFKH
/
'DWD FDFKHQVWU ||F " |KH
/ /

6PD)D\

Figure 2.2: Common Memory Architecture

level three, i.e., L3 cache, to further increase the storage capacity. If the required data/instructions

2.2 Basic Organization of a Real-Time System 13

are not available in the last level cache, it results in accesses to the main memory using the off-
chip bus as shown in Figure 2.2. These accesses to main memory can cause a delay in the order of
hundreds of cycles.

In most processors, the unit for cache access is calleathe line i.e., the smallest unit of
data/instructions that can be transferred to or from a cache. Cache line size signify the minimum
amount of data the cache must read or write from the main memory or from the cache-level below
it. Accessing one element within a cache line causes the whole cache line to be loaded into the
cache. As a result, a following access to another element of the same cache line might also results
in a cache hit.

Caches are usually partitioned into different sets of equal sizescaehe setswhere each
cache set may contain one or more cache linesmeiory blocki.e., the smallest amount in
bytes which can be loaded at a time from the main memory, is rst mapped onto a cache set and
then placed into one of the cache lines within that set. The number of memory blocks that can be
stored in each cache set is referred to as the number of eamser theassociativityof the cache
and such a cache is calledsat-associativeache. There are two special cases of set-associative

caches:
blocks cache blocks cache
m—.Linc 0 0] Line 0
1 |4\Linc 1 1] Line 1
_ﬂ—.Linc 2 [Z] Line 2
ﬂ4\Linc 3 i Line 3
Direct-mapped - Fully-associative Set-associative

Figure 2.3: Different types of cache associativity

 Direct-mapped cachesin direct-mapped caches, the number of cache ways or associativ-
ity is 1, i.e., each cache set consists of a single cache line, this means that a memory block
can reside in exactly one cache line.

« fully-associative cachesin fully-associative caches, the number of cache ways or associa-
tivity is equal to the number of sets in the cache, i.e., the cache consist of a single set, this
means that a memory block can reside in any cache line.

Figure 2.3 shows the different type of caches based on the mapping of cache lines to main memory
blocks.

Contents in the cache should be consistent with the main memory. This is usually done based
on the write policy used by the cache. Write policy determines at what time the modi ed cache line
will be written back into the main memory. Based on the write policy, caches can be categorized
aswrite-throughor write-back For a cache using the write-through policy, main memory is made
consistent with the cache immediately after a cache line is modi ed. Alternatively, in a write-back
cache the process of updating the main memory is differed to a later time, until the given cache
line is evicted.

14 Theoretical Background

Note that in this work we only focus on instruction references therefore, we do
not make any assumption on the write policy used by the caches.

Cache Replacement Policy

When loading a memory block from the main memory to cache, processor rst determines the
cache set the block maps to. A lookup is performed to nd the target cache set. If all the cache
ways of the targeted cache set are occupied, theoatiee replacement policetermines which

old block can be evicted from that cache set to make room for the new block. Common examples
of cache replacement policies used in modern processors are Least-Recently-Used (LRU), First-
In-First-Out (FIFO) and Pseudo-Least Recently Used (PLRU). Note that direct-mapped caches do
not need any replacement policy as each cache set has only one way so each memory block maps
to a speci ¢ position in the cache. In the context of this thesis, we will only explain the working

of a LRU cache replacement policy.

* LRU replacement policy: LRU policy maintains a queue of memory blocks sorted in an
ascending order based on thage Age of a memory block refers to its position in the
cache and is given by the number of accesses to different memory blocks from the last
use of that memory block. The most-recently used memory block is assigned an age 0
whereas the least-recently used memory block has an age giveachgassociativity 1.

In case of a cache miss, new element is added at the front of the queue (and assigned an age
0). However, if the cache is full, the last element of the queue, i.e., the element with age
cacheassociativity 1, is removed to accommodate the new memory block. Similarly, at

a cache hit, the corresponding element is moved from its position in the queue to the front
and all younger elements are aged by one. Figure 2.4 shows a sequence of references in
a 4-way set-associative cache using a LRU replacement policy. Majority of the state-of-
the-art on cache analysis has focused on caches with LRU replacement strategy. This is
mainly because LRU replacement policy is predictable and easier to analyze in comparison
to non-LRU policies such as FIFO and PLRU (Guan et al., 2013, 2014).

Age

a(hit) b(hit) b(hit)

e(miss=

a(hit)
—_—

O|Qjw (T
oW T

Q|T(O Q.
o0 Qv
Q| (T
QT |L

0
1
2
3

Figure 2.4: Example access sequence of memory blocks in a 4-way set-associative cache using a
LRU replacement policy

In this work, we will focus on the analysis of direct-mapped caches and
set-associative caches that use a LRU replacement policy.

Caches with multiple levels are categorized imclusive exclusiveandnon-inclusivecaches.
Inclusive caches require that the content in the higher cache levels should also be present in the

2.2 Basic Organization of a Real-Time System 15

lower level cache, i.e., if a memory block is available in the L1 cache it should also be loaded in the
L2 cache. In exclusive caches, the content in the higher cache levels must not be duplicated in the
lower cache levels, i.e., a memory block can be available only in L1 or L2. Non-inclusive caches
allow duplicated content at any cache level, however they do not strictly enforce the inclusion
property, i.e., a memory block can be available in only L1/L2 or in both.

In this thesis, when required we will assume a non-inclusive cache hierarch)k

2.2.3.3 System Bus

Off-chip memories like the random access memories (RAM) or non-volatile read only memory
(ROM) are very slow in comparison to the caches and are only accessed when the data/instructions
are not found in the caches. The processor is connected to the off-chip main memory (or a memory
controller) over a shared interconnection network usually called as the Front-Side Bus (FSB). The
FSB is also referred to as the processor system bus or simply the system bus.

In a MCP, system bus is used to communicate between processing cores and the main mem-
ory. Bus handles different types of communication traf ¢ including interrupt messages, memory
requests, I/O traf c and coherency messages. Basic positioning of the system bus w.r.t the MCP
and the memory is shown in Figure 2.5.

Figure 2.5: Basic abstraction of the system Bus

As shown in Figure 2.5, system bus is composed of three components, i.e., an address bus, data
bus and control bus. These are separate channels used to transmit data, memory addresses from
where data is to be fetched from or written to and some control signals that are used to control the
overall functionality of the bus. Busidth de nes the number of bits that can be transferred by the
data bus, e.g., 32 or 64 bits. Similarly width of the address bus represents the maximum amount of
addressable memory. Bapeeds an also important property which indicates the speed at which
the bus can transfer data. Bus speed is expressed as number of cycles per second or Hertz (Hz).

Another important characteristic of a bus is thendwidthor the maximum amount of data
it can transfer per unit time. Bandwidth of the system bus is given by the product of the data
path width, bus clock frequency and the number of data transfers the bus can perform per clock
cycle (bus, 2017a), i.e.,

Bus Bandwidtl width clock frequency datatransfers per cycle

16 Theoretical Background

For example, a 8-byte (64 bits) wide bus with an operating frequency of 100 MHz with a ca-
pacity to perform 4 transfers per cycle has a bandwidth of 3200 megabytes per second (MB/s) (bus,
2017a), i.e.,

8B 100MHz 4transferscycle= 3200MB=s

Bus perform communication usingessageandtransactions A message is a logical unit
of information that holds the memory address at which the data must be written to or read from,
control signals and the data to be written (in case of a write operation). A transaction on the other
hand is a sequence of messages. For example, a read transaction contains a read message with the
memory address to read and a corresponding reply with the requested data. Bus transactions can
be performed in several ways.

» Atomic transactions: The word atomic implies to indivisibility or irreducibility, so an
atomic operation must be performed entirely or not performed at all. Similarly, an atomic
bus transaction is modeled as an indivisible request-reply pair. This means that no new re-
guest can be entertained unless the bus transmits the response to the prior request. Atomic
transactions are simpler to implement however, when using atomic transactions bus is un-
derutilized since only one request can be ful lled at a given time.

* Pipelining: In a pipelined bus, transactions are divided into different stages, e.g., arbitration,
bus request, reply, data, error reporting etc. The basic idea is to combine any two phases of
a transaction that use different physical lines on the bus. For example, the data bus is only
responsible for transmitting the data written to or read from the memory and therefore only
use some physical lines on the bus. Similarly, the control bus only handles operations like
the arbitration, request, error reporting using independent bus lines. Therefore, multiple
transactions that do not use the bus components can be pipelined together to increase the
overall utilization of the bus. One example can be to overlap the address cycle of each
transaction with data cycles of the previous transaction since the data bus is not used during
address cycle and vice versa.

 Splittransaction: In a bus that uses split transactions, a transaction is split into two compo-

nents a request transaction and a reply transaction. Both transactions are handled indepen-
dently of each other, where each transaction has to compete for an access to the bus. With
a split transaction bus once a memory request is made by a core, it immediately releases
the bus. In this way, other cores can also place there requests on the bus, increasing the
overall utilization of the bus. When the response to a memory request is ready, the memory
controller acquires the bus for the reply transaction and places the result on the bus. This
response is then delivered to the corresponding core by the bus controller. Bus controller
uses tags to identify the destination cores.

In split transaction buses, certain memory requests may be served out off order, i.e., the
responses may arrive in an order which does not match the order of requests issued. A split

2.2 Basic Organization of a Real-Time System 17

transaction bus is an example of an out-of-order bus whereas, both the atomic transaction
bus and the pipelined bus are an example of in-order buses.

In this work, we considering a multi-core platform, we will assume that the
bus is shared between cores and it uses an atomic transaction protocol.

Another important mechanism that is used to minimize the main memory overhead latency is
by using the hardware prefetching. Hardware prefetchers predict the next memory addresses to be
accessed and pro-actively fetch this data to the last-level caches from the main memory based on
the observed memory access patterns. However, in case of real-time tasks hardware prefetching
may results in non-deterministic delays in task executions time. For example, the prefetchers also
use the bus to perform transactions and hence may delay the requests issued by real-time tasks or
the prefetched cache lines might evict cache lines that were used by the real-time tasks. Hardware
prefetching is available in many commercial MCPs, with programmer having the facility to enable
or disable this feature (Hegde, 2008).

In this work, we assume that the hardware prefetching is disabled.

Bus arbitration protocols

Bus arbitration protocols de ne the order in which the devices attached to the bus can access the
bus. In a MCP, bus arbitration protocols control the access of multiple cores to the shared memory.
Simultaneous requests by different cores to access the main memory may result in con icts at the
bus. These con icts are resolved by the bus arbiter based on an arbitration policy.

Arbitration policies used in MCP can be mainly categorized as static or dynamic arbitration
policies. In a static arbitration policy bus access patterns are de ned at design time and does not
change at run time. Whereas, in a dynamic arbitration policy the access patterns may change
dynamically depending on the con icts between cores or based on any other criteria, e.g., task
priority or the arrival time of the requests etc. Time division multiple access (TDMA) is a promi-
nent example of static bus arbitration policy whereas, First-in First-out (FIFO) and Round-robin
(RR) arbiters are examples of the dynamic arbitration policies. Below we brie y describe the
functionality of some prominent arbitration policies used in modern MCPs.

« TDMA: TDMA bus arbitration uses a xed schedule to provide different cores of a MCP,
access to the bus. This schedule or frame is periodic and is of a xed size. At design time,
each core is assigned one or more xed slots within the frame to access the bus. Requests
from a core are only entertained during the slots allocated to that core. Each core either
uses its allocated slots or these slots are not utilized. Therefore, TDMA bus arbiter can
under utilize the available bus capacity. However, TDMA arbitration is predictable and
composable. It is predictable because the maximum time required by a task running on one
core of a MCP to access the bus can be bounded at design time. Similarly, TDMA is also
composable since the access time of one task is independent of the requests issues by other
tasks running on other cores.

18 Theoretical Background

* FIFO: FIFO arbitration scheme works on the principle of rst-in rst-out. It maintains an
in-order list of requests issued by different cores. The core whose request is the earliest
is placed at the front of queue while later requests are subsequently added at the end of
the queue. FIFO arbitration may sometime result in starvation, since the core that has the
control of the bus may never complete hence, not allowing other cores to access the bus.

* Fixed priority (FP) arbitration: In FP arbitration policy, each request is assigned a priority
based on a certain criteria. The request with the highest priority is then granted access to the
bus. The drawback of FP arbitration is similar to that of FIFO arbitration, i.e., in case where
highly memory intensive tasks are assigned higher priorities by the arbiter, then requests
from lower priority tasks may need to wait inde nitely before receiving a response. Fixed
priority arbiters are neither composable nor predictable as the time for access to the bus
cannot be upper bounded without the knowledge about the access patterns of the higher
priority requesters.

* Round-robin (RR) arbitration: Round-robin (RR) arbiter is a fair arbiter that allows in-
order access of the bus to every requester. Fixed time slots of equal length are allocated to
each requester. RR arbiter follows a rotating policy, i.e., the requester who is most recently
granted the bus in one frame will be the last to receive the access in next frame. RR arbiter is
predictable but however not composable. It is predictable since the maximum time to access
the bus can be bounded but, as the access time to the bus of one requester depends on the
number of other active requesters RR arbiter is not composable.

2.3 Ensuring Temporal Correctness of a RTS

Proving timing correctness of a RTS is traditionally a two-step process:

1. Timing analysis: The process of computing the WCET of taskssaolation i.e., an upper
bound on the time that a given task can take to complete its execution under all feasible
system states.

2. Schedulability analysis: The process used to ensure the schedulability of tasks, i.e., all
tasks will meet their deadlines when deployed on the target hardware.

In the subsections below, we will provide a brief overview of the timing analysis and schedulability
analysis relevant for this thesis.

2.3.1 Timing Analysis

As stated earlier, timing analysis is the process of estimating the worst-case timing requirement,
e.g., WCET, of an isolated task. When computing the WCET of a task, activities other than the
ones related to the considered task e.g., interrupts, blocking, preemptions or any kind of inter-
ference from other tasks in the system, are ignored. Different approach have been presented in

2.3 Ensuring Temporal Correctness of a RTS 19

literature to bound the WCET of tasks. However, without disrespecting the variety of individual
approaches, three approaches are commonly applied nowadaysatieanalysismeasurement-
basedanalysis andybrid analysis (Wilhelm et al., 2008a). In the context of this work, we will
only discuss the working of static timing analysis.

2.3.1.1 Static Analysis

In static analysis, a task is analyzed by constructing the control ow of the program (or task)
rather than executing the task on the real hardware or a simulator. An abstract model is used for
the target hardware and for the inputs to the program and an upper bound on the WCET of task
is obtained using this combination. Core components used by any static timing analysis approach
are explained as follows:

Figure 2.6: Work ow between different components of a timing-analysis tool (Wilhelm et al.,
2008a)

Value Analysis

Value analysis computes the effective address where a memory accesses goes. In case the exact
address of the referenced data cannot be determined, a range of addresses is conservatively pro-
vided. The analysis determines these addresses statically from a disciplined code (Thesing et al.,
2003) by computing ranges for the values in processor registers at every possible program point.
Value analysis can also compute the number of loop iterations and recursions (Martin et al., 1998).

Control-Flow Analysis

Control ow analysis use the parameters computed by the values analysis, e.g., ranges for the
input data and iteration bounds of some loops, along with the call graph or the control- ow graph
(CFG) of the task to gather information about possible execution paths. The result of the control
ow analysis are usually constraints on the dynamic behavior of the task, e.g., which functions
may be called, dependencies between different conditional operations and information relating to
feasibility or in-feasibility of paths, etc.

20 Theoretical Background

Processor-Behavior Analysis

Processor-behavior analysis is the most important phase when determining the WCET of tasks
under the static analysis based approaches. It uses a conservative timing model of the targeted
hardware architecture in particular, of the components that in uence the execution times, such
as memory, caches, pipelines, and branch prediction along with the information provided by the
value and control- ow analysis to determine upper bounds on the execution times of instruc-
tions or basic blocks. Most approaches for processor-behavior analysis use techniques based on
the theory of Abstract Interpretation (Cousot and Cousot, 1977) to compute invariants about the
processor's execution states at each program point. These invariants provide information about
the contents of caches, the occupancy of functional units and processor queues, and of states of
branch-prediction units. This information is then used to, e.g., exclude pipeline stalls and to clas-
sify memory accesses as cache hits/misses (detailed overview of the intra-task cache analysis is
presented in Section 3.1).

Bound Calculation

This phase computes an upper bound on the execution times of the whole task using the ow and
timing information derived in the previous phases. Different methods can be used to combine the
timing estimates determined in the previous phases into an end-to-end estimate. For example, in
approaches that usmplicit Path Enumeration Technigu&ET) (Li and Malik, 1997; Puschner

and Schedl, 1995; Theiling, 2002) techniques program ow and basic-block execution time bounds
are combined into set of arithmetic constraints. Each program ow edge in the task and basic-block
is assigned a time coef ciergnity, i.€., an upper bound on the contribution of that entity to the
total execution time every time it is executed, and a count variahig, i.e., an upper bound on

the number of times that entity is executed. An upper bound on the task's WCET is then obtained
by maximizing the objective functiofisentitiesi ti, Where the value of; is subject to constraints

re ecting the structure of the task and possible execution ows.

Many commercial and research prototype based static analysis tools are available today such
as Bound-T (Holsti and Saarinen, 2002), aiT (Ferdinand et al., 2007), Heptane (Colin and Puaut,
2001; Hardy et al., 2017), Chronos (Li et al., 2007) and SWEET (Ermedahl, 2003). For a detailed
survey on the computation of WCET of tasks readers are directed to (Wilhelm et al., 2008a).

2.3.2 Schedulability Analysis

The output of the timing analysis, i.e., WCET of tasks, along with other timing constraints, e.g.,
task’'s period and deadline, are used by the schedulability analysis to determine if all tasks in
the system comply with their timing requirements. Several different approaches can be used
to perform the schedulability analysis depending on the scheduling algorithm and the priority
assignment of tasks. However, since in this work we focus on preemptive xed-task priority
based scheduling algorithms such as RM and DM, we will use the traditiesbnse timbased
schedulability analysis (Liu and Layland, 1973; Joseph and Pandya, 1986). Under the response

2.3 Ensuring Temporal Correctness of a RTS 21

time based schedulability analysis, any tasis referred to aschedulablei.e., the task meets its
timing constraints, if each of its instances or jobs complete their execution before the deadline,
i.,e.,RDj. The response timg of a taskt; is computed as follows:

32 R

R=C+ f Cj (21)

8j2hp(i)
whereC; is an upper bound on the WCET of task hp(i) denotes the set of tasks with higher
priority thant; andC; is an upper bound on the WCET of any task2 hp(i). Note that under
priority-driven preemptive scheduling taskcan be preempted several times by higher priority
tasks in hii). Howgver, within the response tink& of taskt;, any higher task; 2 hp(i) can
execute at most%’ times. Hence, the interference, i.e., the execution deTIayr,%tasiay suffer

due to the executions of task during its response time is upper bounded l%/ Cj. AsR
appears on both sides in Equation (2.1), i.e., Equation (2.1) is recursive, a xed-point computation
onR, can be used to nd a solution by initiatirig to C;. For each task, the computation is stopped

if R does not evolve anymore, i.e., the task is schedulable, or the vaRi@xéeeds the deadline,
i.e.,R > Dj, in which case the task is deemed unschedulable. Note that a taSkssmily said to

be schedulable according to any schedulability analysis if each t@s&is schedulable.

2.3.3 Caches and Timing Analysis

The WCET of a task in isolation is an inherent property of the task which acts as an interface
between the timing analysis and schedulability analysis. However, the WCRT of a task when
co-executing with other tasks largely depends on the interference due to contention for resource
accesses such as the processor, caches, bus and the main memory.

Figure 2.7: Basic interface between timing and schedulability analysis

Figure 2.7 shows the basic interface between timing and schedulability analysis. We can see
that the WCRT of tasks depends on the timing behavior of resource such as caches, bus and the
main memory. Therefore, in order to have a sound estimate of task's WCRT it is very important to
rst compute upper bounds on the interference due to contention for these resources and integrate
these bounds into the schedulability analysis.

As discussed above, interference due to contention for resources that are shared between tasks
can have a signi cant affect on the timing behavior of tasks. Indeed, caches are considered as one
of the most important resource that can impact the execution of tasks. This is mainly because, the
time spent by the tasks to perform memory related operations largely depends on the availability
of data/instructions in the cache. In order to upper bound this time, a cache interference analysis

22 Theoretical Background

is performed that quanti es the number main memory accesses that may be generated during the
execution of tasks. The output of the cache interference analysis is then used as an input for ana-
lyzing contention at the bus and main memory. This interdependence between the timing behavior
of caches and other resources makes the cache interference analysis very crucial in providing de-
terministic bounds on the WCRT of tasks. Typically, tasks can be subjected to two types of cache
interferences described as follows:

« Intra-task cache interference: Intra-task cache interference points to a situation where a
task can evict its own cache lines. This can happen in two situations; (i) when two memory
entries in the working set size of a task are mapped to same cache sets or (ii) when the
working set size of a task is larger than the cache size. Intra-task cache interference analysis
is usually considered as a part of the WCET analysis and several approaches have been
presented in literature to bound this type of cache interference (Wilhelm et al., 2008b) (intra-
task cache analysis will be discussed in detail in Section 3.1).

* Inter-task cache interference:Inter-task cache interference can be generated between dif-
ferent tasks running on the processor that are sharing the cache. Bounding inter-task cache
interference is a challenging task since it depends not only on the cache footprint of the
task under analysis but also on the cache usage of other tasks. Inter-task cache interference
is mainly observed in priority-driven preemptive systems were a higher priority task can
evict the preempted task's cached content. This results in extra delays during the execu-
tion of the preempted task. It has been shown by several works in literature (Starner and
Asplund, 2004; Bui et al., 2008; Bastoni et al., 2010; Bertogna et al., 2011) that inter-task
cache interference can have a signi cant affect on task's execution times and ignoring the
impact of inter-task cache interference on task schedulability may lead to optimistic results.
Therefore, in order to have a sound estimate of the WCRT of tasks, a precise bound on the
inter-task cache interference must be computed and integrated into the schedulability anal-
ysis. Several different approaches (Lv et al., 2015) have been presented in this regard that
will be discussed in detail in Section 3.2.

2.3.4 System Bus and Timing Analysis

In modern processors, multiple concurrently executing tasks can access the main memory in par-
allel which leads to contention on the shared bus. This contention results in an increased response
time of tasks running on the platform. Bounding this increase in response time or in other words
the interference due to shared bus is one of the main challenge due to following reasons:

1. Due to the lack of documentation provided by the vendors, system bus is usually consid-
ered as a black box, with very little information available about the bus arbitration and bus
controller implementation.

2.4 Chapter Summary 23

2. Itis very dif cult to predict at what instant the tasks will access the bus. Moreover, these ac-
cesses are not explicitly controlled by the operating system scheduler since they are mostly
initiated as a result of cache misses, coherency traf c etc.

3. In FPPS higher priority tasks are executed prior to the lower priority tasks as they might
be performing some critical operations. However, once the memory requests are issued
by different tasks running on the processor the bus controller might reorder these requests
based on some different criterion. Consequently, this might result in an unexpected situation
where requests issued by the higher priority tasks may be served later than those from the
lower priority tasks.

4. Also, most modern processors use an out-of-order bus that employ different performance
enhancement mechanisms such as pipelining and split transactions which further compli-
cates the bus interference analysis.

In this thesis, we will focus on the computation of inter-task cache
interference and its integration into the schedulability analysis. Due to strong
interdependence between caches and the system bus, we will also evaluate|the

impact of inter-task cache interference on bus contention.

2.4 Chapter Summary

In this chapter, we presented basic concepts that are necessary for the understanding of this thesis,
i.e., the basics of real-time systems, functionality of its core components and methods used to
ensure timing correctness of a real-time system. We also highlighted the importance of cache and
bus contention analysis to ensure timing correctness of tasks. In next chapter, we will describe the
related work focusing on cache and bus related contention in multi-tasking real-time systems.

Chapter 3

Related Work

In this chapter, we will provide a survey of the state-of-the-art in the computation of intra- and
inter-task cache interference. It also serves as a starting point for understanding different analysis
presented in subsequent chapters. This chapter is organized as follows: Section 3.1 presents promi-
nent state-of-the-art approaches used to quantify intra-task cache interference. Section 3.2 presents
the background on inter-task cache interference analysis focusing on single-level direct-mapped
(Section 3.2.1), set-associative (Section 3.2.2) and multi-level caches (Section 3.2.3). State-of-
the-art approaches that manage intra- and inter-task cache behavior by using methods such as
cache patrtitioning, cache locking, task layout optimization and enhanced scheduling models are
discussed in Section 3.3. Section 3.4 discusses most relevant approaches in the state-of-the-art that
guantify memory bus contention and evaluate its impact on schedulability. Finally, in Section 3.5,
we introduce a different positive prospective of cache memories due to intra-task cache re-use and
highlight its potential in improving schedulability.

3.1 Intra-task Cache Interference Analysis

Intra-task cache interference analysis or sinmiplya-task cache analysis often considered as

a part of the WCET analysis. The basic purpose of an intra-task cache analysis is to determine
the cache behavior of a task in isolation. This results in the classi cation of individual memory
requests of a task as cache hits or misses. It also bounds the number of cache loads in differ-
ent segments of a program. Different approaches have been presented in literature for intra-task
cache analysis such as the static cache simulation presented by Muller et al. (Mueller, 2000) and
the abstract interpretation based approach presented by Ferdinand and Wilhelm (Ferdinand and
Wilhelm, 1999). Abstract interpretation (Al) (Cousot and Cousot, 1977) is a method for static
program analysis based on the semantic of the considered programming language. It uses an ab-
stract version of the program with an abstraction of the underline hardware components instead of
executing the program on the actual hardware. Abstract interpretation based approaches for cache
analysis are widely used in industry, e.g., in the aiT tool of Absint (abs).

24

3.1 Intra-task Cache Interference Analysis 25

Figure 3.1: Intra-task ache analysis is one of the main components in the timing analy-
sis (Phavorin and Richard)

In the context of this work, we will explain the working of Ferdinand's (Ferdinand and Wil-
helm, 1999; Theiling, 2002) intra-task cache analysis which is based on Al. For simplicity, we as-

S= CacheSizelineSize The cache stores a set of memory blobks f m,;my;::;m,g. Note that
for set-associative caches, the analysis can be performed independently for each cache set.

The work in (Ferdinand and Wilhelm, 1999; Theiling, 2002) uses the concept of abstract cache
states (ACS) to estimate the cache contents at different points during the execution of a task.

De nition 3.1. Abstract Cache State (ACS): An abstract cache state ACS2M represents all
possible mappings between the set of memory blocks and the set of cache lines. For example, an
abstract cache state ACIR) = m,, represent that in the abstract cache state ACS memory block

my is mapped to cache ling,Iwhere x denote the age of the memory block according to the LRU
replacement strategy.

The analysis in (Ferdinand and Wilhelm, 1999; Theiling, 2002) uses three xed point analyses,
i.e., must may and persistenceto categorize memory references ibways-hitAH), Always-
misgAM), Persistent or First-mig®S or FM) andNot-classi edNC). This classi cation is some-
times referred to aSache Hit/Miss Classi catiofCHMC) and is described in Table 3.1. For each
analysis, Abstract cache sates are computed at every program point using two functions, named
UpdateandJoin.

De nition 3.2 (Update Function) The Update function computes the abstract cache state after
a memory reference, .i.e., AgS using as inputs the abstract cache sate before the memory ref-

26 Related Work

Table 3.1: Categorization of memory references

Category Description
Always-hit (AH) | The memory reference will always result in a cache hit
Always-miss | The memory reference will always result in a cache miss
(AM)
Persistentor | The rst execution of the reference may result in a cache miss however, all
First-miss (PS or| further executions of the memory reference will always result in a cache

FM) hit
Not-classied | The memory reference can not be classi ed as AH, AM or PS.
(NC)

erence, i.e., AGS and the referenced memory block. This function considers both the cache
replacement policy and the semantics of the analysis.

De nition 3.3 (Join Function) A Join function is used to combine abstract cache states at control
ow nodes with two or more predecessors, e.g., at the end of a conditional construct.

3.1.1 Must Analysis

The must cache analysis is used to nd Always-hit (AH) cache references, i.e., the cache blocks
that are guaranteed to be in the cache at a speci ¢ program point. AH references represents the
common cache contents for all possible execution paths in the CFG leading to a program point.
In must cache analysis, the positions of the memory blocks in the abstract cache state are upper
bounds on the ages of the memory blocks. For exampleCE"S! represents a must abstract
cache state at any control ow node that references a memory btgendm, 2 ACS"S(1,) for

a cache lindy, thenm, is de nitely in the cache and has an LRU agexofA reference tan, at

this program point will always result in a cache hit. Moreoves,will stay in the cache for the

nextS xreferences to memory blocks that are not in the cache or are oldemthdrhe update
function for must analysis performs an access to a memory reference, e.g., to memomnhlock
using the abstract cache state before the memory access as an inpdCEE'St and produces

the output abstract cache state, IACSUS after the memory access. ACS4Stthe age ofm,

will be 0 as it is now the most-recently used elementryfwas not inACSUSt then the age of all
elements iMCIN"Stwill be increased by 1 to produ@C 4t If m, was already iIACSHUS! then

the age of all element that were younger tmanin AC"S'will be increased by 1 iRCL

Figure 3.2a shows an example of the update function for the must analysis.

The join function for the must analysis is similar to set intersection. A memory bigck
only stays in the output abstract cache sts@hustif it is in both operand abstract caches states,
e.g.,ACEStandACTSSt In AC4S'my, will get the maximal age if it has two different ages in
ACStandACSSSt Figure 3.2b shows an example of the join function for the must analysis.

3.1 Intra-task Cache Interference Analysis 27

(a) Update (Must analysis) (b) Join (Must analysis) (c) Update (May analysis) (d) Join (May analysis)

(e) Update (Persistence anaff)-Join (Persistence analysis)
sis)

Figure 3.2: Join and Update functions for the Must, May and Persistence analysis

3.1.2 May Analysis

May cache analysis is used to determine the Always-Miss(AM) cache references, i.e., the cache
blocks that are guaranteed not to be in the cache at a certain program point. May analysis gives
the content that may be cached in all possible executions leading to a program point. In may cache
analysis, the positions of the memory blocks in the abstract cache state are lower bounds on the
ages of the memory blocks. For example, A&S"® represent the may abstract cache state at
any control ow node that references a memory blaok If m, 2 ACS"#(ly) for any arbitrary

cache lindy, thenmy is de nitely not in the cache. A reference im, at this program point will

be categorized as Always-miss(AM). The update function of the may cache analysis is similar to
the update function of the must cache analysis however, the only difference is in the treatment of
elements with the same age as the accessed elemenmg.dn, the update function of the may
cache analysis, ifn, was already irACSrﬂay, then the age of all element that had the same age
asm, or were younger thamy, in ACS™ will be increased by 1 iMCS. An example of the
update function for the may cache analysis is shown in Figure 3.2c.

The join function for the may analysis is similar to set union. If a memory btogkas two
different ages in operand abstract caches statesAC&,;> andACS . Then,m, will have the
minimal age inACS¢. Figure 3.2d shows an example of the join function for the may analysis.

28 Related Work

3.1.3 Persistence Analysis

The persistence analysis is used to classify memory references as Persistent or First-Miss (PS
or FM), i.e., the memory reference to whom rst access might be a miss but all subsequent ac-
cesses are AH. INCS®'SS represents the abstract cache state under the persistence analysis at
any control ow node that references a memory bloak Then,m, will be categorized as PS if

the persistence analysis is similar to set union. If a memory bhackas two different ages in
operand abstract caches states, 4GS andACS%™ Then,m, will have the maximal age
in ACS?. Figure 3.2f shows an example of the join function for the Persistence analysis.

The update function for the persistence analysis presented in (Theiling et al., 2000) is the same
as the update function of their Must analysis, i.e., upon an access to memorynplaciy the
ages of younger blocks are incremented. However, it has been recently found by (Cullmann, 2013;
Huynh et al., 2011) that this update function is unsound. Cullmann (Cullmann, 2013) resolved this
problem by proposing a modi cation, i.e., upon an access to bhagkhe age bounds of all blocks
other tharmy, that have potentially been accessed befayavill be increased. Figure 3.2e shows
an example of the update function for the Persistence analysis. Note that an exact persistence
analysis has been recently presented in (Stock et al., 2019; Reineke, 2018).

With the exception of Al-based approaches, different methods have been presented to bound
the intra-task cache interference. Li et al. (Li et al., 1996) presented an approach that uses the
concept ofCache State Transition Graphs (CST@&s)model cache behavior. A CSTG models
the cache-state transitions for a given cache set and is built using a CFG. In (Li et al., 1996) the
authors try to bound the number of cache hits for each memory block. These bounds are then
modeled as linear constraints and combined into an integer linear program (ILP) to obtain the
WCET for the tasks. The approach in (Li et al., 1996) can provide a good analysis precision
however, it does not scale with program size due to the complexity of the ILP. In other works
model checking (Clarke et al., 1999) and timed automata (Alur and Dill, 1994) based approaches
have been used to model the cache behavior of programs. Prominent works in this regard include
the METAMOC approach (Dalsgaard et al., 2010), McAIT tool (Lv et al., 2011) and Gustavsson
et al.'s analysis (Gustavsson et al., 2010) etc.

3.1.4 Intra-task Cache Analysis for Multilevel Caches

Most modern processors are equipped with multilevel caches. Therefore, in order to have a pre-
cise estimate of the number of main memory requests generated by a task intra-task cache analysis
should be conducted considering all cache levels. In state-of-the-art two main analysis frameworks
are used to analyze multilevel caches, iseparateanalysis andntegratedanalysis. In separate
analysis (Mueller, 1997; Hardy and Puaut, 2008), cache levels are analyzed independently, e.g.,
L1 cache is analyzed rst. Then, the result of the L1 cache analysis is used as an input for the
analysis of L2 cache, and so on. On the contrary, integrated analysis (Sondag and Rajan, 2010)
analyze all cache level at the same time by building a holistic abstract domain. Separate analysis

3.1 Intra-task Cache Interference Analysis 29

have several advantages over the integrated approaches such as the exibility to apply a different
analysis method for each cache level and scalability, i.e., the overall analysis is scalable as long
as the adopted single-level analysis is scalable. On the other hand, the integrated analysis can
be more precise than the separate analysis due to imprecise transfer of cache access information
across cache levels in the separate analysis. However, the integrated analysis are usually subjected
to scalability issues. As in this work, we only focus on non-inclusive multilevel caches, we will
brie y describe the functionality of the multilevel cache analysis of (Hardy and Puaut, 2008).
The multilevel cache analysis proposed in (Hardy and Puaut, 2008) uses Ferdinand's cache analy-
sis (Ferdinand and Wilhelm, 1999; Theiling, 2002) at each cache level (see Section 3.1). The main
dif culty in analyzing multiple cache levels is to handle the interaction between cache levels, i.e.,

to predict which memory reference will be accessed at which cache level. For example, level-one,
i.e., L1, cache is always accessed for each memory reference so, if a memory access is predicted
as AH at L1, then that memory access should not be considered during the analysis of level-two,
i.e., L2, cache. An interface call€&iiche Access Classi catig@AC) is proposed to describe this
information (Hardy and Puaut, 2008). For any memory refereraoed cache level, the CAC is

de ned as follows:

* N (Never): the access towill never be performed at cache level
« A (Always): the access towill always be performed at cache leuel

» U (Uncertain): it can not be guaranteed if the accegswil be/not be performed at cache
levelL.

CAC information relating to a memory reference is used as an input by the cache analysis at
each level to decide if that reference is to be considered during the analysis of that cache level
or not. The CAC for a referenaeat a cache level depends on its CAC and CHMC at cache
levelL 1 as shown in Table 3.2. Combination@AG.. 1 andCHMG;. 1 values in Table 3.2

Table 3.2: Computation of CAC of a memory referened cache level (Hardy and Puaut, 2008)

T+ [CHMGy 1
CAGL 1 O AM AH FM NC
Always (A) A N U U
Uncertain (U) U N U U
Never (N) N N N N

can be used to compute the CACroét levell, i.e.,CAG... For example, if CHMC and CAC

of r atlevelL 1 is AH and A respectively, .,eCHMGC.. 1= AH andCAG.. 1= A, then the
reference ta is never considered in the analysis of letgli.e., CAG.. 1 = N. In an earlier

work, Mueller (Mueller, 1997) proposed that memory accesses WHKICAC at cache levdl 1

should always be considered in the analysis of leyele., should be assigned a CAC of A at
level L. However, this assumption can be unsafe due to underestimation of memory block ages
as demonstrated in (Hardy and Puaut, 2008). The work in (Hardy and Puaut, 2008) solves this

30 Related Work

problem in Mueller's analysis (Mueller, 1997) by considering both N and A possibilities for U
accesses in the update function. Figure 3.3 shows the update function for U accesses proposed
in (Hardy and Puaut, 2008), which guarantees that the worst-case scenario is never missed. The

Figure 3.3: Update function to handle U accesses for multilevel caches (Hardy and Puaut, 2008)

analysis in (Hardy and Puaut, 2008) has also been extended to handle inclusive and exclusive
cache hierarchy (Hardy and Puaut, 2011).

3.2 Inter-task Cache Interference Analysis

Intra-task cache interference analysis presented in the previous section can be used to precisely
upper bound the number of cache hits/misses generated by a task while executing in isolation.
However, when the task is co-executed with other tasks it can be subjected to inter-task cache
interference due to sharing of caches. Speci cally, in priority-driven preemptive scheduling, the
execution of a lower priority task can be interrupted several times due to preemptions by higher
priority task(s) and for every preemption, the preempting task(s) may evict cache entries of the
preempted task that may be required later on. This inter-task cache interference leads to additional
cache misses (other than the ones computed using the intra-task cache analysis) during the execu-
tion of the preempted task. Formally, in the state-of-the-art the increase in the execution time of
task due inter-task cache interference is refereed taeise related preemption delé@RPD).

De nition 3.4 (Cache related preemption delay (CRPDJYhen a lower priority task; is pre-
empted by a higher priority tagk, the preempting tasly may evict cache blocks of the preempted
taskt; that has to be reloaded aftér resumes its execution. The additional execution time needed
by t; to perform these cache reloads is termed as cache related preemption delay (CRPD). The
CRPD a task; may suffer due to a preemption by a higher priority tasks usually denoted by

CHE

Figure 3.4 shows a visual representation of CRPD suffered by ajtdsk to preemptions by a
higher priority task j. We can observe that taskandt ; both are using cache sét4,59. Hence,

3.2 Inter-task Cache Interference Analysis 31

Figure 3.4: Visual representation of cache related preemption delay (CRPD)

for every preemption of; by t j, the content of; in cache set§4;5g is evicted and replaced by
the content ot ;. Assuming cache sefs}, 59 hold useful data/instructions that are used several
times during the execution of task t; will be required to reload the evicted content after every
preemption by task;. This leads to an increase in the WCRTtpflue to CRPD.

It have been shown in the state-of-the-art (Liu and Solihin, 2010; Bui et al., 2008) that CRPDs
can signi cantly affect the WCRT of tasks and hence should be bounded accurately. In litera-
ture different approaches have been used to calculate CRPDs considering single and multilevel
caches (Lv et al., 2015). These approaches use the notioseffil cache blocks (UCBshd
evicting cache blocks (ECB&) compute CRPDs. The concept of UCBs was introduced by Lee et
al. (Lee et al., 1998) and is de ned as follows:

De nition 3.5 (Useful cache block (UCB))A memory block m is called dseful Cache Block
(UCB) at program point P, if (i) m may be cached at P and (ii)) m may be reused at program point
Q that may be reached from P without eviction of m on this path. The set of all UCBs ofta task
denoted by UCB

This de nition of UCBs was later improved by Altmeyer et al (Altmeyer and Burguiere, 2011),
by introducing the notion afle nitely-cached useful cache blocks (DC-UCBS)

De nition 3.6 (De nitely-cached useful cache block (DC-UCB)A memory block m is called a

De nitely-cached Useful Cache Block (DC-UCBat program point P, if (i) m must be cached at

P and (ii) m may be reused at program point Q that may be reached from P without eviction of m
on this path.

The DC-UCB analysis (Altmeyer and Burguiere, 2011) optimize the number of UCBs of tasks
by only accounting the cache misses the have not already been considered during the WCET
analysis. However, this method is only safe when used in combination with a WCET bound.

The notion of ECBs was introduced by Busquets-Mataix et al. (Busquets-Mataix et al., 1996)
and de ned it as

32 Related Work

De nition 3.7 (Evicting cache blocks (ECBs)A memory block accessed during the execution of
a preempting task is referred to as &wicting Cache Block (ECB) The set of all ECBs of a task
t; is denoted by ECB

Deriving the Set of UCBS/ECBs

The set of UCBS/ECBs of a task can be derived using the intra-task cache analysis methods de-
tailed in Section 3.2.

The set of UCBs of a task is determined at every program point P during the execution of
ti. By de nition (i.e., the original de nition by Lee et al. (Lee et al., 1998)), a memory blotk
a UCB at a program point P if it may be cached at P and may be reused at a later program point
Q that is reachable from P without eviction mfalong the path from P to Q. So to determine if
mis a UCB at P, the analysis has to compute the number of accesses (to different memory block
other thanm) from the last use o to program point P and the number of access (to different
memory block other tham) from P to the next access to memory blaolkafter P. Effectively,
these number of accesses to/from program point P w.r.t. memory bladn be computed by
using the May cache analysis (see Section 3.1.2) in forward and backward direction (Altmeyer,
2013). Consequently, if the age ofat P in both forward and backward May analysis is less
than cache associativity them,will be considered a UCB at program point P. Note that different
approaches can be used to compute the set of UCBs of tasks, e.g., see (Lee et al., 1998), (Negi
et al., 2003) and (Staschulat and Ernst, 2007).

Computation of the set of ECBs of a task is comparatively simple than the computation of
UCBs. By de nition, all memory blocks that may be used by a task during its execution are its
ECBs. Therefore, to compute the set of ECBs of a task, May cache analysis (see Section 3.1.2) can
be used. As the May analysis over-approximate the cache content at every program point during
the execution of tasks, it suf cient to computer the set of ECBs of tasks at their exist/end point,
e.g.,e. Note that for set-associative caches, the number of cache ways can be used as an upper
bound on the number of ECBs per cache set.

3.2.1 CRPD Computation for Single-level Direct-mapped Caches

For direct-mapped caches, CRPDs can be computed by only using the set of UCBs and ECBs of
tasks.

In one of the earlier works, Busquets-Mataix et al. (Busquets-Mataix et al., 1996) and later
Tomiyama and Dutt (Tomiyama and Dutt, 2000), proposed the ECB-only approach to calculate
the CRPD cost. They used ECB's of the preempting task in order to bound the CRPD. Using ECB-
only approach, It is the higher priority task preempting a lower priority tagkthe resulting
CRPD cosgf?is given as follows:

g?fb= Omem] ECBjj (3.1)

3.2 Inter-task Cache Interference Analysis 33

Where dmnem corresponds to the time required to reload one memory block to cache from the
main memory. The approach of Busquets-Mataix et al. (Busquets-Mataix et al., 1996) results in
pessimistic CRPD bounds since it always assumes the worst-case where each block accessed by
a higher priority task can evict cache lines of the lower priority tasks. In contrast to (Busquets-
Mataix et al., 1996), Lee et al. (Lee et al., 1998) proposed the UCB-only approach, which uses the
UCBs of the lower priority task; preempted by the higher priority task and the UCBs of alll

the intermediate priority tasks (i.e., tasks with priority higher ot;tand strictly lower than that

of t;) to bound the CRPD cost. They used the intermediate priority tasks to account for nested
preemptions the resulting value for the CRPD cost is given as

uch — : ;
P=d max fjuC 3.2
9 mem 8k2aff()i(;j)J Bdg (3.2)

Where the set aff; j) contain the set of tasks with priorities higher than or equal to the pri-
ority of tj(includingt;), but strictly lower than that of ;. UCB-only approach assumes that the
maximum number of UCBs among all tasks in(gff) will be evicted for every preemption by
the preempting task. However, this is a pessimistic assumption since, in reality the number of
UCBs that can be evicted depends on the memory access patterns of both the preempting and the
preempted task.

The UCB-union approach presented by Tan and Mooney (Tan and Mooney, 2007) uses both
the preempted and the preempting task in order to calculate the CRPD cost. It uses the UCB's of
all tasks2 aff(i; j) and the ECBs of the preempting task in order to calculate the preemption cost.
The resulting CRPD in this case is denotediay, , and is given as follows

[
g"® Y= dnem UCB« \ ECB; (3.3)
8k2aff(i;)

The UCB-union approach dominates the ECB-only approach (Busquets-Mataix et al., 1996) but
can be pessimistic in some cases as described in (Altmeyer et al., 2012).

On a similar note to the work done by Tan and Mooney (Tan and Mooney, 2007), Altmeyer et
al. (Altmeyer et al., 2011) presented the ECB-union approach that uses the ECB's of all tasks in
her(j) (i.e. all tasks having priority higher than or equalt{p maximized over the UCB's of all
tasks in affi; j). The resulting preemption cogly, iS given as

®P Y= dpem max UCB\ [ECB, (3.4)

8k2 aff(i; j) 8h2he(j)

ECB-union approach dominates the UCB-only approach (Lee et al., 1998) and provides a
reasonably precise bound on preemption cost especially when we have nested preemptions. But
both the UCB-union and the ECB-union approach are incomparable and can lead to overestimation
in different situations as shown in (Altmeyer et al., 2012). To reduce this overestimation Altmeyer
et al. (Altmeyer et al., 2012) proposed two multi-set variants of these approaches i.e., UCB-union

34 Related Work

multi-set and the ECB-union multi-set approach. These multi-set versions of the UCB-ugion and
ECB-union approaches additionally take into account the maximum number & j(R3 = Qef R

that each higher priority taskj can release during the response timetjoénd the Wn]behpf
preemptions of each low and intermediate priority task pyi.e., Ej(R)Ex(R) = Qef Rk % :

The ECB-Union Multi-set approach usgfﬁb ™to represent the CRPD cost due to aII jobs of task

t; executing during the response time of tasMNhereg?ij Mis given as

(Rc)

= Omem a M! (3.5)
=1

gecb m —
i

WhereM' is thelth-largest value itM, WhereM is a multi-set composed of multiple sets of
ECBs and UCBs of the corresponding tasks de ned as follows:

M= | [UCB\ [ECB, (3.6)

8k2aff(i;j) Ej(RJEk(R) 8h2he(j)

For the UCB-Union multi-set approach the CRPD cost is upper boundg\;'f'b)V‘ de ned as
follows:
g ™= dmem MO\ MEFP (3.7)

whereMi‘;’jCb andMﬁjCb are multi-sets de ned as

0 1
[[
Msb = @ UCBA (3.8)
8k2aff(i;j) Ej(RJE(R)
and [
Mi(?lpb: ECB (3.9)
Ej(R)

Here, Mi‘jfb is a multi-set comprising sets of UCBs of all low and intermediate priority tasks
aff(i; j) addedE;j(R¢)Ex(R)) times, i.e., the maximum number of timescan preempt eacty
during the response time of. Similarly, Mer is a multi-set comprising the set of ECBs of all
jobs oft; executing within the response tlmetqn‘ The nal value of the preemption cogffb m
comes from the intersection of both these multi-sets.

The multi-set approaches, i.e., UCB-Union multi-set and ECB-union multi-set, dominate their
union counterparts, i.e., UCB-union and ECB-union respectively. However, it is demonstrated
in (Altmeyer et al., 2012) that the UCB-union and ECB-union multi-set approaches are incom-
parable. Consequently, a combined approach is proposed in (Altmeyer et al., 2012) that uses
min(g® ™ gf° ™ as an upper bound on the CRPD.

In a recent work, Markovic et al. (Markaviet al., 2020a) has shown that the combined ap-
proach, i.e., the combination of UCB-union multi-set and ECB-union multi-set, may result in
over-approximating the CRPD cost by accounting for multiple preemption combinations which
cannot occur simultaneously during runtime. Markovic et al. (Marketial., 2020a) instead pro-

3.2 Inter-task Cache Interference Analysis 35

poses an approach based on preemption partitioning, i.e., to divide all possible preemptions that
can occur in a time interval of lengthinto partitions of single-job preemptions. Consequently,
CRPD bound for each individual preemption is then computed using the most precise method.
This leads to signi cant improvements in taskset schedulability.

3.2.2 CRPD Computation for Single-level Set-associative LRU Caches

The derivation of the set of UCBs and ECBs of tasks is similar for both direct-mapped and set-
associative caches. However, the main challenge in the computation of CRPD for set-associative
LRU caches is to safely compute the intersection between the UCBs and ECBs. This mainly
because with set-associative LRU caches a single ECB of the preempting task can lead to a chain
of misses of multiple UCBs of the preempted task, which is not the case for direct-mapped caches.
One solution to this problem was proposed by Burguiere et al. (Burguiére et al., 2009) by assuming
that all UCBs of the preempted task that map to a cache set will be evicted by any ECB of the
preempting task that map to the same cache set. A similar approach is proposed in (Altmeyer
etal., 2012; Markow et al., 2020a) to handle set-associative LRU caches. Indeed, the approaches
proposed in (Burguiére et al., 2009; Altmeyer et al., 2012; Maiketial., 2020a) to compute
CRPD for set-associative cache are safe but overly pessimistic. The only existing approach that
computes a precise bound on the CRPD for set-associative LRU caches is proposed in (Altmeyer
etal., 2010). Instead of only using the set of UCBs and ECBs of tasks to compute CRPD, Altmeyer
et al. (Altmeyer et al., 2010) introduced the notiorre@diliencede ned as follows.

De nition 3.8 (Resilience (Altmeyer et al., 2010)T he resilience of a memory block m at program

point P is the maximurdisturbancehat m can endure before being evicted from the cache. This
disturbance represents the number of ECBs of preempting task(s) that may be mapped to the same
cache setas m.

The Resilience of a cache blookat a program poin® is given by
resp(m) = (CacheAssociativity 1) maxage>(m) (3.10)

wheremaxage-(m) is themaximunLRU-age ofmat program point P, i.e., the maximum number
of accesses to the same cache sahdiom the last use o (before or at program poirR) to
the next access tm after P (Altmeyer et al., 2010). For example, assuming memory blogks
my, My, M. andmy in Figure 3.5 are all accessed by taskand that they are all mapped to the
same cache set, the maximum LRU-age of U@Bat program point P, i.emaxage(m), is 4
and therefore for a set-assocative cache with 8-waysdacheAssociativity 8, its resilience
accordingto Eq. (3.10)i8 1) 4= 3.

For every program poirf, the maximum LRU-age of a UCBi can be calculated by using a
forward analysis to nd the maximal number of accesses from the last usg@program point
P and a backward analysis to nd the maximum number of accesses from progranPoitite

36 Related Work

next access tm. The maximum LRU-age ah at program poinP is then bounded by the sum of
the bounds returned by both analyses (see (Altmeyer et al., 2010) for a detailed description).

Figure 3.5: lllustration of the maximum LRU-age of a U@B. The dashes (from left to right)
denote the sequence of memory accesses during the execution ff task

In set-associative caches, each cache sah be analyzed independently. Consequently, the
set of ECBs and UCBs of tasks can be computed per cache set. For any cashié &B’
denote the set of UCBs of the preempted tgsk s and ECB? denote the set of ECBs of the
preempting task irs, then, under the resilience-analysis, the CPRD suffered by & takle to
a single preemption by a higher priority taskin a cache ses is given byg:>*, whereg > is
computed as follows:

g5%°= dmem UCE'nfmijresm) j ECBjjg (3.11)

wherereqm) is the resilience of a memory blook of taskt;. Note that the CRPD cost computed
using Equation (3.11), does not include the UCBs of tagkat may remain cached even after a
preemption by task; (i.e., those for whicmeg(my) j ECB?j). Finally, the total CRPD task can
suffer due to a single preemption by tagks computed using Equation (3.11) for every set in the

cache, i.e.,
o ress

di°=ag; (3.12)
8s
Note that resilience analysis can be incorporated into ECB-union and ECB-union multi-set based
approaches as demonstrated in Altmeyer's dissertation (Altmeyer, 2013).

3.2.3 CRPD Computation for Multi-level Caches

Computation of CRPD poses additional challenges when considering caches with multiple lev-
els. These challenges stem from cache sharing between tasks at different cache levels with the
execution of one task potentially evicting memory blocks previously loaded into one or more
cache levels by other tasks. CRPD analysis for single-level caches has been extensively stud-
ied (Lee et al., 1998; Tomiyama and Dutt, 2000; Altmeyer et al., 2010, 2012; Lv et al., 2015).
However, due to added complexity of analyzing cache con icts at multiple cache levels only few
approaches (Chattopadhyay and Roychoudhury, 2014; Zhang and Koutsoukos, 2016) have been
presented in literature that focus on CPRD analysis for multi-level caches. Chattopadhyay et
al. (Chattopadhyay and Roychoudhury, 2014) has proposed a CPRD analysis for multi-level non-

3.2 Inter-task Cache Interference Analysis 37

inclusive caches whereas Zhang et al. (Zhang and Koutsoukos, 2016) presented a CRPD analysis
considering inclusive multi-level caches.

In both works (Chattopadhyay and Roychoudhury, 2014; Zhang and Koutsoukos, 2016), au-
thors show that the existing analysis methods used for the computation of CRPD for single-level
caches cannot be directly used for multi-level caches mainly due todirect effect of preemp-
tion that exists in multi-level caches.

De nition 3.9 (Indirect Effect of Preemption)indirect effect of preemption refers to an increase

in the intra-task cache interference, i.e., cache contention between different code segments within
a task, at a lower cache level (i.e., L2 cache) due to preemptions that evict content from a higher
cache level (i.e., L1 cache).

To illustrate, consider the example scenario shown in Figure 3.6 that shows a sequence of
memory references during the execution of a task (from left to right). The top half of Figure 3.6
shows the contents of L1 and L2 caches in case of a non-preempted execution whereas the bottom
half of Figure 3.6 shows the contents of L1 and L2 caches in case of a preempted execution. All
memory blocks used by task i.e., memory blocks A, B anah, are mapped to same L1/L2 cache
set. We can see that in case of non-preempted execution, the second reference to memory block
mis a L2 cache hit. However, due to preemption at program point P (which only evicts memory
block A from L1 cache) the same reference to memory biloakesults in a L2 cache miss. For
the scenario shown in Figure 3.6, memory blocks evicted indirectly from the L2 cache due to
an increase in cache con icts at L2 caused by the eviction of memory block A from the L1 cache.
This phenomenon is termed as the indirect effect of preemption.

The indirect effect of preemption happens due to memory blocks that are accessed from the
higher level cache, e.g., L1, during the normal (i.e., non-preempted) execution of a task but are
accessed from the lower level caches, e.g., L2, after the preemption. Since, lower level caches are
only accessed upon a cache miss from a higher level cache, i.e., L2 is only accessed when there is
a L1 miss, the indirect effect of preemption results in increasing the number of accesses to lower
cache levels, e.g., L2, which may result in increasing intra-task cache interference in those cache
levels. It has beenidenti ed in (Chattopadhyay and Roychoudhury, 2014; Zhang and Koutsoukos,
2016) that the traditional UCB concept used to analyze CRPD in single-level caches is hard to use
in case of multi-level caches due to indirect effect of preemption. This is mainly because in single-
level caches, when computing CRPD due to preemption at a program point P, the analysis only
checks the rst access of a memory blatk(i.e., a UCB at P) after preemption. If the rst access
to m after preemption is a cache miss, the cost of reloadidigpm the main memory is added to
the CRPD cost. However, in multi-level caches, the rst accesa &fter preemption may result
in a cache hit but one or more next accesseu &idter preemption may result in a cache miss due
to indirect effect of preemption. Therefore, for the computation of CRPD for multi-level caches,
Chattopadhyay et al. (Chattopadhyay and Roychoudhury, 2014) introduced the notion of UCBs in
the context of two-level caches and de ned it as

38 Related Work

Figure 3.6: lllustration of the indirect effect of preemption suffered by a memory btodle to
eviction of another memory block by preemption. Both L1 and L2 caches are assumed to be
two-way set-associative having only one cache set and the cache replacement policy is LRU.

De nition 3.10 (Useful Cache Blocks (UCBs) in a two-level cache (Chattopadhyay and Roy-
choudhury, 2014))In a two-level cache, a memory block.nof taskt; is considered a UCB at
program point P if (i) m; is cached at P in either L1, L2 or both and (ii)mis reused at program
point Q that must be reached from P without eviction @f from both L1 and L2 caches.

Based on the above de nition authors in (Chattopadhyay and Roychoudhury, 2014) presented
an analysis to determine the set of UCBs of tasks for two-level non-inclusive caches. This set of
UCBs along with the set of memory references classi ed as L2-hits by the intra-task cache analysis
is then used to compute the CRPD. Based on the work in (Chattopadhyay and Roychoudhury,
2014), Zhang et al. (Zhang and Koutsoukos, 2016) presented an analysis to compute CRPD for
multi-level inclusive caches. The analysis in (Zhang and Koutsoukos, 2016) identi es additional
challenges in the computation of CRPD due to cache inclusion policy and use the naisefudf
positive referencéUPR) to compute CRPD.

De nition 3.11 (Useful Positive References (UPRs)he set of UPRs of a task at any program
point P is given by the set of memory blocks whose references are positively classi ed, i.e., AH or
PS, by the intra-task cache analysis w.r.t program point P.

The analysis in (Zhang and Koutsoukos, 2016) derives the set of positive references that can
be considered as UPRs at a program point P, i.e., the references that can lead to additional cache
misses after a preemption at P, and bound the number of times each of them may act as a UPR.
This information is then used to upper bound the CRPD any task may suffer due to preemption at

3.2 Inter-task Cache Interference Analysis 39

any program point P. The main idea of the CRPD analysis presented in (Zhang and Koutsoukos,
2016) is similar to the UCB-only approach (Lee et al., 1998) as it also only use the UPRs of the
preempted task to bound the CRPD. Due to our focus on multi-level non-inclusive caches, we will
present a detailed CRPD analysis of (Chattopadhyay and Roychoudhury, 2014) in Chapter 8.

3.2.4 From CRPD to Timing Analysis

As discussed in Section 3.1, intra-task cache interference analysis is considered part of the WCET
analysis and the resulting WCET bounds of tasks also account for the intra-task cache interfer-
ence. However, the inter-task cache interference or CRPDs also needs to be considered when
performing the timing analysis of tasks. Different approaches have been proposed in literature to
account for CRPDs in WCET or WCRT of tasks. In (Ward et al., 2014), ward et al. discussed
the task-centric and preemption centric approaches. In task-centric approaches (Schneider, 2000;
Altmeyer and Burguiére, 2011), the CRPD cost of one preemption multiplied with the possible
number of preemptions a task may suffer is added to the WCET of the preempted task. In con-
trast, in preemption centric approach (Basumallick and Nilsen, 1994) an upper bound on the CRPD
is added to the WCET of the preempting task. Ward et al. (Ward et al., 2014) showed that task-
centric approaches can be very pessimistic when the number of tasks and effectively the number
of possible preemptions are high. Whereas, preemption-centric approaches can results in overes-
timations when tasks have highly variant working set sizes (WSSs). To remove the pessimism in
task-centric and preemption-centric approaches Ward et al. (Ward et al., 2014) proposed a mixed-
approach where CRPD is accounted for in the WCET of both the preempting and the preempted
task. However, accounting for CRPDs in the WCET of a task can result in pessimistic WCET
bounds which in turn will result in low processor utilization. Busquets-Mataix et al. (Busquets-
Mataix et al., 1996) instead proposed an alternate approach to disintegrate the CRPD and the
WCET of tasks. In (Busquets-Mataix et al., 1996) authors compute an upper-bound on the CRPD
due to one preemption from a higher priority taglof a low priority taskt; using Equation. (3.1).

The resulting value of the CRPD is then added into the classical WCRT analysis given by Joseph
and Pandya (Joseph and Pandya, 1986). The resulting WCRT based schedulability analysis is
given by the following equation:

R.k*l: G+ a ?‘k (Ci+ a7 (3.13)
8j2hp(i) ')

whereg,(;’}‘e accounts for the CRPD one job of taskmay suffer due to preemption by a higher
priority taskt . Altmeyer et al. (Altmeyer et al., 2011) also used the same WCRT analysis but
bounded the value of CRPD using Equation. (3.4). Essentially, the WCRT formulation given by
Equation (3.13) can be used by any analysis that explicitly considers the CRPD each job of task
tj may cause on tagk. However, a disadvantage of analyses by Equation (3.13) is that the worst-
case CRPD cogi’®is always assumed each time tasks preempted by taskj. As a result,
some cache evictions can be included multiple times.

40 Related Work

Staschulat et al. (Staschulat et al., 2005) used a slightly different formulation of the schedula-
bility analysis as they already accounted for the number of possible preemptions of each task.
Instead of computing the CRPD cost due to one preemption ofttably taskt;j, the work
in (Staschulat et al., 2005) computes an upper bound on the total CRPBD tasly suffer due
to all jobs of task j that may execute in a time interval of lendgthThe resulting CRPD bound
is then incorporated into the schedulability analysis. Similar to (Staschulat et al., 2005), Altmeyer
et al. (Altmeyer et al., 2012) and Markovic et al. (Markpei al., 2020a) also used the same for-
mulation of WCRT analysis when using the multi-set based approaches that compute CRPD of
tasks over a given time interval. The schedulability analysis proposed by (Staschulat et al., 2005;
Altmeyer et al., 2012) when accounting for CRPDs in the WCRT analysis is given as follows:

R*t=c+ a Fﬁk Ci+ a g (3.14)
8j2hp(i) ') 8j2hp(i)
whereg’;‘}“' is an upper bound on the total CRPD tasknay suffer due preemptions by a higher
priority taskt j in a time interval of length. In general, Equation (3.13) and Equation (3.14) both

can be used to incorporate CRPDs into the schedulability analysis depending the method used to
compute the CRPD cost.

3.3 Other Approaches to Handle Intra- and Inter-task Cache Inter-
ference

The focus of this work is on the timing analysis techniques where caches are used without restric-
tions, however many approaches have been presented in literature to explicitly manage intra- and
inter-task cache behavior by using different methods such as cache partitioning, cache locking,
task layout optimization and enhanced scheduling models.

3.3.1 Cache Partitioning and Locking

Cache partitioning aims to eliminate potential inter-task cache con icts by partitioning the cache
between tasks. The cache is divided into several sets or partitions which might be of different
sizes. These partitions are then assigned either exclusively to different tasks or are shared between
a subset of tasks to reduce inter-task cache interference. Different approaches have been presented
in literature for cache partitioning based on hardware (Kirk and Strosnider, 1990; Chousein and
Mahapatra, 2005) and software based implementations (Wolfe, 1993; Mueller, 1995; Liedtke et al.,
1997; Suhendra and Mitra, 2008). However, software-based cache partitioning is usually preferred
due to its several advantages over the hardware based cache partitioning (Mueller, 1995). Software
based cache partitioning approaches are either implemented in the OS or in the compiler. First soft-
ware based approach to cache partitioning was proposed by Wolfe (Wolfe, 1993). His approach
was similar to the page coloring approach later proposed by Liedtke et al. (Liedtke et al., 1997).
Page coloring is the most commonly used software based cache partitioning technique (Mueller,

3.3 Other Approaches to Handle Intra- and Inter-task Cache Interference 41

1995; Liedtke et al., 1997; Guan et al., 2009). It uses virtual to physical address translation at the
OS-level to map page addresses to prede ned cache regions to avoid overlap between cache space.
Another approach that uses page coloring to reduce inter-task cache interference was presented by
Liedtke et al. (Liedtke et al., 1997). When using cache patrtitioning, usually the main goal is to

nd the number of partitions and their respective sizes. The ideal scenario is where each task is
assigned its own private cache partition, i.e., to entirely eliminate inter-task cache interference.
However, this is usually not possible due to limited cache space. On the other hand, if tasks are
allocated smaller amount of cache space w.r.t the sizes of the tasks, the intra-task cache interfer-
ence may increase leading to an increase in the WCET of tasks. This is the reason why cache
partitioning based approach are usually subjected to a trade off between intra- and inter-task cache
interference (Kim et al., 2013).

Busquets et al. (Busquets-Mataix et al., 2000) proposed a cache partitioning technique that al-
lows some tasks to share a cache partition, whereas some tasks are allocated individual partitions.
They based their cache partition assignment on task priorities, i.e., higher priority tasks will be
assigned to same-sized private partitions, whereas the remaining tasks with lower priorities will
share one common partition. Plazar et al. (Plazar et al., 2009) proposed an approach to cache
partition size selection with the goal of minimizing the total processor utilization. Cache parti-
tioning problem was considered as an optimization problem by Bui et al. (Bui et al., 2008). The
authors used genetic algorithms to minimize the worst-case system utilization such that the sum
of all cache partitions cannot exceed the total cache size. Altmeyer et al. (Altmeyer et al., 2014,
2016) presented a cache partitioning algorithm that is optimal under certain cache-modeling as-
sumptions. However, the authors concluded that the trade off between intra- and inter-task cache
interference often favors sharing the cache rather than partitioning it.

Cache locking refers to the idea to prevented some cache lines from being overwritten once
loaded into the cache. It is a hardware feature which is not available in all modern processors.
Cache locking provides a predictable and controllable access to shared caches hence, improving
the performance of real-time applications. A number of hardware and software based approaches
have been proposed in literature that use the cache locking mechanism. The concept of cache
locking in the context of hard real-time system was rst introduced by Campoy et al. (Campoy
et al., 2001). The authors proposed a genetic algorithm that selects the best instructions of tasks
to be locked in the cache such as to minimize the WCET of tasks. Their approach was designed
for preemptive systems and the results showed that their approach calculates the response time
of tasks with negligible overestimation. Puaut and Decotigny (Puaut and Decotigny, 2002) pre-
sented two algorithms that use the memaory access patterns of tasks to determine which instructions
should be locked in the cache. Their approaches were designed to minimize intra-task and inter-
task cache interference. The experimental results show that the algorithms presented by Puaut
and Decotigny (Puaut and Decotigny, 2002) have a much better performance in comparison to
the static cache analysis. Puaut and Arnaud (Puaut and Arnaud, 2006) presented a dynamic cache
locking scheme. Basic blocks are extracted using the CFGs of tasks and these basic blocks are
then mapped to different regions in the cache. These regions can then be locked or unlocked based

42 Related Work

on different parameters used by the locking algorithm. Falk et al. (Falk et al., 2007) and Vera et
al. (Vera et al., 2003) proposed modi cations to the compiler to extract information regarding the
data/instruction access pattern by tasks. This information was then used to lock cache lines. Liu
et al. (Liu et al., 2009a,b) also extracted the information available at compile time to propose al-
gorithms to perform cache locking considering instruction caches. The objective was to minimize
the worst-case CPU utilization by using both static and dynamic cache locking. The approaches
presented in (Liu et al., 2009a,b) are applicable to both single- and multi-tasking systems and show
a better performance than the approach presented in (Falk et al., 2007). An ILP based dynamic
cache locking scheme was presented by Aparicio et al. (Aparicio et al., 2011). The idea is to lock
the mostly used cache lines into the instruction cache at every context switch. Their approach
targeted HRT systems and deals with both intra- and inter-task cache interferences.

In more recent works, Ding et al. (Ding et al., 2014) highlighted the limitations of region-
based dynamic locking and proposed a partial cache locking strategy that can exploit the bene ts
of the unlocked cache lines. The key idea of this work was the notion of loop-driven locking,
i.e., given a series of nested loops, each line selected for locking at an inner loop can also be
unlocked/locked at the exit/entry point of any of the outer loops. The approach presented by Ding
et al. (Ding et al., 2014) result in a better performance in comparison to the region-based dynamic
locking as proposed by Puaut and Arnaud (Puaut and Arnaud, 2006). The rst work to evaluate
the combination of cache partitioning and locking using a real hardware and OS in the context of
multi-core real-time systems was presented by Mancuso et al. (Mancuso et al., 2013). They use a
pro ling mechanism to analyze the memory access pattern of tasks and obtain the most frequently
accessed memory pages. Page coloring is then used to optimize the task placement in the cache.
Furthermore, cache locking by-line, by-master and by-way was then used to provide intra- and
inter-core cache isolation between tasks. Their approach was implemented on the Linux kernel
and was evaluated on the actual hardware, i.e., ARM Cortex-A9. The work in (Mancuso et al.,
2013) was extended and ported to Freescale P4080 in (Mancuso et al., 2015).

3.3.2 Task Layout Optimization

The position of a memory reference in the main memory in uences its location in the cache. Task
layout optimization techniques focus on reducing the intra- and inter-task cache interference by
modifying the position of code segments within a task and by changing the layout of entire task
in the main memory without necessarily creating cache partitions. To reduce intra-task cache
conicts, i.e., decrease in the number of cache misses during the execution of a task in isolation,
Tomiyama and Yasuura (Tomiyama and Yasuura, 1997) proposed a code placement technique.
The problem is formulated as an integer linear programming (ILP) problem, by which an optimal
placement of task's code segment in cache is found. Focusing on intra-task cache interference,
Kowarschik and Weiss (Kowarschik and Weif3, 2003) also proposed several data layout optimiza-
tion techniques such as loop interchange, etc., to increase locality and reduce the number of cache
misses. Lokuciejewski et al. (Lokuciejewski et al., 2008) proposed different algorithm aiming to
have tighter WCET bounds. They focused on functions that are frequently called by the task and

3.3 Other Approaches to Handle Intra- and Inter-task Cache Interference 43

tried to allocate them contiguous space in the main memory. In particular, they use a greedy algo-

rithm and a heuristic to achieve such a goal. A cache-aware code positioning approach has been
proposed by Falk and Kotthaus (Falk and Kotthaus, 2011). Their goal was to reduce intra-task

cache interference by building con ict graphs between different code segments of a task. Tasks

are split in fragments and a greedy approach-based heuristic is used to position different fragments
in the main memory. Mezzetti and Vardanega (Mezzetti and Vardanega, 2013) also proposed a
cache-aware approach that optimizes procedure positioning to favor incremental development for
industrial needs.

Focusing on inter-task cache con icts, Gebhard and Altmeyer (Altmeyer and Gebhard, 2007)
proposed an approach to optimize task layout in memory to improve task set schedulability by
minimizing the inter-task cache con icts. Their approach showed that with different task layouts
in memory inter-task cache interference can be signi cantly reduced. However, their approach
to bound the CRPDs was pessimistic since all ECBs of a task were treated as UCBs. Lunniss
et al. (Lunniss et al., 2012) later improved the work done in (Altmeyer and Gebhard, 2007) by
using a more tighter approach for CRPD calculation. They proposed a simulated annealing based
approach to optimize task layout in memory to reduce the inter-task cache interference and ef-
fectively improve schedulability. It has been identi ed in (Altmeyer et al., 2014, 2016) that an
optimized layout of tasks in memory can outperform an optimal cache partitioning approach in
different scenarios.

3.3.3 Enhanced Scheduling Models

To reduce the impact of preemptions on task's timing propetineged-preemptivescheduling
techniques have also been proposed (Wang and Saksena, 1999; Baruah, 2005; Burns, 1993). Lim-
ited preemption models attempt to minimize preemption overheads by reducing the number of
allowed preemptions and/or allowing preemption at program locations where the effect of preemp-
tion is minimized. Limited preemptive scheduling can be subdivided into different streams, i.e.,
preemption thresholds scheduling (Wang and Saksena, 1999), xed preemption points schedul-
ing (Burns, 1993) and deferred preemption scheduling (Baruah, 2005). In preemption threshold
scheduling, each task is assigned a regular priority and a preemption threshold, and the preemption
is allowed to take place only when the priority of the arriving task is higher than the threshold of the
running task. In xed preemption point scheduling, a task implicitly executes in non-preemptive
mode and preemption is allowed only at prede ned locations inside the task code. In deferred
preemption scheduling, for each task the longest interval that can be executed non-preemptively is
speci ed, a higher priority task can only preempt a lower priority task after the nalization of this
time interval. Historically, limited preemptive scheduling methods only aim to increase schedula-
bility by controlling preemptions without considering the preemption cost, e.g., CRPD. However,
under the limited preemptive scheduling paradigm, there exist few approaches in literature that
focus on incorporating intra- and inter-task cache interference into schedulability analysis.
Marinho et al. (Marinho et al., 2012a,b) computed an upper-bound on the inter-task cache in-
terference that any task may suffer under deferred preemption scheduling. A function based on

44 Related Work

task's execution ow is used to compute the potential inter-task cache interference at a given pro-
gram point during the execution of task. The resulting cost is then incorporated into the WCET
of task. Bril et al. (Bril et al., 2014) presented a schedulability analysis for preemption thresh-
old scheduling that also accounts for inter-task cache interference. The techniques presented
in (Altmeyer et al., 2012) to bound inter-task cache interference under fully preemptive schedul-
ing are adapted to preemption threshold scheduling. Under xed preemption point scheduling,
Ramaprasad and Mueller (Ramaprasad and Mueller, 2006) proposed an approach to computer
inter-task cache interference at different preemption points and due to preemption patterns in fully
preemptive periodic tasks. They also proposed a WCRT analysis (Ramaprasad and Mueller, 2008)
that accounts for CRPD suffered by periodic tasks having only one non-preemptive region when
scheduled using xed preemption point scheduling. The main challenge in xed preemption point
scheduling is the selection of preemption points. To this end, several preemption point selection
algorithms have been proposed by Bertogna et al. (Bertogna et al., 2011), Peng et al. (Peng et al.,
2014) and Cavicchio et al. (Cavicchio et al., 2015). Cavicchio et al. (Cavicchio et al., 2015) iden-

ti ed the relationship between inter-task cache interference and preemption point selection and
proposed different algorithms for preemption point selection that reduces inter-task cache inter-
ference. In his PhD dissertation (Markdy2020), Filipe Markovic has exclusively worked on
tightening the CRPD bound for tasks scheduled using xed preemption point scheduling produc-
ing several publications (Markovic et al., 2017; Markoet al., 2018, 2020b).

3.4 Memory Bus Contention Analysis

Several works have been presented in literature to bound additional delays that impact task execu-
tions due to memory bus contention and integrate these delays into schedulability analyses (Maiza
etal., 2019).

In one of the earlier works Rosen et al. (Rosen et al., 2007a) proposed a TDMA based bus
arbitration policy to bound memory bus contention. A static schedule is used to allocate different
time slots to tasks that need to access the bus. A dedicated memory directly connected to the
bus arbiter is used to store this schedule. The approach resulted in a reasonable performance
since it prevented any deadlines miss due to contention at the bus. However, the approach used
is not exible and has many pitfalls, i.e., it assumes a table-driven arbiter which are typically not
available in modern processors and it also needs to know the workload of tasks running on the
system apriori, in order to avoid situations where the bus contention increases the memory access
latency.

Schliecker et al. (Schliecker et al., 2010) proposed an event based model to bound the shared
resource (i.e., memory bus) contention. In this approach, tasks that are concurrently executing on
the processor can access the global resources using events that de ne the maximum and minimum
access to a resource in a given time window. Every task is assigned a static priority and the time
to make a resource transaction is bounded. Therefore, the worst-case interference of a task can be
bounded by considering the interference from all its higher priority tasks. The problem with this

3.4 Memory Bus Contention Analysis 45

analysis is that it can overestimate the number of requests to a resource, since it always considers
a minimum time interval between two accesses to a resource.

Kelter et al. (Kelter et al., 2011) and Chattopadhyay et al. (Chattopadhyay et al., 2010) pro-
posed a WCRT analysis techniques to bound memory bus contention considering a TDMA bus
and a L1 instruction cache. However, these approaches have limited applicability as they assumed
separate buses and memories for both code and data which is uncommon in commodity hardware.
Moreover, these methods assume non-preemptive scheduling and therefore does not account for
inter-task cache interference.

Schranzofer et al. (Schranzhofer et al., 2010, 2011) presented a resource adaptive framework
for the WCRT analysis of real-time tasks. In their work, the authors proposed a task model in
which tasks are composed of superblocks, with each superblock having a unique entry and exit
point. These superblocks execute in sequence with each superblock having a WCET and a worst-
case number of access requests to a shared resource. Furthermore, these superblocks are assumed
to have different execution phases, i.e., acquisition, execution and replication phases. Based on the
operation of these phases different task execution models have been presented. However tting
tasks into these models is a cumbersome task. For example, the dedicated model requires to know
apriori the memory access patterns of tasks in order to prefetch the required data for the compu-
tation phase. This requires the communication phases to be synchronized with the availability of
the bus slot for that task, which may not hold even for a predictable arbiter employing TDMA.

In a similar work, Pellizzoni et al.(Pellizzoni et al., 2010) proposed an approach that derives
arrival curves for the memory access patterns of tasks and compute an upper bound to the mem-
ory contention delay incurred. Their approach is based on the concept that tasks are composed
of superblocks that are executed in pre-assigned time slots. Experimental results show that this
approach can be used to bound the memory delay incurred by tasks however, with large number
of tasks the proposed model limits the applicability of the solution.

Dasari et al. (Dasari et al., 2011a) presented an analysis to bound the maximum number of
bus requests that can be made by a task in a given time interval using performance counters.
Consequently, the bus contention suffered by the tasks is modeled as an additional term in the
WCRT analysis. This work was later extended in Dasari et al. (Dasari et al., 2016). Although
their analysis provides reasonably precise estimates on the memory access demand of tasks but, it
uses non-preemptive scheduling and assumes partitioned caches and therefore does not take cache
related effects into account. Huang et al. (Huang et al., 2016) also presented a WCRT analysis that
accounts for shared memory bus contention that uses a xed-priority arbitration scheme. Their
analysis has a speedup factor of 7 when used with a simple task allocation algorithm. However,
their model does not consider the impact of caches on the memory access demand of tasks which
may potentially lead to optimistic results. Davis et al. (Davis et al., 2018b) explicitly modeled
interference on cores, caches, memory bus and the main memory in a multicore system. The
analysis in (Davis et al., 2018b) also accounts for inter-task cache interference, i.e., CRPDs, when
bounding memory bus contention that can be suffered by the tasks under different bus arbitration
policies.

46 Related Work

3.5 Different Perspective of Caches

Most of the state-of-the-art approaches that focus on analyzing the impact of caches on the timing
analysis of tasks look at the negative perspective of caches, i.e., due to inter-task cache interfer-
ence or CRPDs that have a negative impact on schedulability. However, caches can also have a
positive impact on schedulability duee-useof cached content between different code segments
within a task or between different job executions of the same task. This cache re-use has been
considered in the existing analysis when computing the WCET of tasks in the form of persistence
analysis (see Section 3.1.3) however, the notion of cache re-use can also be used across different
job executions of tasks. To illustrate, consider Figure 3.7 that depicts the same example schedule
as shown in Figure 3.4 but presents a different perspective. In Figure 3.7, while the red boxes show

Figure 3.7: Example schedule to highlight re-usable cache blocks between different jobstpf task

cache blocks of task that needs to be reloaded from the main memory due to evictions by the
preempting task;j, i.e., CRPD, the green boxes show cache blocks oftaskat remain in the
cache after the execution of rst job of. All cache blocks represented using green boxes will be
already available in the cache when second and third job ofttastart executing. Consequently,
these existing cache blocks can be reused by the second and third job of, takch results in
reducing the number of main memory accesses generated by those jobs. This reduction in main
memory accesses may also lead to a reduction in the execution time of second and third job of task
tj eventually, tightening the WCRT of task

There exist few works in the state-of-the-art that exploit the observation shown in Figure 3.7.
In one of the earlier works, Nemer et al. (Nemer et al., 2007, 2008) presented analyses for both
direct-mapped and set-associative caches that consider the cache re-use between different jobs
of a task and showed that inter-task cache reuse can have a signi cant affect on schedulability.
Their approaches are based on the computation of entry and exit cache states after the execution
of each job of a task that leads to a set of memory accesses that must result in cache hits due
to previous instances of a task. However, their approaches are limited to non-preemptive task
sets under static scheduling and do not apply to preemptive systems with commonly used priority
based scheduling schemes. Recently, in his PhD dissertation (Tessler, 2019), Corey Tessler has
highlighted the bene ts of cache re-use between different threads of a multi-threaded task. In the

3.5 Different Perspective of Caches 47

context of multi-thread real-time systems, Tessler et al. (Tessler and Fisher, 2016, 2018, 2019) has
made several important contribution with focus on inter-thread cache bene ts.

In the works of Nemer et al. (Nemer et al., 2007, 2008) and Tessler et al. (Tessler and Fisher,
2016, 2018, 2019) the basic idea is the same, igos#iveperspective of caches, which is also the
main focus of this thesis. However, we consider a more generic system model, i.e., xed-priority
fully preemptive scheduling, with single threaded real-time tasks. We will start by exploring the
impact of intra-task cache re-use on the inter-task cache interference suffered by the task consid-
ering single-level direct mapped caches. We will then extend our analysis to set-associative LRU
and multi-level caches. Finally, we will demonstrate how a tighter bound on the inter-task cache
interference due to inter-task cache reuse may impact the memory bus contention in multicore
systems.

Part |

Analysis of Single-level Direct-mapped
Caches

48

Chapter 4

Using Cache Persistence to Improve the
Bounds on Inter-task Cache
Interference

As discussed in Chapter 3 (Section 3.2) many different approaches have been presented in the
state-of-the-art to bound inter-task cache interference. These approaches (Busquets-Mataix et al.,
1996; Lee et al., 1998; Tomiyama and Dutt, 2000; Staschulat et al., 2005; Tan and Mooney, 2007,
Altmeyer et al., 2011, 2012; Markaviet al., 2020a) use the set of ECBs and UCBs of tasks to
bound inter-task cache interference (or more speci cally CRPD) and incorporate it into the WCRT
analysis. However, all these approaches may result in pessimistic WCRT bounds due to the fact
that they only consider the effect of preemptions on the memory access demand of the preempted
task, but not therariation in memory access demand of the preempting tasks. Instead, they all
assume that every job of a higher priority tagkoreempting a lower priority task will ask for

its maximum memory access demand, i.e., its worst-case memory access demand in isolation.
Although this may be true for the rst job released by the preempting taskubsequent jobs of

tj may re-use most of the data and instructions that were already loaded in the cache during the
execution of its previous jobs (e.g., see Figure 3.7).

In this chapter, we have addressed this issue by proposing a novel analysis that captures the re-
use of cache blocks between job executions, to reduce the negative impact of caches on the WCRT
bound. Our approach is orthogonal to state-of-the-art methods used for CRPD calculations and can
be used independently with any of the methods described in Section 3.2. The main contributions
made in this chapter are as follows:

1. We introduced the concept pérsistent cache blockPCBSs) in the context of WCRT analy-
sis. PCBs are cache blocks that, once loaded into the cache bytavdkkever be evicted
whent; runsin isolation This concept allows us to capture the re-use of cache blocks be-
tween executions of the same task and reduce the memory access demand for subsequent
jobs of a task, making its memory access demaariable,

50

4.1 Assumptions on the System Model 51

2. A cache-persistence-aware WCRT analysis for xed-priority preemptive systems that ex-
ploits the variable memory access demand of preempting tasks to tighten the WCRT bound,

3. An extension of the proposed WCRT analysis to a multi-set approach that further improves
the WCRT bound by considering the total memory access demand of the preempting tasks
over a task’s response time rather than the worst-case memory access demand of each inde-
pendent job, and

4. An experimental evaluation showing that our cache-persistence-aware WCRT analysis re-
sults in up to 13% higher task set schedulability than state-of-the-art approaches.

4.1 Assumptions on the System Model

In addition to the general system model detailed in Chapter 2, in this chapter we make the follow-
ing assumptions on the system model.

» We consider a single-core platform with a single level (L1) direct-mapped instruction cache.

* We consider a task s& comprisingn sporadic constrained deadline tasks;t,;:::thg.
Each task; 2 Gis de ned by a triplet(C;; T;; Di), whereG; is the worst-case execution time
(WCET) oftj, T; is its minimum inter-arrival time an®; is the relative deadline of each
instance or job of;.

« In addition to the WCETC;, we use separate terms to measure the worst-case processing
demand and memory access demand of each taBk.denote the worst-case processing
demand oft;, i.e., it only accounts for execution requirementg oénd does not include
the time spent by; to perform memory operationdViD; denote the worst-case memory
access demand of any job of taski.e., the maximum time during which any job of
is performing memory operations. Note that the valu€ofD; andMD; are determined
assumingt; executes irisolation It obviously hold thaiC, > PD; andC; > MD;, but it
also holds tha€; PD; + MD;! sincePD; andMD; may result from different execution
scenarios of; along different execution paths (e.g., due to different inputs).

» The WCRT of task;, denoted byR;, is de ned as the longest time between the arrival and
the completion of any job df;.

« In this work, we consider that preemption costs only refer to additional cache reloads due
to those preemptions. Other overheads, e.g., due to context switches, scheduler invocations
and pipeline ushes are assumed to be included in the WCET.

» We assume a timing-compositional architecture (Hahn et al., 2015), i.e., the timing contri-
bution of memory overheads can be analyzed separately from other architectural features.

litis experimentally con rmed sinc€; PD;+ MD; for several benchmarks from the Méalardalen Benchmark
Suite (Gustafsson et al., 2010) that were analyzed using the Heptane (Hardy et al., 2017) static WCET estimation tool
for a MIPS R2000/R3000 architecture.

52 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

» The worst-case time to reload on cache block from the main memory is boundid by
The list of important symbols used in this chapter is provided in Table 4.1.

Table 4.1: List of important symbols used in Chapter 4

Symbol | Description

G Task set of siza

ti Task with index

G Worst-case execution time of taskin isolation

Ti Minimum inter-arrival time of task;

Di Relative deadline of task

R Worst-case response time of task

R Worst-case response time of taskcomputed using the CPRO-union approach
Rmul Worst-case response time of taskomputed using the CPRO multi-set approacgh
PD, Worst-case processing demand of tgska isolation

MD; Worst-case memory access demand of tagkisolation

MD; Residual memory access demand of tgsk isolation

MD;(t) | Total memory access demand of tagkn a time interval of length

hp(i) The set of tasks with higher priority than

heq(i) The set of tasks with higher priority thapincludingt;, i.e., hegi) = hp(i)[t;.
aff(i; j) | The set of tasks with priorities higher than or equal to the priority; ¢ihcluding
ti), but strictly lower than that df;. This set contains the intermediate priority
tasks, which may affect the response timéjobut may also be preempted by

dmem Time to reload one cache block from the main memory

MO, Memory overhead of task

Ex(R) The maximum number of jobs any taskcan release during the response tiRie
of taskt;

ECB The set of evicting cache blocks (ECBSs) of tagk

UCB; The set of useful cache blocks (UCBS) of task

PCB The set of persistence cache blocks (PCBs) of task
nPCB The set of non-persistence cache blocks (nPCBs) ofttask
MPeP Multiset containing set of PCBs of task

MEEP Multiset containing set of ECBs of all task in hgpnt

Miicb a1 Multiset containing set of ECBs of all task in €iffj)

Miicb " | Multiset containing set of ECBs of all task in Hgpnt |

rii Cache persistence reload overhead (CPRO) of one job of taBking the
response time of tagk.

Fji Total cache persistence reload overhead (CPRO) ofttaskan interval of length

while executing during the response time of task

ag:j(t) Total cache related preemption delay (CRPD) suffered byttaska time interval
of lengtht due to preemptions by a higher priority task2 hp(i) .

g’]}“' Upper bound on the total cache related preemption delay (CRPD) suffered by task
tj in a time interval of length due to preemptions by a higher priority task

t; 2 hp(i) .

r m“'(t) Upper bound on the total cache persistence reload overhead (CPRO) of task
an interval of length while executing during the response time of task

4.2 Problem De nition 53

4.2 Problem De nition

In this section, rst we provide a basic example to af rm the motivation behind the work presented
in this chapter. Later, using this example as a base we provide some useful de nitions that will be
used in rest of the chapter.

4.2.1 Motivational Example

As discussed in Chapter 3 (Section 3.2), the impact of a higher priorityt {ask the WCRT of
any lower priority task; can be estimated in a fairly accurate manner by analyzing the mapping of
UCBs and ECBs in the cache, i.e., by computing the CRPD caused biy;taskaskt;. However,
the impact oft; on the memory access demand pfs ignored during the WCRT analysis ot
Yet, higher priority tasks may often execute more than one job during the response time of a lower
priority task. Therefore, to accurately estimate the WCRT of a lower priority tastne must
consider the impact of the preempted tasks on the memory access demand of each job released
by the preempting tasks. In the literature, this is dealt with by assuming that the memory access
demand for each job of a higher priority taskexecuting within the response time of a lower
priority taskt; is always maximum, i.e, equal to the maximum memory access deiénd
Following that assumption, the total memory overh®� that must be accounted lby during
its worst-case response time is upper bounded by the following equation derived in (Altmeyer
et al., 2015; Davis et al., 2018b).
MO =MD+ & S (MDj+g) (4.1)
8j2hpi) '/
There is a signi cant level of pessimism involved in Equation (4.1), as we will demonstrate
using the example below.

Example 4.1. Consider the two taskg andt, (wheret 1 has a higher priority tharn ;) presented
in Figure 4.1. We assume that the timgeg needed to access the main memory and load a
memory block to the cache is equallidtime units and that the memory access demarnd ahd
t, are MD; = 60and MD, = 807, respectively. We also assume that memory bi@gkaccessed
by t1 contains data that must be updated at the beginning of the execution of each of its jobs.
Figure 4.1 depicts a possible schedule together with the evolution of the cache contents over time.
The memory blocks that must be loaded/reloaded from the main memory after each preemption or
resumption are shown in bold with a bigger font size in Figure 4.1.

Initially, the cache is empty ant} loads all its ECBs from the main memory as soon as it
starts to execute. When preemptd , for the rst time, it also loads all its ECBs into the cache
with a memory access demand of MP 60. Since there is an overlap between the mapping of
ECBs oft 1 and the mapping of UCBs % in the cachet ; evicts some of the useful cache blocks

2Note that because the same cache block may be used by several memory blocks of the santbeastrst-case
memory access demaiD; of t; may be larger than the number of ECB< pfultiplied by dmem

54 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

Figure 4.1: Schedule and cache contents for a tagksgt,g with C, = 100,C, = 400,MD; = 60,
MD, = 80, ECB;, = f5;6;7;8;9;109, ECB, = f1;2;3;4;5;6g9, UCB; = f6;7g, UCB, = f5;6g,
PCB, = f5;6;7;8;10g andPCB; = f 1;2g. The schedule assumes thateleases its rst job with
an offset of 100 time units.

oft,. Inturn, whert ; resumes its execution, it has to accountdgr = 2 dmem= 20, in order to

load cache block§5; 6g again from main memory. However, when the second jakh pfeempts

t2, one can notice that it no longer needs to reload all of its ECBs. In fact, most of the memory
blocks needed hty, are still in the cache. As a consequentemust only reload memory blocks

f 5; 69, which have been evicted by, as well as memory blodl®g that must be reloaded for each
new job execution df;. The same scenario happens for all jobs releasetlibgxcept the rst

one. The actual memory access demand for the second and thirdtjpisdfence much less (i.e.,

30) than MDy = 60, illustrating that it is not constant across all job executions.

In the presented example, memory blodks6; 7;8; 10g are calledpersistent cache blocks
(PCBs), as they are never evicted from the cache once loadedtwlexecutes in isolation. In
contrast, cache blodiOg is anon-persistent cache blo¢kPCB). nPCBs may be cache blocks that
are shared by several memory blocks of the same task, or simply data (e.g., sensor readings, value
on an input port, global shared data) that must be reloaded before each access. One must note that
PCBs and nPCBs are different from the notions of UCBs and ECBs in the sense that it does not
matter if they are referenced more than once during a single execution of a task. However, a PCB
must never be evicted from the cache by the task itself once it is fetched from main memory.

The state-of-the-art does not consider PCBs while calculating the memory overhead suffered
by a taskt; in case of preemptions. This results in pessimistic memory overhead evaluations and
hence pessimistic WCRT computations. This can easily be shown using the example in Figure 4.1.

4.2 Problem De nition 55

If t2's memory overhead is computed using Equation (4.1), one would get:
MO; = MD,+3 MD;+3 @1=80+3 60+3 20= 320

Equation (4.1) considers the worst-case memory access demandDaefor each job ot ; that
executes during the response timet af As we have shown in Example 4.1, the actual memory
access demand of the second and third job;a$ in fact much less. Considering the PCB4 of
while calculating the memory overhe®D,, the resulting value is given as:

MO; = MD2+ MD1+2 (MD1 j PCBij dmem) +3 @1
=80+60+2 (60 5 10+ 3 20= 220

This simple example highlights the necessity to consider PCBs when calculating the memory
access demand and hence the WCRT of a task.

4.2.2 Problem Formalization

The previous example casually introduced the notions of PCB and nPCB. We now formally de ne
those two types of cache blocks associated to the execution of g task

De nition 4.1 (Persistent cache blockA memory block of a tagk is persistent if once loaded
byt;, it will never be invalidated or evicted from the cache wheexecutes in isolation.

De nition 4.2 (Non-persistent cache blocki\ non-persistent cache block (nPCB) of tasls an
ECB that is not a PCB. That is, it is a memory block that may need to be reloaded at some point
during the execution df, (in the same or different jobs), even whemxecutes in isolation.

The sets of PCBs and nPCBs associated to attaste denoted bPCB andnPCB, respec-
tively. It follows from the two previous de nitions that each cache block associated to d task
(ECB) is either a PCB or a nPCB, hence the following two relations:

PCB [nPCB= ECH (4.2)
PCB \ nPCB= 0 (4.3)

By De nition 4.1, if t; executes in isolation, a PCB is loaded only once from the main mem-
ory and hence contributes only once to the total memory access demandesfen though all
the ECBs oft; (i.e., PCBs and nPCBs) contribute to its worst-case memory access demand in
isolation (i.e. MD;), only the nPCBs, a subset BCB, must be loaded by more than one joh of
Considering the worst-case memory access demand for each job released by higher priority tasks
thant; when computing the WCRT df, as is implicitly the case in Equations (3.13) and (3.14),
is thus pessimistic. Therefore, we de ne tiesidual memory access demanoida taskt; as the
worst-case memory access demantl; @ssuming that all the PCBs tfare already in the cache
memory and therefore result in cache hits when being accessed.

56 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

De nition 4.3 (Residual memory access demantihe residual memory access demand\D
taskt; is the worst-case memory access demand over all the jobswafien all its PCBs are
already loaded in the cache memory. Therefore,/MBly accounts for the accesses to the nPCBs
oftj and can occur during any job executiontf

An upper bound on the total memory access demdbg(t) of a taskt; within a time window
of lengtht whent; executes in isolation is proven in the following lemma.

Lemma 4.1. If a taskt; executes in isolation, then its total memory access demandtMaithin
a time window of length t is upper boundedMp; (t) where

MDi(t) £ min % MD; % MD!+ jPCB | Omem (4.4)
i i
| m I m

Proof. We prove that % MD; and % MD{+ jPCBj dmemare both upper bounds on the total
memory access demabD;(t) of t;. Thus, the minimum of those bounds is also an upper bound
on MD;(t).
Il m
1. tj can release at most% jobs in a time window of length By de nitionmof MD;, each of
these jobs has a worst-case memory access deMBndTherefore, % MD; is an upper
bound on the total memory access demant] .of

2. Recall from Equations (4.2) and (4.3) tlie€B [nPCB = ECB andPCB\ nPCB = 0.
Characterizing the worst-case contribution of the PCBs and nPCBs to the total memory
access demand is therefore suf cient to quantify the worst-case contribution of all the
cache blocks of; to MDj(t). Since by De nition 4.1, the persistent cache blocks must
be loaded only once, the maximum contribution of the cache blocl&0B to MD;(t)
isj PCB | dmem(i.€., the total number of PCBs times the worst-case memory access
time). By De nition 4.3, the worst-case contribution of nPCPBs to the memory access de-
mand of each job released byis MD;. Since a maximum of% jobs are released by
ti in a time window qf lgpgtit, an upper bound on the total contribution of the nPCBs
Ito I\ADi(t) is given by % MD;. Adding the contributions of nPCBs and PCBs, we get

% MD{+ j PCB | dmemWhich is also an upper bound on the total memory access de-

mand oft; in a time interval of length.
O

Although Equation (4.4) provides an upper bound on the total memory access dentaimd of
isolation the total memory access demand jofvhen executing concurrently with other tasks can
be much larger. Indeed, as can be observed in Example 4.1, the PCBs ot ataskbe evicted
due to the execution of any task (i.e., tasks in(amt ;) between the execution of two successive
jobs oft;. This requires the effect of all tasks in l{gmt; on the memory access demand of
t; 2 hp(i) during the WCRT ot; to be taken into account. We refer to this extra memory access

4.3 CPRO-union Approach 57

demand caused by the eviction of PCB$ plby the tasks in he(p) nt j ascache persistence reload
overhead CPRO) and denote it bry;;;. CPRO is formally de ned as:

De nition 4.4 (Cache persistence reload overheddache persistence reload overhead, denoted
byr i, is the maximum memory overhead of any tags#ue to eviction of its PCBs resulting from
the execution of all tasks imef(i) nt j, whilet j is executing during the response time of

4.3 CPRO-union Approach

In this section, we present a simple approach similar to the state-of-the-art ECB-union (see Sec-
tion 3.2.1) to calculate the CPRO (i.ej;i). We further demonstrate how;; can be incorporated

in the WCRT analysis of a tagk. Later, in Section 4.4, we extend this simple union approach
into a multi-set variant to remove some of the pessimism associated with this analysis.

4.3.1 Computation of Cache Persistence Reload Overhead

As discussed in Section 4.2.2;; accounts for the extra memory access demand of each job of
tj 2 hp(i) due to evictions of its persistent cache blocks by other tasks running concurrently on
the processor.

As one can see in Figure 4.1, the PCBs of a tgsk hp(i) can be evicted by the ECBs of
any other task running on the platform between two successive jays dhe cache persistence
reload overhead;;; can thus be upper bounded by the intersection of thB&&; of all PCBs of
tj with all cache blocks (i.e., ECBs) that can be loaded by any other task between two executions
of t;. This observation leads to the following theorem.

Theorem 4.1. The cache persistence reload overhead imposed by the eviction of PCBs of a job of
taskt; 2 hp(i) on the worst-case response time of a tgsk upper bounded by

rj;i = dmem PCB;\ [ECB (4.5)

8tk2heg(i)nt;

Proof. Since a xed-priority scheduling algorithm is used, only tasks with priorities higher than
or equal to the priority of; (i.e., tasks in hefd)) can execute during the response timetof
Therefore, any task 2 heg(i) nt j can execute between two subsequent jolig ahd hence evict
some or all the PCBs df;.

The worst-case memory interference of any tgsR heg(i) nt; ont; is when it reloads all
its cache blocks (i.e., its ECBs) between two subsequent jobs dtherefore, the largest set of

memory blocks loaded by tasks in [{gmt j between two jobs df; is given by ECB..
8ty2hep(i)nt
The set of persistent cache blocks that must be reloadeq dyring each job execution is

thus upper bounded by the intersection betwg&nPCBs (i.e. PCB;) and ECB«.
8t2heg(i)nt

58 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

Since each cache block reload takes at mgsf,time units, the CPRO due to the eviction of
PCBs oft j by tasks in hefi) nt is upper bounded by

[

8t2hei)nt
]

Having de ned an expression to calculatgi, we now de ner j;(t), i.e., the total cache
persistence reload overhead gnin a time window of lengttt due to the eviction of its PCBs
by tasks in hefi) nt;. r.(t) tells us by how much the memory access demant; aln vary
in comparison to its memory access demand in isolation {A&;(t)) due to the interference
generated by the other tasks executing concurrently tyithJsing Theorem 4.1r, j;i(t) can be
easily computed as stated in Lemma 4.2 below.

Lemma 4.2. The total CPRQ j;i(t) on the execution time of due to the eviction of its PCBs by
tasks inhef(i) nt; in a time interval of length t is upper bounded by (t) where
~ def t
I’j;i(t) = T 1 rii (4.6)
j
[m

Proof. It directly follows fron|1 the fact that; releases at mostTij jobs in a time interval of
m

lengtht. As a result, at most TL, 1 evictions can happebetweenwo subsequent jobs of

tj. Since by Theorem 4.1, the CPRO gyffered by a jobjaé upper bounded by ;, the total
overhead j;(t) is upper bounded by TL, 1 rj. O

4.3.2 WCRT Analysis

After showing how cache persistence reload overtrgaaf a high priority taskt j can be com-

puted, we now describe how it can be integrated into the WCRT analysis of any lower priority
taskt;. As mentioned in Section 3.2.4, the WCRT analysis for xed-priority preemptive systems
was rst presented in (Joseph and Pandya, 1986; Audsley et al., 1993) without considering mem-
ory overheads due to preemptions. It was then extended in several works (e.g., (Staschulat et al.,
2005; Altmeyer et al., 2011; Busquets-Mataix et al., 1996; Altmeyer et al., 2012)) to account for
the cache related preemption delays. Some of the most prominent approaches resulted in Equa-
tions (3.13) and (3.14), previously presented in Section 3.2.4.

Although these approaches are bene cial, their WCRT analysis still rely exclusively on the
WCETC; of higher priority tasks when computing the worst-case response time of a lower priority
taskt;. Thatis, itassumes that each job of a thsR hp(i) executing within the response timetof
asks for its worst-case memory access denMbg. As discussed in Section 4.2, this assumption
is pessimistic. In fact, due to the existence of persistent cache blockst ploegls all its ECBs
(i.e., PCBs and nPCBs), subsequent jobs;olvill only need to reload nPCBs and some of the
PCBs that may have been evicted due to the execution of tasks (i) hép As a result, for

4.3 CPRO-union Approach 59

subsequent jobs of the memory access demand will be signi cantly lower tihéiD;. To exploit

this variable memory access demand, we present a more elaborate formulation of the WCRT
analysis. We propose that for any taskhe WCRT of task; is upper bounded by the smallest
positive valueR; such that

R=GC+ Q& (PDj(R)+ MDj(R)+ ri(R)+ g:j(R)) (4.7)
8j2hp(i)

In this WCRT formulation, we separately account for the maximum processing déPy(ie;)
and the maximum memory access demdid;(R) (in isolation) that can be claimed by each
higher priority task j within the response timi, of t;. The termg ;;(R) andg;;j(R)) denote the
total cache persistence reload overhead due to the eviction of PEByofasks in he@i) nt j, and
the total cache related preemption delay due to the preemptions causgditlyin the response
time of tj, respectively. The term$D;(R)+ MD;(R)) assume values obtained in isolation,
while the two last termsr(j;(R) + ¢;j(R)) account for the overheads introduced by the eviction
of cache blocks by other tasks sharing the cache.

As already discussed in Section 3.2¢4;(R) is upper bounded bgr;'}“'. Furthermore, as
proven in Lemmas 4.1 and 4.)Dj(Ri) andr j;(R) are upper boundged by Equations (4.4)
and (4.6), respectively. Finally, because each Itqsdeleases at mostTLj jobs in a time win-

m

dow of lengtht, PD;(R;) is smaller than or equal to% PD;.
Replacing each term with its given bound, we get that
R G+ & S PD+ A& MDR)+ A fuR)+ & ¢ (48
8j2hp(i) ') 8j2hp(i) 8j2hp(i) 8j2hp(i)

In systems where the number of PCBs is high and the gache interference is low, the value
provided blyl\/lrl?]j(Ri) + 1};/(R) should always be srrpallg}r thal% MD;, and therefore we should
often have % PD; + MDj(t)+ Fj:i(R) smaller than % Cj. In this case, Equation (4.8) will re-
sultin a tighter WCRT bound than Equation (3.14). However, in some situations Mhde) and
r';;(R) are upper bounds and not exact values, this formulation can result in an over-estimation
of the interference generated byont;. In order to counter this effect, and knowing that Equa-
tion (3.14) is already an upper boupd gn the WCREofve further improve Equation (4.8) by
always taking the minimum betweer% Cj and %’ PD; + MDj(t) + rj:(R) as the total in-
terference caused ly ont; (see Equation (4.9) below). Following this simple modi cation to
Equation (4.8), Equation (4.9) will always return a value that is smaller than or equal to the solu-
tion to Equation (3.14). Our approach hence dominates the UCB union multi-set approach de ned
in (Altmeyer et al., 2012).

.n .n A ~ o
R"=C+ & min RTJ Ci; ,-\: PD;+ MD;(R™+ rii(R™) + & ¢ (4.9
8j2hp(i) J J 8j2hp(i)

60 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

Figure 4.2: lllustration of the pessimism associated with Equation (4.6) using the task set
ftq1;tot3gwhentq andt, releasing their rstjobs with an offset.

Note that Equation (4.9) is recursive. However, a solution can be found using simple xed-
point iteration onR" initiating R'" to C;. The iteration stops as soon R8" does not evolve
anymore olR'" > Dj, in which case the task is deemed unschedulable.

4.4 CPRO Multi-Set Approach

The formulation in Equations (4.5) and (4.6) considers that the ECBs of all tagkbe(i) nt ;
may interfere with every job of; released within the response timetef This is pessimistic.
Indeed, considering two different tasksandt, pertaining to he@) nt, the number of times,
can execute between two successive jobis; @ not necessarily equal to the number of tinigs
can execute between two successive jolis oT his situation is discussed in Example 4.2.

Example 4.2. Lett; = (1;4;4), to,=(4,;30,30) andtsz = (10;50;50), wheret; has the highest
priority and t 3 the lowest. Figure 4.2 presents a possible schedule that generates the worst-case
response time df;. As one can se¢; releases jobs during the response timetaf. As a result,
Equation(4.9) upper bounds the total cache overheads on the PCBg with 4 timesr 1.3. That

is, it assumes that botth» andt 3 execute and reload all their ECBs between every two successive
jobs oft;. As can be seen in Figure 4.2, this is pessimistic. In fgogxecute only twice between

jobs oft 1! Its impact on the total CPRO af; is therefore clearly overestimated.

In order to reduce the pessimism associated with the computation,afie must consider the
actual number of times each taigk2 heg(i) ntj can execute between two successive jobss; of
For this reason, this section presents a multi-set variant of Equation (4.6). The resulting quantity
is an upper bound ofj;(t) denoted by !\t).

4.4.1 Computation ofr [U(t)

In this section, we rst characterize the maximum number of times a tagkheg(i) nt; can
execute between two successive jobs;ofTo do so, we separately analyze the tasks ir{ jag
(Lemma 4.3) and aff; j) (Lemma 4.4). We then use this information to upper bound the total
cache persistence reload overheagt) in Theorem 4.2.

4.4 CPRO Multi-Set Approach 61

Figure 4.3: lllustration of the maximum number of times the tasks ifi;ajfand hegj) nt; can
execute between two successive jobs pf When calculating 2.3, t1 2 he(2) nt, can release
maximally 3 jobs (with each job loading all its ECBs in the worst case). In contrast, the one job
released bys 2 aff(3;2) can execute and load its ECBs maximum 4 times.

Lemma 4.3. The maximum number of times a task2 hef(j) nt; can execute between two
successive jobs of within the response time; Rf t; is upper bounded by &R)).

Proof. Remember that the maximum number of jobs that each higher priority tasdn release
during the response time of a taikis given byEy(R)) def % . Furthermore, becaudg has a
higher or equal priority thah, t j cannot preemt,. Hence, the maximum number of tirhgcan
execute between two successive jobs;ofithin a time window of lengttR; is upper bounded by

its number of released jolix(R) (see Figure 4.3 for an example). O

Lemma 4.4. The maximum number of times a tagk aff(i; j) can execute between two succes-
sive jobs ot ; within the response time; Rf t; is upper bounded by

(Ei(RO+ 1) E(R) (4.10)

Proof. E(R«) dffl ?jkmprovides the maximum number of jobs thatcan release during the re-
sponse time of a tagk. Each of these released jobs may preempt the executign Gbnsidering

an arrival pattern such that started to execute just before the rst arrivaltgforeempting « (see
Figure 4.3), the maximum number of times a jokt pimay execute between two successive jobs
of tj is then given by(E;(R¢) + 1). SinceEx(R) jobs ofty are released within the response time
of tj, the maximum number of timag may execute between two successive jolis; afithin the

response time dfi is upper bounded b{E;(R)+ 1) Ex(R). O

Using Lemmas 4.3 and 4.4, one can derive an upper bourrd;@t). This upper bound is
denoted by m“'(t) and is de ned in the following theorem.

Theorem 4.2. The total cache persistence reload overhegdR) ont; due to the eviction of its
PCBs by tasks ihef(i) ntj during the response timeg Bf t; is upper bounded by

P e MEP\ MPE® (4.11)

62 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

where M$Pand I\/fj’.‘i’b are multi-sets de ned as

b L
MPEP = PCB; (4.12)
Ei(R) 1
and
b aff b h
Mje;icbz Mﬁ? af Mﬁ? p (4.13)
with 0 1
[[
Mi(i:b aff _ @ ECBA (4.14)
8k2aff(i;j) (Ej(R)+ DEk(R)
and 0 1

[[
I\/Ije;iCb hp _ @ ECBA (4.15)
812hedj)nt; E(R)

Proof. The proof is basgd on the three following facts: I m
t

1.t releases at mostTij jobs in a time window of length. At most T 1 evictions can
therefore happebetweertwo subsequent jobs df. The largest set of PCBs of that can be
evicted between successive jobd pfeleased during the response time jaf therefore given by

. S
the multi-seMPs" = PCB.
" ER) 1
2. By Lemma 4.3, the maximum number of times a task heq(j) nt; can execute between two
successive jobs df; during the response time bfis upper bounded bl (R). Hence, tge largest

set of ECBs that can be loaded byand interfere with the PCBs df; is given by ECBH
E(R)
(assuming that, reloads all its ECBs at each of its execution). This results in that the largest set
of ECBs loaded by the tasks in hgpnt j between successive executiond pfs upper bounded
b h S S
by Mf> "= _ ECB
8I2hep(j)nt; E(R)
3. By Lemma 4.4, the maximum number of times a tagk aff(i; j) can execute between

two successive jobs df; during the response time of is upper bounded byE;(R¢) + 1)
Ex(R). Hence, the largest set of ECBs that can be loadetk thetween successive jobs of

during the response time of is given by ECB« (assuming thaty reloads all its
(Ej(RJ+ DE(R)
ECBs whenever it resumes its execution). This results in that the largest set of ECBs loaded

by the tasks in aff; j) betwpen successive executionstgfis upper bounded by et af =

N
S S
ECB

8k2aff(i;j) (Ej(RJ+ DE(R)

Therefore, by 2. and 3. the largest set of ECBs that can interfere with the PGBslfing
the response time of is upper bounded b= Mﬁfb aft Mi‘fb hp,

Finally, the largest set of PCBs bf that can be evicted by the tasks in figmt ; within the
response time af; is upper bounded by the intersection Mf’;‘fb with Mﬁ‘i’b. Since reloading a
cache block takes at mogtemtime units, the total cache persistence reload overhgddR) is

upper bounded bimem MEP\ MP® . =

4.4 CPRO Multi-Set Approach 63

i b
4.4.2 Improving the Accuracy of MY

Theorem 4.2 provides a good upper bound on the total cache persistence reload avgii¢nd
during the response time tf. However, Equations (4.14) and (4.15) still consider that each job
released by the taskg 2 heg(i) nt; reload all their ECBs (i.e., PCBs and nPCBs) whenever they
resume their execution. Even though this assumption may be valid for thet faskeq(j) nt;,
since each of their jobs contributes only oncd&/lﬁb (hence assuming that each jolxpaccesses
all its cache blocks during its execution), it is quite pessimistic for the tasksaff(i; j). Indeed,
by Lemma 4.4 and Equation (4.14), each job of a tasR aff(i; j) is assumed to contribute
(Ej(Ro+ 1) times toMﬁfb. However, a PCB of tast¢ will be accessed at most once during each
job execution unless this PCB is also a UCB (in which case it may be used at several program
points of the task). The nPCBs must always be considered to be loaded several times during each
job execution though. Indeed, since they are not persistent, it means that several memory blocks
of t are mapped to that same cache block, which can therefore be accessed more than once during
each job execution.

It results from this discussion thmje;fb can be more accurately modeled by the following
equation:

M= MEsP & ech b (4.16)
with
20 1 0 13
[[[[
Mmec af’= 4@" (PCBnUCB)A @ nPCB([(PCB(\ UCB) A5
8k2aff(i; j) Ex(R) (Ej(R)+ DEK(R)
(4.17)

where(PCB\ UCBy) is the set of PCBs dfy that are also UCBs, afdPCB([(PCB\ UCBy))

is therefore the set of ECBs that may be loaded more than once by eachtjobAdf the other
ECBs (those that are not(nPCB[(PCB\ UCBy)) and are thus i(PCBnUCB) are loaded at
most once per job dfy and are therefore accounted separately in the rst term of Equation (4.17).

4.4.3 WCRT Analysis

Using the exact same argumentation as in Section 4.3.2, the worst-case response timg; of task
can be upper bounded by the smallest positive VRl such that:

R=c+ & min B o R pope My (RM)+ RN + & g
- ™ a T] T J | RI I a g;]
8j2hp(i) J J 8j2hp(i)
(4.18)
It is important to note that, by construction, the WCRT formulation of Eq. (4.18) using the im-

proved variant of the multi-set approach dominates the WCRT given by standard multi-set ap-
proach (Eqg. (4.9)) which in turn dominates the simple union approach presented in Section 4.3.1.

64 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

4.5 Static Analysis

Having presented our proposed cache persistence-aware WCRT analysis, we proceed by explain-
ing how the required input quantities, de ned in Section 4.2.2, are obtained using standard static
analysis techniques integrated in WCET estimation tools.

Static cache analysis techniques use abstract interpretation to determine the worst-case be-
havior with respect to caches for each memory reference. The outcome of such techniques is a
classi cation of references given by Table 3.1 (egways-hitwhen the reference will always
result in a cache higlways-missvhen the reference will always result in a cache miss;miss
when all successive occurrences of a reference but the rst one will result in hits). The classi-
cation of each reference allows to determine if a reference will never require a memory access
(always-hi) or may require an access to memory. To determine the relevant quantities required
for the analysis presented in this chapter, the method presented in (Theiling et al., 2000) is used.

As we previously discussed in Section 3.2, most WCET estimation tools use IRplic{t
Path Enumeration Technigutar WCET calculation. IPET is based on an Integer Linear Program-
ming (ILP) formulation of the WCET calculation problem (Li and Malik, 1995). This formulation
re ects the program structure and the possible execution ows using a set of linear constraints.
The WCET estimate for a task is obtained by maximizing the following objective function:

[o]

a E, fp (4.19)
b2 BasicBlocks

Ep (constant in the ILP problem) is the timing information of basic blbck, (variables in the
ILP system, to be instantiated by the ILP solver) correspond to the number of times basib block
is executed.

For a taskj, quantitiesPD; andMD; are calculated using IPET by setting constanaccord-
ingly for all basic blocks of;. For the computation d?D;, only the execution time of instructions
is included inEy, ignoring memory accesses. Conversely, when compuiibg only memory
accesses (as detected by static cache analysis) are incluigagimd the execution times of in-
structions are ignored.

For the particular case of direct-mapped caches, determia®®g and ECB is straight-
forward. A memory block of task; belongs toPCB if it is the only one mapped to a given
cache block ECB is simply the set of memory blocks of task DeterminingUCB; is achieved
using the method presented in (Lee et al., 1998). Finally, determMiigis very similar toMD;.

IPET is applied with an execution cost of 0 and considering memory accesses, but in contrast to
the computation oMD;, only memory accesses for cache blockeRCB are considered.

4.6 Experimental Evaluation

In this section, we evaluate the effectiveness of our proposed approaches in comparison to state-
of-the-art techniques. We conducted three different experiments by varying the task utilizations,

4.6 Experimental Evaluation 65

number of tasks and the size of cache and evaluated their performance in terms of schedulability.

The different inputs previously de ned in Section 4.5 were computed using the Heptane (Hardy
etal., 2017) static WCET estimation tool. Heptane produces upper bounds on the execution times
of hard real-time applications. It computes WCETS using static analysis at the binary code level.
For the analysis presented in this chapter, all experiments were conducted on C-code compiled
with gcc 4.1 with no optimization for MIPS R2000/R3000. The default linker memory layout is
used, i.e. functions are represented sequentially in memory, and unless explicitly stated, no align-
ment directive is used. Without loss of generality, all instructions are assumed to exedute in
cycle (cache access included). Each memory access, regardless of its source, results in a penalty
of dnem= 100cycles. By default a direct-mapped instruction cache of size 2 KB with a line size
of 32 B is considered.

We have integrated the results obtained from Heptane using static analysis with the MRTA
framework developed by Altmeyer et al. (Altmeyer et al., 2015) for multi-core response time anal-
ysis. The MRTA tool provides a compositional framework for timing veri cation in multi-core
systems by explicitly modeling the interferences of the different components. We modi ed the
MRTA tool to consider task parameters that we have introduced in order to perform the analysis
presented in this chapter. We have added a module in the MRTA framework that enables the cal-
culation of the total CPR®j;i(R)) using the approaches detailed in Section 4.3 and 4.4. Also, as
we only consider a single-core system, the preemption overhead calculation and the WCRT analy-
sis are altered accordingly. All the experiments were performed using the Méalardalen benchmark
suite (Gustafsson et al., 2010). Currently, we only consider the worst-case task layout where all
benchmarks start at the same static memory address, thus maximizing the inter-task memory in-
terference. The effect of different task layouts on our analysis will be discussed later in Chapter 6.

Evaluation is performed by randomly generating a large number of task sets and determining
their schedulability using WCRT analysis for two cases:

1. WCRT analysis including only the effect of CRPD, i.e., Equation (3.14) where CRPD is
computed using the UCB-Union multi-set approach (Equation (3.7)), and

2. Our proposed WCRT analysis that accounts for both CRPD and CPRO, i.e., CPRO Union
(Equation (4.9)) and CPRO multi-set with/without the improvement in Equation (4.18).

Each task within the task set is randomly assigned parameters from the Malardalen benchmarks.
A subset of them is shown in Table 4.2. Also it should be clear from the numbers in Table 4.2
that the benchmark suite comprises of tasks with both small and big memory footprint (that Il the
entire cache), consequently removing any bias in the results.

With the exception of parameters de ned in Table 4.2, other parameters used in our experi-
ments are de ned as follows:

« The default number of tasks in each task set are 10 with task utilizations generated using
UUnifast (Bini and Buttazzo, 2005).

66 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

Table 4.2: Task parameters for a selection of benchmarks from the Malardalen Benchmark
Suite (Gustafsson et al., 2010)

Name G PD MD; MD'; ECB | PCB | UCB | nPCB
lcdnum 3440 984 2740 192 20 20 20 0
insertsort| 7574 5974 2343 752 16 16 10 0
bs 1399 203 1223 34 11 11 9 0
bsort100 | 712289| 710289| 90893 | 88907 20 20 15 0

ludcmp | 45135 | 27036 | 21511 | 18442 98 30 43 68
fdct 17350 | 6550 11525 | 9327 106 22 58 84
ud 28427 | 20627 | 10415 | 10415 | 75 53 31 22

nsichneu| 316409 | 22009 | 294400| 294400| 1377 0 110 | 1377

statemate| 190496| 10586 | 180110| 180110| 275 0 81 275

» Each task was randomly assigned one benchmark from the Mélardalen benchmark suite (Gustafs-
son et al., 2010) with values &, PD;, MD;, MD} along with sets ofJCB;, ECB, PCB
andnPCRB obtained from the values given in Table 4.2.

» Task periods are set according the WCET assigned to each task from the benchmarks and
the randomly generated utilization, i.& = G=U;.

» Task deadlines are implicit with priorities assigned in deadline monotonic order.

4.6.1 Total Utilization

To evaluate how our proposed WCRT analysis accounting for both CPRO and CRPD (i.e., Eq (4.9)
and (4.18)) performs in terms of schedulability in comparison to the UCB-union multi-set ap-
proach (Altmeyer et al., 2012) (that only considers CRPD), we randomly generated 1000 task set
at different utilizations varied from 0.1 to 1 in steps of 0.025. Each task set contains 10 tasks,
with benchmark parameters generated for a 2 KB cache with 64 cache sets. The WCRT analysis
is performed for all approaches using the same task sets. A task set is deemed unschedulable if
the calculated WCRT for any task within the task set is greater than its deadline.

Figure 4.4 shows an average number of task sets that were schedulable using all the analyzed
approaches. The graph also shows a line marked as WCRT analysis with no CRPD cost (green
line) that gives an upper bound on maximum number of task set that were schedulable without
considering any CRPD cost. It is also important to note that we only show a cropped version of
the plot starting from a utilization of 0.6 mainly because for task set utilizations less than 0.6 all
approaches produced identical results. We can see from the results that the proposed WCRT anal-
ysis accounting for both CPRO and CRPD dominates the state-of-the-art WCRT analysis (UCB-
union multi-set (Altmeyer et al., 2012)) that only accounts for CRPD. In fact, the three proposed
approaches for CPRO calculation dominate the UCB-union multi-set approach (Altmeyer et al.,
2012). This is mainly because the UCB-union multi-set approach only uses WCET (effectively

4.6 Experimental Evaluation 67

Figure 4.4: Number of tasksets that are deemed schedulable for a for a varying total utilizations.

the worst-case memory access demand) of tasks during the WCRT analysis along with the CRPD
cost de ned by Equation (3.7), which is very pessimistic. As a result, a high number of tasks tend
to be unschedulable, especially at higher utilizations.

We can also observe from the results that the CPRO multi-set approach dominates the CPRO-
union and UCB-union multi-set approaches whereas, the improved CPRO multi-set approach
(Equation. (4.18)) outperforms all the other approaches. In fact, when using the improved CPRO
multi-set approach we can have substantial gains in term of schedulability in comparison to the
UCB-union multi-set approach, for example at a utilization of 0.85, we gain around 13% in
schedulability.

4.6.2 Number of Tasks

In preemptive systems, the number of tasks adversely affects the schedulability of the task set. To
analyze the performance of all approaches w.r.t number of tasks, we varied the number of tasks
from 5 to 25 increasing by 5 tasks in each step. All parameters other than the number of tasks
have the same values as used in the previous section. We have used the weighted schedulability
measure de ned by Bastoni et al. (Bastoni et al., 2010; Burns and Davis, 2014) to plot the results.
The weighted schedulability measure reduces what would otherwise be a 3-dimensional plot to
2-dimensions by eliminating the axis of task set utilization. Under weighted schedulability, more

68 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

Figure 4.5: Weighted schedulability measure by varying the number of tasks from 5 to 25.

weight is given to task sets with higher utilization. Using notations from (Burns and Davis, 2014),
let S(G p) represent the result of the schedulability tgdor a given task seG with an input
parameterp, i.e., S(G p) = 1 if task setGis deemed schedulable for a given valuepofnd
S/(G p) = 0 otherwise. Then, the weighted schedulability for that yeas a function ofp, is

given byW(p), i.e.,

_ assU(Q S(Gp)
W,(p) = 2,000

(4.20)

whereU (G) denote the core utilization of the task §&t

Figure 4.5 shows the results of our experiments. We can see that schedulability (varying from
0:3 to 1 by step of M25) for all approaches decreases as the number of tasks are increased.
Indeed, this is due to an increasing number of cache evictions and reloads. On the other hand,
we also observe that WCRT analysis accounting for both CPRO and CRPD performs signi cantly
better in comparison to the other approach that only considers CRPD. The weighted schedulability
using the improved CPRO multi-set approach at each point in Figure 4.5 is up to 10% higher than
the UCB-union multi-set.

4.6.3 Cache Size

The cache size is an important factor that can affect the schedulability of tasks. If the cache is large
enough to accommodate all the tasks without any cache reuse no additional memory accesses are

4.6 Experimental Evaluation 69

Figure 4.6: Weighted schedulability measure by varying the number of cache sets

required. In fact, in this case all the ECBs of a task will be PCBs and will never be evicted from the
cache. Another case is when the cache is very small and each task can Il the entire cache during
its execution. Consequently, this will result in higher memory access demand for each job of the
task. To evaluate the impact of cache size on the performance of the analyses, we varied the num-
ber of cache sets from 32 to 512, keeping all other task parameters constant. Figure 4.6 shows the
resulting weighted schedulability measure for each approach as a function of the number of cache
sets. As the cache line size is kept constant (i.e. 32 B), increasing the number of cache sets effec-
tively increase the cache size. Again, we can see that our proposed WCRT analysis accounting for
both CPRO and CRPD dominates the UCB-union multi-set approach (Altmeyer et al., 2012) that
only considers CRPD. In fact, by looking at the improved CPRO multi-set approach in Fig 4.6,
we can observe that by increasing cache size the overall schedulability also increases from 0.74
(with 32 cache sets) to 0.80 (with 512 cache sets). This is due to the fact that with a bigger cache
the number of PCBs for each task will also increase (hence reducing the residual memory access
demand). In contrast, for the UCB-union multi-set approach (consistently with (Altmeyer et al.,
2012)), the schedulability decreases due to an increase in the number of ECBs resulting in higher
preemption overheads.

70 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

4.7 Chapter Summary

In this Chapter, we have presented our initial work that focus on improving the bounds on the inter-
task cache interference for single-level direct-mapped caches. The proposed analysis builds upon
the observation that a task can re-use cache contents between different jobs. We have presented
a method to capture these persistent cache blocks (PCBs) resulting in variable memory access
demand for different jobs from a task. The notion of cache persistence reload overhead (CPRO)
is introduced and different approaches are presented to calculate CPRO. These approaches are
orthogonal to state-of-the-art methods used for CRPD calculation and can be used independently
with any of these methods. A WCRT analysis is then presented that exploits this variable memory
access demand to reduce the preemption cost of higher priority tasks under xed-priority preemp-
tive scheduling, thereby reducing the WCRT and improving schedulability.

We evaluated the performance of our approach against a prominent approach from the state-
of-the-art in terms of schedulability. Experiments were performed by varying different parameters
with most of the values taken from the Mélardalen benchmarks. Experimental results show that
our proposed WCRT analysis (accounting for both CPRO and CRPD) dominates the state-of-the-
art approaches (that only consider CRPD) with an average improvement of around 10% in terms
of schedulability.

Chapter 5

Integrated Analysis of Cache Related
Preemption Delays and Cache
Persistence Reload Overheads

In the work presented in Chapter 4, we derived two analyses for CPRO calculation that were
integrated into an improved response time analysis for FPPS that accounts for the reduction in
memory access demand of tasks due to cache persistence, along with the CRPD. The analysis
considers both the CRPD and cache persistence and dominates the state-of-the-art approaches that
only consider CRPD. However, the analysis presented in Chapter 4 may sometimes result in over-
estimation of the task response times. This is due to the fact that CRPD and CPRO are calculated
separately, providing independent upper bounds on the two classes of overheads. However, as
we later show in this chapter, scenarios maximizing CRPD and those maximizing CPRO may be
mutually exclusive, meaning that the total overheads can be substantially less than the sum of the
two bounds.

In this chapter, we focus on two questions:

1. Isitbene cial to integrate the calculation of CRPD and CPRO to remove the over-estimation
in the total overheads of tasks?

2. Under what conditions and by how much can we gain in terms of schedulability by integrat-
ing the calculation of CRPD and CPRO?

We answer these questions by:

« identifying situations where considering CRPD and CPRO separately might result in over-
estimating the total memory overhead suffered by tasks due to double counting of some
memory blocks that need to be reloaded,

« demonstrating how to integrate the calculation of CRPD and CPRO to include only the
additional CPRO that are not already included in the CRPD calculation, and

71

Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
72 Overheads

« through experimental evaluation using a set of benchmarks to derive important observations
that lead to situations where the integrated CRPD-CPRO analysis may or may not outper-
form separate treatment of CRPD and CPRO.

Table 5.1: List of important symbols used in Chapter 5

Symbol Description

G Task set of size

ti Task with index

C Worst-case execution time of tagk

Ti Minimum inter-arrival time of task;

Di Relative deadline of task

R Worst-case response time of task

PD; Worst-case processing demand of task

MD; Worst-case memory access demand of task

MD;] Residual memory access demand of tigsk

MD; (t) Total memory access demand of taskn a time interval of length

hp(i) The set of tasks with higher priority than

her(i) The set of tasks with higher priority thanincludingt;, i.e., hefi) = hp(i)[t;.

aff(i; j) The set of intermediate tasks (includitg that may preempt; but may them-
selves be preempted by some higher priority task

dmem Time to reload one cache block from the main memory

m Total memory reload overhead during the response time oftfask

nyeP Total memory reload overhead for taskunder the separate CRPD and CPRO
analysis

it Total memory reload overhead for tagkunder the integrated CRPD and CPRO
analysis

D Upper-bound on the portion o that is not accounted for igf*

o Upper-bound on the portion @ that is not accounted for igtOt m

'S Any execution schedule of tasks

Ex(R) The maximum number of jobs any taskcan release during the response time

R of taskt;

NEUPR) | The number of jobs of any higher priority task2 hp(j) that are already ac
counted for in the CRPD cost caused by another task hp(i) during the re-
sponse time of;.

ECBH The set of evicting cache blocks (ECBSs) of tagk

UCB; The set of useful cache blocks (UCBSs) of task

PCB The set of persistence cache blocks (PCBs) of task
nPCB The set of non-persistence cache blocks (nPCBs) ofttask

D

Continued on next pag

5.1 Problem Formalization 73

Table 5.1 — continued from previous page

Symbol Description

by The " cache block of a tast

Sijii The biggest set of cache blocks that can be loaded by tasks i) hépduring
the response of tagk and are not considered gf.

Mi‘ffb Multi-set containing set of UCBs of all tasks in éffj)

MEeP Multi-set containing set of ECBs of task

MPs Multi-set containing set of PCBs of task

Mﬁfb Multi-set containing set of ECBs of all task in hgpnt ;

Mf‘;fb aff Multi-set containing set of ECBs of all task in iffj)

Mjh':’ int Multi-set containing set of cache blocks of all task in fgmt j, whose evictions
are not taken into account in the CRPD cgi§P ™

rii CPRO of one job of task; during the response time of task

Fji Total CPRO of task in an interval of lengtht while executing during the re-
sponse time of task.

dj;i Upper bound on the CPRO of one job of tagkduring the response time of task
tj, after discounting what has already been taken into account in the CRPD cost
g

dj“;“i“' Upper bound on the CPRO of taskin a time intervat during the response timge
of taskt;, after discounting what has already been taken into account in the CRPD
costg!® ™,

a:j CRPD suffered by task due to preemptions by any higher priority tag hp(i)

g‘;’fb CRPD suffered by task due to one preemption by any higher priority task
hp(i), computed using the UCB-union approach (i.e., Equation (3.3)).

g?fb m Total CRPD suffered by tagk in a time interval of length due to preemptions

by any higher priority task; 2 hp(i), computed using the UCB-union multi-set
approach (i.e., Equation (3.7)).

g Upper bound on the total CRPD suffered by tastturing its response time under
the UCB-union approach (i.e., Equation (3.3)).
g“’t m Upper bound on the total CRPD suffered by tastturing its response time under

the UCB-union multi-set approach (i.e., Equation (3.7)).

5.1 Problem Formalization

The CRPD of a task accounts for the evictions of its UCBs due to preemptions caused by higher
priority tasks. Similarly, the CPRO accounts for the evictions of its PCBs between successive job
executions. Therefore, the total time spent reloading cache blocks evicted during the response

Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
74 Overheads

time oft; is bounded by the sum of the CRPD and the CPRO experienced by every task executing
duringt;'s response time. This overhead is denotedrpgind is de ned as follows.

De nition 5.1 (Total Memory Reload Overheadi). Let CRPQJ-!(S) and CPRQ,-!(S) be the
total ac'guaICRPD and CPRO suffered by during the response time of one jobtefin a given

scheduleS . The total memory reload overheagduring the response time of is the maxi|mum
sum of the CRPD and CPRO of all tasks executing dutjlsgesponse time in any scheduf&.

Formally,

()

f 0

max a CRPD;J-!(S)+ CPRQ;J-!(S) (5.1)
8S gt;2heqi)

o
g

m

From the above de nition, it follows tham is upper-bounded b oneg;) (g ™+ r i)
Whereg‘fjCb M andr Jf‘;}“' are computed by Equation (3.7) and Equation (4.11), respectively. How-
ever, independently computing CRPD and CPRO may result in overestimating the actual total
memory reload overhead as illustrated in the example below.

Example 5.1. Let G be composed of three tasks;t,;t3g with t1 having the highest priority

andt 3 the lowest. Figure 5.1 presents the task set parameters and the worst-case schethule for
together with the evolution of the cache contents over time. Cache blocks that have been evicted
either due to CRPD or CPRO and must be reloaded from main memory are highlighted in red.
The set of PCBs are highlighted in green.

Initially, the cache is empty and with being the rst task to execute it loads all its ECBs into
the cache. Whetp preemptd 3 for the rsttime, it also loads its ECBs. Similarli; is preempted
by the highest priority task; at time2. Note that ECBs of taskq and UCBs/PCBs of tadk are
mapped to the same cache blocks, f.g;8;9; 10g. Therefore, wheh, resumes its execution after
the completion of the rst job of; it needs to reload all its UCBs, (highlighted in red) as they
were evicted by;. These additional memory accesses will be accounted for as CRPD.

Since, the rst job ot , loads all oft,'s ECBs (PCBs and nPCBSs) into the cache, subsequent
jobs oft, may have a lower memory access demand due to the existence of PCBs in the cache, i.e.,
blocksf 7;8;9; 10g. However, some of these PCBs may be evicted due to other task executions. The
additional memory accesses required to reload evicted cache blocks are accounted for as CPRO.
Such a situation where the CPRO is maximized is depicted in Figure 5.1b.

Based on Figure 5.1a, the total memory reload overh@aduringt 3's response time is equal
to the time needed to relodd® cache blocks (i.e., the number of red blocks).

Now, if we use the UCB-union multi-set (Equati¢h7)) and the CPRO multi-set (Equa-
tion (4.11) approaches to calculatey, we have the following.

ucb m ucb m mul mul
m G+ tryztrlo3

Sincet, is the only task with useful cache blocks (UGBf 7;8;9;10g), it is also the only
task suffering from CRPD. There]‘org‘;;czb M= 0. Using (Equation(3.7)), we have (note that

5.1 Problem Formalization 75

(a) Schedule maximizing CRPD during the response tintg of

(b) Schedule maximizing CPRO during the response tintg of

Figure 5.1: Schedules maximizings response time whe@; = 1,C; = 2,C3=9,T1= 6, T, = 6,
T3= 25,ECB; = 17,;8;9;109, ECB, = 17;8;9; 109, ECBs = f1,2;3;4,;59, UCB, = 7;8;9;10g,
PCB, = £7;8;9;10g andUCB; = UCBz; = PCB, = PCB; = 0

E1(Rs) = 3, E1i(R2) = 1, E2(Rs) = 3, and B(Rs) = 1):
%u;clb M= dmemj (3 UCBs[3 UCBp)\ (3 ECB)j= dmem 12

Similarly, when calculating the CPRO we can see that the set of PCBs for all tasks exisept
empty. Hence, the total CPRO during the response time of taskmes only from the evictions of
PCBs of task ;. Assuming that the CPRO is calculated using Equaibtl)we haver {‘?3“' =0
and

r5%8'= dmemj (2 PCB)\ (4 ECB3[3 ECB)j= dmem 8

Adding CRPD and CPRO, it follows that the total memory reload overhead during the re-
sponse time dfs is upper-bounded by, 20. Thus it appears th&20 cache blocks need to be
reloaded during the response timetaf The reason for the overestimation is that the total CRPD
is indeed upper-bounded ly cache blocks reloads (as shown in Figure 5.1a) and the total CPRO
is indeed upper-bounded Bycache blocks reloads (as shown on Figure 5.1b), but both scheduling

Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
76 Overheads

scenarios cannot happen at the same time. It is not possible for the three job®eésult in the
group of 4 cache block reloads three times over due to preemptions (accounte@?@? if) and
two times over due to cache persistence overheads (accounted@é"}nThis observation leads
to the following lemma.

Lemma 5.1. Let us assume that the total CRPD during the response time of téskomputed
using Equation(3.3) or Equation(3.7)and that the total CPRO during's response time is com-
puted with Equatior{4.6) or Equation(4.11) Let b~ be the ™" cache block of a task 2 hp(i),
i.e., b 2 ECB. The eviction of p- will be accounted for in both the CRPD and CPRO, only if
by isa UCB and a PCB dfy, i.e., - 2 UCB¢\ PCB:.

Proof. This claim follows directly from the fact that Equation (3.3) and Equation (3.7) account for
the evictions of UCBs of tasks in h@p. Therefore, the eviction of cache blobk: will be con-
sidered in the CRPD calculation only if it is a UCB. Similarly, Equation (4.6) and Equation (4.11)
account for the evictions of PCBs of tasks in(f)p Hence, the eviction of cache blobk: will

be considered in the CPRO calculation only if it is a PCB. Therefore, the evictibg ahay be
accounted for in both the CRPD and CPRO, onligif 2 UCB¢\ PCBk. O

It can also be seen in Example 5.1 that for any task hp(i) (e.g.,t2) executing during the
response time of a lower priority task(e.g.,t3), only higher priority tasks thary (e.g.,t;) can
participate in both the CRPD and CPROtgf This observation leads to the following lemma.

Lemma 5.2. For any tasktx 2 hp(i) executing during the response time of a lower priority task
ti, only the tasks imp(k) can contribute to both the CRPD and CPRC pf

Proof. By De nition 4.4, all tasks in hefi) nty can contribute to the CPRO of during the
response time df;.
Lett- be any task in hegd) ntx. Two cases must be considered:

1. Ift- 2 aff(i;k) thent- has a lower priority than thdf. Thereforet- can never preempt
and hence cannot contributettgs CRPD.

2. If t~ 2 hp(k) thent- has a higher priority than that of. Taskt- can therefore preempg
and cause CRPD.

Hence, only tasks in I{§g) can contribute to bothy's CRPD and CPRO. O

5.2 Integrated CRPD-CPRO Analysis

In the analysis presented in Chapter 4, CRPD and CPRO are calculated independently of each
other. As discussed in Section 5.1, this can lead to an overestimation of the total memory reload
overhead. In this section, we present a hovel approach to bound the total memory reload overhead
during the response time of a task This section builds upon the UCB-union and CPRO-union
approaches for the calculation of CRPD and CPRO, respectively. In Section 5.3, we extend this

5.2 Integrated CRPD-CPRO Analysis 77

analysis to consider the more precise, but also more complex, multi-set variants of the CPRD and
CPRO calculation.

It follows from Lemma 5.1 that only the cache blockssngthhp(i) (UCB;\ PCB;) can have
their evictions counted twice during the CRPD and CPRO calculations. This double counting can
be removed either (i) during the CRPD calculation by not considering the evictions of PCBs in
S8t 12hp(i) (UCB;\ PCB;), since their eviction will be accounted for in the CPRO; or, (ii) during
the CPRO calculation by not considering the eviction of UCBsnghp(,) (UCB;\ PCBj), since
their eviction will be considered in the CRPD. In this section, we focus on the latter solution
assuming that the CRPD is computed using the UCB-union approach (i.e., using Equation (3.3)).

Lemma 5.3. Let g be an upper-bound on the total CRPD during the responsg tiggf R.
Further assume tha® is computed using the UCB-union approach, igf, U} %’ g‘ffb.

t;2hp(i)
LetD: be an upper-bound on the portion of the total memory reload overhead gtjisrpgsponse
time that is not accounted for gi, thatis,D;= m ¢'*, then we hav®, a % 1
8t ;2hp(i)
dj;i where
!
def \ [[[
dj;i = dmem PCB; ECB ECB«n(UCB;\ PCB;) (5.2)

8t 2aff(i;j) 8tk2hp(j)

Proof. It was proven in (Tan and Mooney, 2007) tigif upper-bounds the total CRPD durity(
response time. Therefore, the portion of the total memory reload overhdiaat is not accounted
for in g is a subset of thejotal CPRO durings response time. Similar to the calculation of
the total CPRO, at most %’ 1 jobs of each higher priority tagk can suffer memory reload
overheadl;;; not yet accounted for igi®. Since the tota| CRRO is an upper-bound®nusing
Equation (4.6) and Equation (4.5) we hdve éthhp(i) % 1 djwithdj; ri. We
now prove the validity ofij;;.

Since a xed-priority scheduling algorithm is used, only tasks with priorities higher than or
equal to the priority of; (i.e., tasks in hef)) can execute during the response time;ofThere-
fore, any task 2 heq(i) nt; can execute between two subsequent jobs of anothett [aakd
hence participate ih;'s CPRO by evicting some or all its PCBs. Ligtbe any task in hefp) nt ;.
Two cases need to be considered (note thatihap; = aff(i; j) [hp(j)).

1. ty 2 aff(i; j). Sincety has a lower priority thah; it cannot preempt;, and henceéy does not
contribute to the CRPD df;. Therefore, the memory reload overhead generatet oy
tj is not part ofg'® and must be entirely accounted fordp;. This worst-case interference
of tx ont; is maximized wheny loads all its cache blocks (i.eECE).

2. Iftx 2 hp(j) then, by Lemma 5.2, may contribute to both the CRPD and CPRQ pfAs
stated in Lemma 5.1, the evictions of cache blocks join UCB;\ PCB; were already
considered ing’®. Therefore, the number of cache block evictions causedbyn t

Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
78 Overheads

that were not accounted for ig® is maximized wherty loads all the cache blocks in
ECBn(UCB;\ PCB;).

From 1. and 2., the biggest s&t;; of cache blocks that can be loaded by tasks in(ey
and were not yet consideredgff is given by:

0 1 0 1
[[[
Sji=@ ECBA @ ECBE n(UCB;\ PCB)A
8ty 2affi;) 8t;2hp(j)
The set of PCBs that must be reloadedtbyat each job execution is thus upper-bounded by the
intersection betweeh;'s PCBs (i.e.,PCB;) and the sef j; derived above. Since each cache

block reload takes at modfemtime units, the timel;; spent byt ; at each job execution to reload
evicted PCBs that were not yet considered/f is bounded by Equation (5.2). O

As a corollary of Lemma 5.3, we can upper-bound the total memory reload ovenhead
stated in the following theorem:

Theorem 5.1. The total memory reload overheag during t;'s response time is upper-bounded
by

o R R
a ? gujcb + ? 1 dj;i (5.3)
tj2hp(i) j j
Proof. Follows from Lemma 5.3 sincey = D, + ¢ O

This directly leads to the following theorem:

Theorem 5.2. The WCRT of; is upper-bounded by the smallest positive solution to

(R R)!
R=C+ & gj+min = Cii = PDj+ MD;(R)+ dj; (5.4)
8j2hp(i)]]
where

def R

dj;i = T 1 dj (5.5)

I m
andg:j is given by %’ g‘;‘jcbfor UCB-Union.

Proof. By Theorem 5.1 and SUbStitUtimii;i for fj; in Equation (4.9) O

Since,d;; calculated using Equation (5.2) is always less than or equaljtoalculated using
Equation (4.5), the resulting WCRT obtained using Equation (5.4) is always less than or equal to
the WCRT obtained using Equation (4.9) whgn is computed using the UCB-union approach.

In other words, the integrated approach to CRPD and CPRO analysis given by Theoom5.2
inatesthe simple combination of the UCB-union and CPRO-union approaches.

5.3 Multi-set Approach to Integrated CRPD-CPRO analysis 79

Example 5.2. We now compute the total memory reload overhead ofttaskExample 5.1 using
the results derived in Theorem 5.1.

Note that the UCB-union (Equatigi3.3)) and the UCB-union multi-set (Equati¢B.7)) ap-
proaches would give exactly the same values for the total CRPD. Therefore, the total CRPD is
upper-bounded bygtm 12

The set of PCBs for all tasks exceptis empty. Therefore, based on Equat{ér), we have
di.3= Oand

Gr3= dmem] PCB\ (ECB3[(ECB n(UCB;\ PCB))) |
= dmem jf 7:8;9;10g9\ (f7;8;9;10gnf7;8;9;10g)j = O

According to Theorem 5.1y is thus upper-bounded {2 dmen), Which is in this case the exact
overhead experienced during the response tintg ak illustrated in Figure 5.1a.

5.3 Multi-set Approach to Integrated CRPD-CPRO analysis

In this section, we improve over the analysis presented in Section 5.2 by building upon the UCB-
union multi-set (Equation (3.7)) and CPRO-union multi-set (Equation (4.11)) analyses that were
shown to dominate the UCB-union and CPRO-union approaches.

While the UCB-union approach assumes that every job of atta2khp(i) executing during
the response time of can contribute to the total CRPD, the UCB-union multi-set approach (Equa-
tion (3.7)) considers that only a subset g6 jobs actually contribute to the preemption overhead.
Hence, we must also differentiate between jobs that are considered in the CRPD and those that are
not, when computing the portion of the total memory reload overng#itht is not yet accounted
for in the total CRPD.

Example 5.3. The example task set in Figure 5.2 has three tdgskd, andt3 with priorities
assigned in numerical order such thiat has the highest priority. We want to analyze the total
memory reload overheauk during the response time bf. Taskt is the only task with UCB
PCB; 6 0. The sets of UCBs and PCBstgfandt 3 are empty. Thereforé; is the only task that
may suffer CRPD and CPRO. The total memory reload overhgasithus bounded by the sum of
the CRPD and CPRO suffered byduring the response time t4.

By Lemma 5.2t is the only task that can contribute to batlis CRPD and CPRO. Since
t, can preempt each job o at most once (i.e., £Ry) = 1), and becausé; releases three jobs
during t3's response time (i.e., £R3) = 3), at most three jobs df; are preempting jobs df;,
during the response time tf, i.e., B (R:)E2(Rs) = 3. Therefore, at most three jobs taf may be
contributing to botht ,'s CRPD and CPRO duringz's response time. The one remaining job of
t; can only execute between two jobg gfand hence contributes only tg's CPRO.

To calculate the CPRO that any task2 hp(i) can suffer during the response time tof
taking into consideration what has already been accounted for in the CRPD cost, we rst analyze

Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
80 Overheads

Figure 5.2: lllustrating the pessimism associated with the separate UCB-union multi-set and CPRO
multi-set analysis using the task $ét;to;tsgwithCy = 1,C,=2,C3=5,Ty = 3, T, = 5 and
T3 = 20.

the impact of each task in h@pnt; on the CPRO of ;. We characterize the maximum number
of times a tasky 2 heg(i) nt; can execute between successive jobis;offo do so, we separately
analyze the tasks in &ff j) (Lemma 4.4) and the tasks in tip (Lemma 4.3). We then identify
how many jobs of each task contribute only to the CPR®;and how many jobs contribute to
both the CRPD and the CPROgf (Lemma 5.6). We then make use of this information to derive
a multi-set formulation (Lemma 5.7) that calculates the additional CPRO of & taskp(i) that

is not already accounted for in the CRPD cost computed with Equation (3.7).

Lemma 5.4. The maximum number of times a tdgk2 aff(i; j) can execute between jobstgf
released durind;'s response time is upper-bounded(j(R¢)+ 1) Ex(R).

Proof. Lemma 4.4 in Chapter 4. O

Lemma 5.5. The maximum number of times a tagk2 hp(j) can execute between successive
jobs oft ; released during;'s response time is upper bounded hy().

Proof. Lemma 4.3 in Chapter 4. O

Example 5.3 shows that not all of the jobs released by a higher priorityt té&skp(j) (e.g.,
t1 in Figure 5.2) during the response time of a lower priority thste.g.,t3 in Figure 5.2) can
preemptt; (e.g.,t2 in Figure 5.2). The jobs that do not preempt cannot contribute to both the
CRPD and the CPRO af.. This observation leads to the following Lemma:

Lemma 5.6. For a taskt j 2 hp(i) executing during the response timet gfthe number of jobs of
any higher priority task| 2 hp(j) that are already accounted for in the CRI@?’b Mis given by
NIOUPIgR) = minf Ei(R) ; E(R))Ej(R)g.

Proof. The CRPDgL;’jCb M in Equation (3.7) is composed of the intersection of the two multi-sets
MUCh andMmeEeh
15)) °

1. The calculation oMﬁij (i.e., Equation (3.9)) assumes that a tasR hp(j) can release at
mostE|(R;) jobs during the response tink® of t;. Therefore, at mosE (R) jobs oft
preempting j are accounted for in the calculationgijjCb ™in Equation (3.7).

5.3 Multi-set Approach to Integrated CRPD-CPRO analysis 81

2. The calculation oMi‘ijb(Equation (3.8)) assumes that for any tagR aff(i; j), E(R;)Ej(R)
is an upper bound on the number of tintgscan be preempted Wy duringt;'s response
time. Therefore, at modf (R;)E;(R) jobs oft| are accounted for ig‘;’fb M (i.e., Equa-
tion (3.7)).

It follows that the number of jobs df accounted for irgt;‘jCb Mis given byNI*"P{R)). O

Using Lemmas 4.3-4.4, 5.2 and 5.6 we derive an upper bound on the CPRO anyzdgi)
can suffer duringd;'s response time, discounting what has already been taken into account in the
CRPD (:osg‘;’jCb M, This upper bound is denoted tiy;}“'.

Lemma 5.7. Let gmt ™ be an upper-bound on the total CRPD during the response tinud tR
Further assume thag® ™ is computed using the UCB-union multi-set approach, gé', ™ =

a g‘?fb ™. LetD" be an upper-bound on the portion of the total memory reload overhead that
tj2hp(i)
was not accounted for ig® ™, thatis,D"=m ¢° ™, then:

"4 dp (5.6)
tj2hp(i)

where

def b
A dem MEEP\ MPT (5.7)

where M and M’S® are multi-sets de ned as

[
MPsP = PCB (5.8)
Ei(R) 1
- b aff hp i
MEeP= M AT [mpP (5.9)
with
0 1
[[
MPsP 2 = @ ECBA (5.10)
8k2aff(i;j) (Ej(R)+ DER)
! I
hp int [[[[
mhp-int — ECR ECBn UCB;\ PCB (5.11)

812h()) E(R) NUWHR) NEFPSR)

Proof. Sinceg® ™ upper-bounds the total CRPD duritys response time calculated using Equa-
tion (3.7), the portion om that is not accounted for ig‘c’t Mis a subset of the total CPRO during
ti's response time that is,

mul mul
whered 1™ r [T

Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
82 Overheads

We prove the validity oﬁj’T}”'I below.
’ m
1. Sincetj can Irelease at mostTLj jobs in a time window of lengt, the PCBs ot j can be
m
evicted at most Tij 1 times within the time window of length, contributing to CPR&
Therefore, the largest set of PCBstgfthat can be evicted during the response timg @ upper

S
bounded by the multi—se\tljp;sz PCB; given in Equation (5.8).
Ei(R) 1
2. By Lemma 4.4, the maximum number of times a tagR aff(i; j) can execute between two
successive jobs df; during the response time of is upper bounded b{E;(R¢) + 1) Ex(R).
Hence, the largest set of ECBs that can be loadet petween successive jobstgfduring the

. . S
response time of; is given by ECB:. Therefore the largest set of ECBs loaded
(Ej(RJ+ DE(R)
by the tasks in aff;) betwgen successive executionstgfis upper bounded bjx/lﬁfb aff —
S S
ECB(given in Equation (5.10).
8k2aff(i;j) (Ej(RJ+ DE(R)
3. By Lemma 4.3, the maximum number of times a tasR hp(j) can execute between two suc-
cessive jobs of ; during the response time tfis upper bounded bl (R;). Hence, the largest set

of ECBs that can be loaded Iy and interfere with the PCBs ¢f is given by ECB. How-
ever, by Lemma 5.2, &s 2 hp(j) it can contribute to both the CRPD and CIEDI(F?C)I ptiuring the
response time df;. Further, by Lemma 5.6, the number of jobd pthat were already considered

in the CRPD oft; is equal toN?*""{R)). Therefore, instead of assuming that all jobs released
by t| 2 hp(j) during the response time of contribute tod"!, the muIti-seﬂ\/Ijh;’i’ nt separately
categorizes the impact of jobs gfthat can/cannot be contributing to both the CRPD and CPRO
of t during the response time of.

3.1 SinceNI“PqR,) is the number of jobs of; that were already considered in the CRPD of

tj, thenE(R) NI“P'{R) jobs oft; only contribute to the CPRO df;. The memory reload

overhead generated by theS¢R) NI*“P'{R) jobs oft| ont; is not part ofg® ™ and must

therefore be entirely accounted fordtﬂ}“'. The worst-case interference of all these jobs is maxi-

mized when every job df; loads all its cache blocks (i.eCB). Hence, the worse-case impact

that these jobs df| can have on théj's CPRO is bounded by the multi-set S ECB
E(R) NEFPHR)

given in the rst term of Equation (5.11).

3.2For all jobs oft; that can contribute to both the CRPD and CPR®;pi.e., Nf;‘?“b'e(Ri), then as

stated in Lemma 5.1, the evictions of cache blocks;af UCB;\ PCB; were already considered

in g“’t M Therefore, the number of cache block evictions caused by tﬁfﬁ’%’e(Ri) jobs oft| on

tj that were not accounted for g ™ is maximized when each job loads all the cache blocks in

ECB n(UCB;\ PCB;j). Hence, the worse-case additional impact of all jobs adhat contribute

to both the CRPD and CPRO bf is bounded by the multi-set, ECB n(UCB;\ PCB))
NIUPIRR,)
given by the second term of Equation (5.11).

1Recall from Equation (4.4) that all PCBs are assumed to be loaded once anyway.

5.4 Experimental Evaluation 83

Therefore, by 2. and 3. above, the largest set of ECBs that can interfere with the PCBs of
t; during the response time of is upper bounded b1t = Mifb aft | Mjhf) "t given by Equa-
tion (5.9). Hence, the largest set of PCBstgfthat can be evicted by the tasks in figmt
within the response time df with evictions not already considered gf** ™, is upper bounded
. . b
by the intersection oMJP;iC with Mﬁfb. Since reloading a cache block takes at nmagim time
units, an upper bound on the total CPIEQ”', not already included in the CRPD, is given by

dmem MEFP\ Mf;icb in Equation (5.7). O

As a corollary of Lemma 5.7, we can upper-bound the total memory reload ovenhead
stated in the following theorem:

Theorem 5.3. The total memory reload overheagl during t;'s response time is upper-bounded
by

a g medn (5.12)
t;2hp(i)
Proof. Follows from Lemma 5.7 sincey = D"+ g/ ™. O

This leads directly to the following theorem.

Theorem 5.4. The WCRT of; is upper-bounded by the smallest positive solution to

()
R=G+ & gj+min ? Ci; ? PD; + MD;(R) + d/}*! (5.13)
8j2hp(i) i i

whereg;j is given byg‘;’ij ™ for UCB-Union Multi-set (i.e., Equatio(8.7)).

Proof. By Theorem 5.3 and substitutircgﬂ“' for r'j;; in Equation (4.9) O

Since,dm“' calculated using Equation (5.7) is always less than or equa[;r}ﬁb calculated
using Equation (4.11), the resulting WCRT obtained using Equation (5.13) is always less than
or equal to the WCRT obtained using Equation (4.9) whgns computed using the UCB-Union
multi-set approach. In other words, the integrated multi-set approach to CRPD and CPRO analysis
given by Theorem 5.dominateghe seperate combination of the UCB-Union multi-set and CPRO

multi-set approaches.

5.4 Experimental Evaluation

In this section, we evaluate how the integrated CRPD-CPRO analyses perform in terms of schedu-
lability and whether it is bene cial to use the integrated approaches in comparison to the analyses

that separately account for CRPD and CPRO. We performed experiments using the Malardalen
benchmark suite (Gustafsson et al., 2010) and a set of sequential benchmarks from TACLEBench (Heiko,
2016) with various parameter settings.

Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
84 Overheads

The tasks paramete@, PD;, MD;, MD] along with the sets dJCB;, ECB, PCB andnPCR
were extracted using the Heptane static WCET analysis tool (Hardy et al., 2017) as presented in
Chapter 4. The target architecture was MIPS R2000/R3000 assuming a cache line size of 32 Bytes,
a cache size of 8kB and a block reload tichgm= 8ms. The memory footprint of each task was
upper bounded by 256 cache sets (i.e., 100% of the cache size). Table 5.2 shows the resulting task
parameters for the benchmarks used during the experiments.

The other task set parameters were randomly generated as follows. The default number of
tasks was 10 with task utilizations generated using UUnifast (Bini and Buttazzo, 2005). Each task
was randomly assigned the val@&sPD;, MD;, MD}, UCB;, ECB, PCB andnPCB of one of the
analyzed benchmarks. Task periods were set suchlithaCi=U;. Task deadlines were implicit
and priorities were assigned in deadline monotonic order.

We conducted experiments varying the total task utilization, cache size, block reload time and
task memory footprints. A WCRT based schedulability analysis is performed using the same task
sets for all approaches.

5.4.1 Core Utilization.

In this experiment, we randomly generated 100 task sets (with 10 tasks each) with a total uti-
lizations varied from @25 to 1 in steps of 025. The experiment was rst performed using the
Malardalen benchmarks and then using TACLEBench's sequential benchmarks.

Figure 5.3a and 5.3b show the number of task sets that were deemed schedulable by the differ-
ent analyses. Both plots also show the number of task sets that were deemed schedulable without
considering any CRPD or CPRO. We only show cropped versions of the plots starting from a
utilization of G7. All approaches produce identical results below this point.

Observation 5.1. Integrated CRPD-CPRO analyses out-perform the state-of-the-art CPRO-union
and multi-set approaches that separately account for CRPD and CPRO.

Figure 5.3a shows that when using Malardalen benchmarks the integrated schedulability tests
accepted more task sets in comparison to tests using separate CRPD and CPRO analyses. The
difference between the integrated CRPD-CPRO union approach and the separate CPRO-union
approach is more signi cant in comparison to their multi-set counterparts. The schedulability
ratio is increased by up to 7%. However, as the separate CPRO multi-set approach is already much
more precise the difference between the integrated CRPD-CPRO multi-set and the separate CPRO
multi-set approach is only around 2%. Nevertheless, we can observe that there are task sets that
were schedulable using the integrated CRPD-CPRO approaches but not with the separate CPRO-
union and multi-set approaches, therefore in this case the integrated CRPD-CPRO approaches
outperforms the separate CPRO-union and multi-set approaches. Note also that the schedulability
gain slightly increases when the cache size increases. For instance, when there are 512 cache sets
the gain is 8% for the integrated CRPD-CPRO union analysis, and 4% for the multi-set analysis.

Observation 5.2. For benchmarks (i.e., tasks) with large memory footprints, there is no gain when
integrating the CRPD-CPRO calculation.

5.4 Experimental Evaluation

85

Table 5.2: Task parameters for the benchmarks used during the experiments

Name G PD; MD; MD'; ECB | PCB | UCB | nPCB | Benchmark Type|
lcdnum 3440 984 2740 192 20 20 20 0 Malardalen
bs 1399 203 1223 34 11 11 10 0 Malardalen
bcall 1585 785 886 89 8 8 7 0 Malardalen
bsort100 712289 | 710289 90893 88907 20 20 18 0 Malardalen
select 17138 11158 7858 1394 60 60 60 0 Malardalen
sqrt 5667 2770 3242 362 26 26 25 0 Mélardalen
jfdctint 17347 7747 10473 965 96 96 96 0 Malardalen
insertsort 7574 5974 2343 752 16 16 10 0 Malardalen
cnt 10090 7191 3818 933 27 27 26 0 Malardalen
prime 25891 23791 4246 2152 17 17 16 0 Malardalen
ndes 137968 | 120823 31871 14834 121 75 100 46 Malardalen
crc 143172 135796 25288 17932 44 44 43 0 Mélardalen
fdct 17350 6550 11525 9327 106 22 58 84 Malardalen
minver 21668 4868 17265 518 167 167 159 0 Mélardalen
fft 157880 123681 45816 11888 141 141 140 0 Mélardalen
ud 28427 20627 10415 10415 75 53 31 22 Mélardalen
adpcm 230123 196131 55609 21501 240 240 237 0 Mélardalen
nsichneu 316409 22009 294400 294400 256 0 256 256 Mélardalen
statemate | 190496 10586 180110 180110 | 256 36 256 220 Malardalen
fmref 12117800| 2143590| 10148500| 10063200, 256 | 161 256 95 TACLEBench
adpcm-dec| 479761 | 460616 84090 64892 173 | 173 172 0 TACLEBench
adpcm-enc| 482994 | 462750 70921 50646 178 | 178 177 0 TACLEBench
h264-dec | 2609630 | 1661910| 1143780 | 1130800 | 256 | 133 256 123 TACLEBench
huff-dec 821956 | 808273 | 112838 97680 84 84 84 0 TACLEBench
lift 1945120 | 1929300| 282201 265799 140 140 140 0 TACLEBench
petrinet 38532 4632 34191 9633 256 | 229 256 27 TACLEBench
audiobeam| 1883880 | 1824060| 310955 302240 | 253 75 253 178 TACLEBench

86

Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
Overheads

(a) Schedulability ratio using Mélardalen benchmarks

(b) Schedulability ratio using TACLEBench

Figure 5.3: Schedulability ratio with respect to total core utilization

5.4 Experimental Evaluation 87

As shown in Figure 5.3b, the integrated CRPD-CPRO analyses do not improve over the state-
of-the-art for the TACLEBench benchmarks. In fact, the same number of task sets were schedu-
lable using all the approaches. The difference with Figure 5.3a can be understood as follows.
Malardalen benchmarks consist of both light and heavy tasks (see Table 5.2) whereas the majority
of tasks in TACLEBench have large memory footprints using the entire cache. Therefore, almost
all tasks overlap in the cache, in which case the tasks with lower priority than &;tésk., the
tasks in affi; j)) evict the same cache blockstgfas the tasks with higher priority (i.e, in p).

Hence, according to Equation (5.2) and Equation (5.7), integrating the CRPD and CPRO analyses
does not provide any gain.

From here on, we only show experimental results obtained using the Malardalen benchmarks.

5.4.2 Cache size

For xed priority preemptive systems, the cache size can have a signi cant impact on the overall
schedulability of the system. In this experiment, we vary the total number of cache sets from
32 to 512. Figure 5.4a shows the resulting weighted schedulability (Bastoni et al., 2010) (see
Equation (4.20)) of each approach plotted against the total caclte size

Observation 5.3. The integrated CRPD-CPRO analyses tend to outperform the separate analyses
when the cache size increases.

We can see from the plot in Figure 5.4a, that initially increasing the cache size decreases the
schedulability of all the approaches (i.e., from 32 to 128). This is mainly because most tasks
use between 32 to 128 cache sets. Hence, increasing the cache size in this interval increases the
number of ECBs and UCBs of tasks resulting in higher values of CRPD. Most of the cache blocks
are evicted (and reloaded) for every task execution and hence we observe that all the approaches
produce similar results. However, a further increase in cache size (i.e., from 128 to 512) means
more tasks t in the cache with less con icts between tasks. Therefore, we see an increase in
schedulability of all approaches. Also increasing the cache size results in increasing the number
of PCBs of tasks, so the overlap between UCBs and PCBs of tasks also increase. Hence, we
observe that with an increase in cache size from 128 to 512, the integrated CRPD-CPRO union
and multi-set approach tend to perform better than the analyses that separately accounts for CPRD
and CPRO.

5.4.3 Block Reload Time @men)

In this experiment, we analyze the impact of block reload tipen on the performance of all
the approaches by varying it betweaems2to 207s, with all other parameters set to default values.
Figure 5.4b shows the resulting weighted schedulability.

2When calculating weighted schedulability we only consider task set utilizations between 0.6 to 1 since for lower
utilizations, all task sets are schedulable.

Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
88 Overheads

(a) Varying cache size

(b) Varying block reload timéyem

Figure 5.4: Weighted schedulability measure by varying cache utilization, block reloadtime
and cache size

5.4 Experimental Evaluation 89

Observation 5.4. For very low or very high values of block reload timgg, the integrated and
separate CRPD-CPRO analyses produce similar results.

For smaller values oflnem (i.€., between &s and 4rs) the impact of CRPD and CPRO on
the schedulability of tasks is minimal. This means that similar results are achieved for integrated
and separate union and multi-set approaches. Similarly, for higher valukggfi.e., dnem>
15ms), the CRPD becomes very high and thus negates any gain in schedulability resulting from
the reduction of the CPRO cost in the integrated analysis. In contrast, for valdgs,dietween
8nms to 12rs the impact of the overlap between CRPD and CPRO is visible. Note that for very low
values ofdnem(i.€., between &s and 4rs) all analysis perform better than the “No Preemption
Cost" analysis. This is mainly because the “No Preemption Cost" analysis does not account for
cache persistence and only use the WCET of tasks to compute the response time.

5.4.4 Task Priority and Memory footprint

The integrated CRPD-CPRO approaches avoid double counting in the total memory reload over-
head caused by the higher priority tasks. Therefore, the memaory footprints of higher priority tasks
can greatly affect the performance of the integrated CRPD-CPRO analysis.

To evaluate the impact of task memory footprints on the performance of the integrated CRPD-
CPRO approaches, we performed a simple experiment using a single task set comprising 6 tasks
(t1 totg, wheret 1 has the highest priority). We increased the memory footprint (i.e., number of
ECBSs) of the highest priority tagk and analyzed its impact on the total memory reload overhead
my of the medium priority tasks. Task set parameters used in this experiment were set as follows.
Core utilization was xed at (¥, with task utilizations generated using UUnifast algorithm. Each
task was assigned parameters usingltitempbenchmark. Task periods were set such that
T, = G=U; (i.e., T = 161586,T, = 171642,T3 = 220971,T, = 710848,Ts = 1363503 ands =
14533791). Cache size was xed to 256 cache sets yith,= 8nrs.

In this experiment, we evaluate the relative performance of the integrated CRPD-CPRO ap-
proaches in terms of memory reload overhead herefore, we report thgain on the total mem-
ory reload overhead#@" for taskt 4, i.e.,n§*", by increasing the number of ECBs of the highest
priority taskt 1. _

The relative gaimf®" is de ned asnf®" &' ”’%F?’ﬁm wherenf®Pis the total memory reload
overhead for task; under the separate CRPD and CPRO analysisrdﬁds similarly the total
obtained with the integrated analysis. For the integrated CRPD-CPRO Union appmg#ds,
given by Equation (5.3), whereas for the CRPD-CPRO multi-set appnmjélbls given by Equa-
tion (5.12). For the separate approaches, in each case the valyeafr m“' is used instead of
dj;i or dmm.

Observation 5.5. If the memory footprint of higher priority tasks increase, then the relative gain
of the integrated analyses over the state-of-the-art analyses increases.

SHere, we deliberately chose a benchmark with signi cant memory footprint to impact the memory reload overhead
of other tasks.

Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
90 Overheads

Table 5.3: Relative gainf®" for the CRPD-CPRO union and multi-set approaches by increasing
the number of ECBs df;

Increase of 1's ECBs | n§®" with integrated| n®" with integrated
(%) CRPD-CPRO union| CRPD-CPRO multi-set
No Increase 9% 12%
20% 11% 16%
40% 13% 18%
60% 14% 20%
80% 15% 20%
100% 16% 20%

Table 5.3 shows that the gain in total memory reload overhedd wicreases with thés's
memory footprint.

This behavior can be explained as follows. If one of the higher priority tasks {@)dhas a
big memory footprint (i.e., more ECBS) it can contribute more to both CRPD and CPRO of lower
priority tasks. This results in increasing the overlap between the CRPD and CPRO of those tasks.
In contrast, if the higher priority tasks have small memory footprints, they will have less impact
on the CRPD and CPRO of medium and lower priority tasks and hence the overlap between the
CRPD and CPRO will also be small.

This observation explains the rather small average schedulability gain in the experiments pre-
sented until now. Since tasks with smaller memory footprints mostly have lower execution times,
their periods are most of the time shorter. Therefore, higher priority tasks usually have smaller
memory footprints in the randomly generated task sets, hence resulting in a reduced gain. Yet,
we note that this relationship between memory footprint, WCET, and period does not always hold
in practice. Tasks with short periods and a relatively small WCET may still have a substantial
memory footprint if they implemented via straight-line code. Similarly tasks with long WCETs
may have a small memory footprint in the case where they implement a small loop that is repeated
many times.

5.5 Chapter Summary

In this Chapter we answer two questions: (1) Is it bene cial to integrate the calculation of CRPD
and CPRO? and (2) when and to what extent can we gain in terms of schedulability by inte-
grating the calculation of CRPD and CPRO? Our experimental evaluation, as well as theoretical
dominance results, showed that integrated CRPD-CPRO analysis can, in some cases, increase the
schedulability ratio by 2% to 7% by providing a tighter calculation of total memory reload over-
heads compared to the analyses that treat CRPD and CPRO independently. However, as pointed
out using a set of observations in the experimental evaluation the gains obtained using the inte-
grated CRPD-CPRO analysis are dependent on certain system con gurations and parameter val-
ues. The average gains in terms of schedulability resulting from the integration of CRPD-CPRO

5.5 Chapter Summary 91

calculations may not be large; however, it is important to note that nevertheless, the integrated
approaches dominate the separate treatment of CRPD and CPRO and this dominance is obtained
with no increase in complexity, or need for extra information. Therefore, it is indeed bene cial to
integrate the calculation of CRPD and CPRO.

Chapter 6

Evaluating the Impact of Memory
Layout of Tasks on Schedulability

When computing the inter-task cache interference, i.e., CRPD and CPRO, the analysis presented
in Chapter 4 considers the worst-case task layout in memory, i.e., all tasks start at the same static
memory address, which maximizes the inter-task cache interference. Similarly, the analysis pre-
sented in Chapter 5, assume a sequential layout of tasks in memory. As discussed in Section 3.3.2,
the position of a task in the main memory determines which cache blocks will be used by the task
which in turn impacts the inter-task cache interference that can be suffered by that task. In this
chapter, we will investigate the impact of different task layouts on task set schedulability.

As already discussed in Chapter 3, several different approaches have been presented in liter-
ature to bound the intra- and inter-task cache interference by means of cache partitioning (Kirk
and Strosnider, 1990; Wolfe, 1993; Altmeyer et al., 2014; Busquets-Mataix et al., 1997; Bui et al.,
2008; Kim et al., 2013; Altmeyer et al., 2016) or by optimizing the task layout in memory (Lunniss
et al., 2012; Altmeyer and Gebhard, 2007). However, these existing cache partitioning and task
layout optimization technigues focus on either the intra- or the inter-task cache interference and
do not exploit the fact that both intra- and inter-task cache interference cemeloelated For
example, the cache partitioning approaches mainly focus on inter-task cache interference and are
subjected to one basic problem: the available cache space may not be enough for each task to have
its own independent (i.e., non-overlapping) cache partition. Also with cache patrtitioning, as the
number of tasks increase, cache space that can be used for each individual task becomes always
smaller. This reduced amount of cache space available to each task potentially increases its intra-
task cache interference (i.e., the task may itself start to evict its own cache blocks) resulting in an
increased execution time due to an increase in the number of main memory accesses. This may
eventually cause the task to become unschedulable even though it does not suffer any inter-task
cache interference. Similarly, the approaches focusing on optimizing task layout in memory (Lun-
niss et al., 2012; Altmeyer and Gebhard, 2007) changes task placements in memory to reduce the
inter-task cache interference while allowing tasks an unconstrained use of the cache. However,
even with an optimal layout of tasks in memory, allowing tasks an unconstrained use of cache

92

6.1 Cache Coloring 93

may still result in higher inter-task cache interference, e.g., the cache block evictions of lower
priority tasks caused by a higher priority task using the whole cache will be inevitable even with
an optimal layout of tasks unless the cache space used by the higher priority task is reduced (i.e.,
potentially increasing the intra-task cache interference of the higher priority task to decrease the
inter-task cache interference it may cause).

In this chapter, we evaluate the impact of memory layout of tasks on schedulability by iden-
tifying the relationship between intra- and inter-task cache interference. First, we show how one
can model intra- and inter-task cache interference in a way that allows balancing their respective
contribution to tasks worst-case response times. We then propose a technique optimizing the task
layout in memory that result in improved task set schedulability. The main contributions of this
chapter are as follows:

1. We present aache coloringapproach to optimize task layout in memory such that cache
colors assigned to tasks are not strictly private but may be shared between tasks;

2. we model the impact of a given cache color assignment on different task parameters and
show how intra- and inter-task cache interference can be upper-bounded when using cache
coloring;

3. we present aimulated annealinglgorithm to optimize the cache color assignment to tasks
by re-allocating and re-sizing the cache colors assigned to tasks such that the task set's
schedulability is achieved; and

4. we perform an experimental evaluation using a set of benchmarks showing that our approach
results in up to 13% higher schedulability than state-of-the-art approaches.

6.1 Cache Coloring

As discussed in Section 3.3.1, cache (or page) coloring is a software technique that is widely
used to partition the cache by controlling the mapping of physical memory address to cache
blocks (Liedtke et al., 1997; Guan et al., 2009; Mancuso et al., 2013; Kim et al., 2013). Cache
coloring is mainly supported by systems that wgtual memory. The rationale behind virtual
memory is to divide the address space used by tasks into blocks patied Each page represent

a series of contagious memory addresses used by tasks. The Memory Management Unit (MMU)
maps these pages to physical memory location by translating the virtual page addresses into phys-
ical memory addresses. Figure 6.1 shows an example mapping between physical addresses and
cache entries. When virtual memory is used, each memory address referenced by a task translates
into a virtual address, wheigleast signi cant bits represent a page offset. The remaining bits

of the virtual address corresponds to a physical page number. The location of a memory block in
the cache is determined by its physical address. We can see in Figure 6.1 that for a cacfe with 2
cache sets and a cache line size 'dbytes, last bits of the physical address represent the cache

line offset. Whereas, the negtits are used as a set index into the cache. In this scenario, the

94 Evaluating the Impact of Memory Layout of Tasks on Schedulability

Figure 6.1: A visual representation of cache coloring (Kim et al., 2013)

overlapping bits between physical page number and the set index represeoiothaits. Cache
coloring uses these overlapping bits as a color index, which effectively divides the cache into
25t 9 cache partitions. By controlling the color of pages assigned to a task, the operating system
(OS) can manipulate cache blocks at the granularity of the page size times the cache associativity.
The maximum number of colors that a platform can support is usually computed as follows:

CacheSize

Number of Cache Colors —— .
CacheAssociativity PageSize

6.2 Assumptions on the System Model

In addition to the general system model detailed in Chapter 2 and Chapter 4, in this chapter we
make the following assumptions on the system model.

« The cache is assumed to be direct-mapped WA colors. Each color is uniquely num-
bered between 1 t&°®@. The size of a cache color is denoted k¢ and is equal the
number of successive sets in the cache that may be used by tasks assigned to that color.
For simplicity, we assume that the size of every cache color is the same. Note that this is a
common practice in real systems (Gracioli et al., 2015).

» The task seG comprises tasks, i.e.G= ftq;::::;t,g9. Each task; is de ned by a triplet
(Ci[k], Ti, Di), whereCi[ki] is a vector of length®°® that contains the worst-case execution
time of taskt; in isolation assumindg contiguous cache colors are assigned;toNote
thatk; represents theaumberof cache colors used hy, whereas theetof cache colors
assigned td; is denoted byck. The minimum inter-arrival time of; is T, andD; is its
relative deadline. We assume that the tasks have constrained deadlinBs, i.g;,

» For each task;, PD; denotes the worst-case processing demangdansidering that every
memory access is a cache HlD;[k;] is the worst-case memory access demand (in terms
of time) of any job of task; executing in isolation and assuming tlkatontiguous cache

6.2 Assumptions on the System Model 95

colors are assigned to. It is usually assumed th@&l[k] is non-increasing witl;, i.e.,k <

ki+ 1 =) Ci[k] Cilki+ 1]. However, we note that sin€tD; is independent of the number

of cache colors assigned tq it is the worst-case memory access demitiol[k;] which

must be de ned as a non-increasing function w.r.t. the number of cache colors assigined to
i.e,ki<k+1=) MDjk] MDilk + 1]. Furthermore, we assume that the values; [¥],

PD; andMDi[ki] can be calculated using a static timing analysis tool such as Heptane (Hardy
etal., 2017).

Similar to the de nition ofC;[ki] and MD;[ki], in this chapter we assume that the residual
memory access demand (see De nition 4.3) of tgskiso depends on the number of cache
colors assigned tb;, i.e., ki. Hence, in this chapter, we will denote the residual memory
access demand of task by MD{[kj]. Consequently, Equation (4.4) used to compute the
total memory access demahtD;(t) of taskt; within a time window of length is adapted

as follows:

MDj(t) = minn il MDi[ki] ; !
' T, T

o

MDir[ki]+ PCB(ki) dmem (6.1)

wherePCB(k;) denote the maximum number of PCBs of tagkwhent; is assigned;
cache colors.

The list of important symbols used in this chapter is provided in Table 6.1.

Table 6.1: List of important symbols used in Chapter 6

D

Symbol Description

G Task set of size

t; Task with index

Klotal The total number of colors in the cache

ksize The size of one cache color

ki The number of cache colors allocated to thsk

ck; The set of cache colors allocated to task

Cilki] Vector of Iengthkm‘a' that contains the worst-case execution time of task
isolation assuming; contiguous cache colors are assigneti to

cmn Worst-case execution time of taskin isolation assumingj; is allocated a cachg
of in nite size, i.e., the total cache space assigned to tagkgreater or equal to
the size oft; in main memory.

Ti Minimum inter-arrival time of task;

Di Relative deadline of tastk

R Worst-case response time of task

PD; Worst-case processing demand of tgsk isolation

Continued on next pag

112

ask
ority

96 Evaluating the Impact of Memory Layout of Tasks on Schedulability
Table 6.1 — continued from previous page
Symbol Description
MDi[ki] Worst-case memory access demand of any job of taskecuting in isolation
‘ and assuming tha¢ contiguous cache colors are assignetj to

MD™" Worst-case memory access demand of taskisolation assuming; is allocated
an in nite cache space, i.e., the total cache space assigned tn tagieater or
equal to the size df; in main memory.

MD"& Maximum worst-case memory access demand of isolation when there is n¢
cache assigned to task(i.e., ki = 0).

DMD;[ki] The change in the worst-case memory access detink;] of taskt; due to
an increase in the number of cache colgrassigned ta;.

MDy [ki] Residual memory access demand of sk isolation assuming thdt contigu-
ous cache colors are assigned;to

DMDE[kj] The change in the residual memory access derMiDp[kj] of taskt ; due to an
increase in the number of cache colkysassigned tad;.

MD;(t) Total memory access demand of taskn a time interval of length

hp(i) The set of tasks with higher priority than

he(i) The set of tasks with higher priority thanincludingt;, i.e., hegi) = hp(i)[t;.

aff(i; j) The set of intermediate tasks (includihg that may preempt; but may them-
selves be preempted by some higher priority task

dmem Time to reload one cache block from the main memory

cynras Upper bound on the intra-task cache interference suffered byt tasken as-

_ signedk; contiguous cache colors.

Cli';r;te”g(Ri) Upper bound on the inter-task cache interference in terms of CRPD that; t
may suffer during its response time due to preemptions by any higher pr
taskt 2 hp(i).

Clj';';te”r (R) | Upper bound on the inter-task cache interference in terms of CPRO thaf each
higher priority task ; 2 hp(i) may suffer during the response timetaf

Ki:j The worst-case number of cache colors that may suffer evictions as a result of a
single preemption of taslk by taskt ;.

k?;i The maximum number of cache colors of taskthat can be evicted between
its successive jobs due to the executions of all tasks irfijep; during the
response time of tagk.

ECB(k) The maximum number of ECBs of tatkwhen assignel; cache colors

UCB;(ki) The maximum number of UCBs of taskwhen assigned; cache colors

PCB(k) The maximum number of PCBs of taskwhen assignell, cache colors

N; The average number of times each UCB of tgsk accessed while it is cached

N The average number of times each PCB jof accessed after it is loaded in tf

I

cache.

Continued on next pag

ne

1)

6.3 Cache Interference Aware WCRT Analysis 97

Table 6.1 — continued from previous page

Symbol Description
r ﬁ?' CPRO suffered by one job of a higher priority tagk hp(i) during the response
time of a lower priority task;, when using cache coloring.
rpne CPRO of one job of a higher priority task 2 hp(i) during the response time of

a lower priority task j, when considering the difference between the worst-case
and the residual memory access demand oftask

g‘f?' CRPD suffered by task; due to one preemption by any higher priority task
t; 2 hp(i) when using cache coloring.

g‘ffb CRPD suffered by task; due to one preemption by any higher priority task
t; 2 hp(i), computed using the UCB-union approach (i.e., Equation (3.3)).

gt;‘J?t Total CRPD suffered by tagk in a time interval of length due to preemptions
by any higher priority task; 2 hp(i).

Y; Slack of task, i.e., the difference between the relative deadline and the WCRT
of tj.

stot Total slack of task seB

6.3 Cache Interference Aware WCRT Analysis

In this chapter, we will calculate the WCRT of a taskusing a similar formulation as presented
in Equation (4.9). However, we will explicitly consider the intra- and inter-task cache interference
suffered by tasks during the response tiRief taskt;, i.e.,

(

R=CM+ci™ky & min R cmin4 "M R PD; (6.2)
8j2hp(i) Tj Tj

) !

+ MADJ'(F\’@)+ CIJ_i;r;ter;r (R|) + Clii;r}ter;g(Ri)
In Equation (6.2)C™" denotes the worst-case execution time of task isolation assuming; is
allocated a cache of in nite size (or more practically, the total cache space assigned tpitask
greater or equal to the size pfin main memory). The intra-task cache interferencg; o¥.r.t the
number of cache cololls assigned td; is denoted byCII™™®* as intra-task interference impacts
only the execution time of; itself. Similarly, the intra-task cache interferer€é™ of each
higher priority task j 2 hp(i) executing during the response timetpfs considered in the higher
priority interference term within the sum on higher priority tasks. Morecﬂéﬁfe“g(Ri) denotes
the inter-task cache interference in terms of CRPD thatttastay suffer during its response time
due to preemptions by any higher priority taisk2 hp(i) andCIji;r;te“r (R) bounds the inter-task
cache interference in terms of CPRO that each higher prioritytte®kp(i) may suffer during the
response time df;. Note that in Equation (6.2MAD,-(Ri) will be calculated using Equation (6.1).

98 Evaluating the Impact of Memory Layout of Tasks on Schedulability

Figure 6.2: Increase in execution demand and memory access demandtefdiasko reduction
in number of cache colors assigned to

SinceMADj(Ri) is a function ofMD k], MDG[k,—] and the number of PCBs of, which are in turn
functions of the number of cache coldssassigned td; thereforeMD;(R;) directly considers the
intra-task interference of all jobs of executing during the response timetof In the following
sections, we detail how the total intra- and inter-task cache interference can be bounded under the
cache coloring approach considered in this chapter.

6.4 Bounding Intra-Task Cache Interference

Intra-task cache interference represents contention between different code segments of a task that
are mapped to the same cache space. If the cache space allocated to a task is not suf cient to
hold all its instructions/data, the task may self-evict its own cache content resulting in higher main
memory access demand even when the task is executing in isolation. Fortaitasktra-task

cache interference depends on the cache space or the number of caché; @deigned td;.
Consider the plot of worst-case execution tirgdki]) and the worst-case memory access demand
(MDj[ki]) of taskt; with respect to the number of cache colkrassigned td; shown in Figure 6.2.

The plot shows the actual variation in the worst-case execution time and the worst-case memory
access demand of the benchmédkt of the Malardalen benchmark suite (Gustafsson et al.,
2010), i.e., represented as tagkwhen the number of cache coldgsassigned to; are varied in a
descending order from 8 to 1. The values in Figure 6.2 were obtained using Heptane (Hardy et al.,
2017) for a cache with 8 cache colors, each having a size of 512 Bytes.

6.5 Bounding Inter-task Cache Interference 99

Figure 6.2 shows that when the number of cache colors (or cache space) assigned tis task
greater or equal to the size ofin main memory (i.e., fok; 4), the worst-case execution time
(Gi[ki]) and the worst-case memory access demdfidifki]) of t; is minimum, i.e.Ci[k] = Cimin
andMDj[k] = MD™"for k; 4, whereMD[™" represents the worst-case memory access demand
of taskt; in isolation assuming); is allocated an in nite cache size. Effectively, far 4 t; will
suffer no intra-task cache interference.

We can also observe from the plot in Figure 6.2 that by decreasing the number of cache colors
ki assigned ta;, its worst-case execution tim€;{k]) and the worst-case memory access demand
(MDj[ki]) tend to increase. This increasedifk;] andMD;[k;] is due to an increase in the intra-task
cache interference df mainly because by reducing the number cache cdorthe number of
UCBs of taskt; may also decrease, i.e., by decreasing the number of cache kdlorshe cache
space) assigned t@, cache blocks of; that were previously mapped to different cache sets and
were reused more than once before eviction may now map to the same cache set. Consequently,
loading one cache block will evict the other thus resulting in reducing the number of cache blocks
of t; that can be reused, i.e., the number of UCBs. Effectively, this reduction of the number of
UCBs results in increasinglD;[ki] of t; for ki < 4. Therefore, the intra-task cache interference of
a task directly relates to it worst-case memory access demand in the following manner

CI{"™™% = MD;[k] MDJ"™" (6.3)

The resulting intra-task cache interference of tgsfor a given cache color assignmdqti.e.,
Cl™@k 'is accounted for in the WCRT of (i.e., Equation (6.2)) by explicitly addingl™™* to

Cimin which is the worst-case execution timetgfin isolation assuming; is allocated an in nite
cache. However, we note that beca@f"™* depends oMD;[k] and sinceMD;[k] may not
necessarily be experienced on the same execution patliafdifferent cache color assignments
ck;, it holds thatGi[k] ~C™"+ CI™™®¥ Hence, Equation (6.3) provides a safe upper-bound on
intra-task cache interference even for multi-paths programs.

6.5 Bounding Inter-task Cache Interference

The inter-task cache interference a taskay suffer due to higher priority tasks inipis mainly
categorized into two types, i.e., the inter-task cache interference due to CRPDs and the inter-task
cache interference due to CPROs.

The inter-task cache interference in terms of CRPD results from the eviction of UCBs of

due to preemptions by a higher priority taskin hp(i) and is denoted bytlii;r}te”g. Whereas, the
inter-task cache interference in terms of CPRO results from the eviction of PCBs of the higher
priority taskt; 2 hp(i) due to the executions of all other tasks in the system (whilexecutes
during the response time tf) and is denoted b@lji;r;te”r . In the following subsections, we explain
howCIiif}te”g andCIji;ri'te”r can be bounded when using a cache coloring approach.

100 Evaluating the Impact of Memory Layout of Tasks on Schedulability

6.5.1 Inter-Task Cache Interference due to CRPDs

As discussed in Chapter 3 (Section 3.2), a number of methods have been proposed in the litera-
ture (Lee et al., 1998; Busquets-Mataix et al., 1996; Tomiyama and Dutt, 2000; Tan and Mooney,
2007; Staschulat et al., 2005; Altmeyer et al., 2011, 2012; Mackewal., 2020a) for computing

the CRPD under FPPS using the set of UCBs and/or ECBs. However, in this chapter, we focus on
a UCB-union-like approach (Tan and Mooney, 2007) to calculate the CRPD cost due to sharing
of cache colors between several tasks. Recall, that the UCB-union approach (Tan and Mooney,
2007) uses intersection between the set of ECBs of the preempting; tasél the set of UCBs of

all tasks inaff(i; j) possibly affected by the preemption caused pto calculate CRPD cogf;‘fb

(see Equation (3.3)).

However, when cache colors are being assigned to tasks, Equation (3.3) cannot be used as
is. This is mainly because when coloring tasks, any variation in the cache color of any task may
potentially change the set of UCBs and ECBs of all tasks iimdeed, the actual mapping of tasks
within a cache color may not be known as it is handled by the cache contr@lemsequently, the
actual set of ECBs/UCBs of tasks may not be known as they depend on the actual cache sets used
by the tasks. For example, consider two taskandts sharing the same cache coltk;, where
ck comprises 4 cache sets, numbered from 1 to 4. If bo#mdt s have 2 UCBs under this cache
assignment, these UCBs can be mapped to any of the four cache sets depending oartuiw
are mapped withik by the cache controller, i.dJCB; = f 1;2g andUCBs = f 3;4g or any other
combinations with or without overlapping betwed@B; andUCBs. Since the actual set of UCBs
of tasks might not be known, using different set of UCBs of tasks in Equation (3.3) may produce
different pessimistic/optimistic value for the CRPD cgﬁib.

In order to bound the CRPD under our cache coloring approach, we rst determine the cache
colors that may be affected whenis preempted by a higher priority task2 hp(i). Assuming
that the cache color assignment of tasks has already been dortg arelt ; are assigned a set of
ck andck; cache colors respectively.

We know from the UCB-union approach (Equation (3.3)), that when attdskpreempted by
a higher priority task j, the set of UCBs of all tasks in &ff j) can be evicted. Similarly, when a
taskt; using a set otk cache colors is preempted by a higher priority taskvhose assigned a
set ofck; cache colors, the cache colors used by all tasks (i, @ffmay be evicted. Therefore,
the maximum number of cache colors that may be affected due to a single preemtiduy of
is bounded by;;j , where 1

0
k= @ 1 kAL ok (6.4)

8s2aff(i; j)

IMost cache controllers (Liedtke et al., 1997; Lin et al., 2008; Zhang et al., 2009; Suhendra and Mitra, 2008) work at
the granularity of a memory page and can be controlled to make sure memory pages of a task map to the speci ed cache
color. However, when sharing cache colors among tasks, memory pages of different tasks may map to the same cache
color so changing the mapping of one task may affect the others, making it dif cult to predict the actual placement of
tasks in cache.

6.5 Bounding Inter-task Cache Interference 101

Here k;:; gives the worst-case number of cache colors that may suffer evictions as a result of a sin-
gle preemption of task; by taskt ;. Therefore, the produd; kSiZ¢ can be used to upper bound
the number of cache sets that may be evicted due to a single preemptjdsyof. However, this
bound can obviously be very pessimistic, mainly because it does not consider the actual number
of UCBs in those cache sets and hence the actual number of memory blocks that must be reloaded
from main memory after eviction.

To tightly bound the CRPD cost, both the number of potentially evicted cache colork;ji.e.,
and the number of ECBs/UCBs of tasks must be considered. We know that under cache coloring
the actual set of ECBs/UCBSs, i.e., their mapping in cache, may not be known as they depend on
the actual cache sets assigned to tasks. However,rtheiberonly depends on the number of
cache colors assigned to tasks rather than the actual cache sets assigned to those tasks. Therefore,
let UCB;(ki) andECB (k) be de ned as

« UCBi(k;): The maximum number of UCB®f taskt; when it is assigne&; cache colors.
« ECB(kj): The maximum number of ECBs of taskwhen it is assigne#; cache colors.

Effectively, the CRPD cost due to a single preemptionjdfy t; can be bounded using the
notion of UCB;(k;) andECB(k;).

Lemma 6.1. The CRPD cost due to a single preemption of a lower priority tasky a higher
priority taskt j is bounded byg??', ie.,

()
col _

g% = dnem min § (UCBy(k) Vsj);ECB(k;j) (6.5)
8s2aff(i;j)

where ;=1 if jck\ ckjj>0 and \4j= 0; otherwise.

Proof. We prove that both ge (i) (UCBs(ks) Vsj) andECBj(k;;j) are upper bounds on the
CRPD cosg‘ff'. Therefore, the minimum between the two is also an upper bourgﬁj?’bn

(1). From the UCB-union approach (Equation (3.3)), it follows that when tagkpreempted by

a higher priority task j, the set of UCBs of all tasks in &ff j) may be evicted. However, when
using cache coloring the actual set of UCBs of a tagk aff(i; j) may not be known. Instead, we
know the maximum number of UCBs 6, i.e.,UCBg(ks), for a given cache color assignmehg

with sizeks. Also due to cache coloring; can only evict UCBs of a task 2 aff(i; j) only when

jcks\ ck;j> 0 (i.e.,Vsj = 1). Hence, the total number of UCBs among all tasks ii gff that can

be evicted by j is bounded b ge a1i(i: j) (UCBs(ks) Vsj). Therefore, for a single preemption of

ti by t}, &seaij (UCBs(ks) Vsj) upper bounds the CRPD cag’.

(2). The ECB-only approach (Busquets-Mataix et al., 1996; Tomiyama and Dutt, 2000) implies
that the number of ECBs of the preempting task upper bounds the total CRPD cost that a task

2The maximum number of ECBs, UCBs and PCBs of a task for a given cache color assignment can be computed
using any static timing analysis tool such as Heptane (Hardy et al., 2017).

102 Evaluating the Impact of Memory Layout of Tasks on Schedulability

may cause, i.e., for a single preemptiont pby t ; the number of ECBs df; also upper bounds
the CRPD cost. However, due to cache coloring not all cache colors used bg., kj, may
overlap with cache colors used by tagkand by tasks in aff; j)) except fork;;; cache colors (i.e.,
Equation (6.4)).

Hence, the maximum number of ECBstgfin thek;;; overlapping cache colors used by tasks
in aff(i; j), i.e.,ECB;j(k;;j), upper bounds the CRPD ccgﬁf' fromt;'s perspective.

The lemma follows. O

For a single preemption of byt j, the CRPD cost can be bounded using Lemma 6.1. However
as we will now prove, the actual time taken to reload all UCB# éfom the main memory is also
bounded by the change in the worst-case memory access demand pfwaskthe number of
cache colorg; assigned ta;.

To illustrate, letMD{"® be the maximum worst-case memory access demahdwdfen there
is no cache assigned to(i.e., ki = 0). Now, consider the example plot of main memory access
demandMDij[k] of a taskt; shown in Figure 6.3. The plot shows the normalized worst-case
memory access demand of tldet benchmark of the Malardalen benchmark suite when the
number of cache colork assigned to that task varies. The values reported in Fig. 6.3 were
obtained using the same cache con guration as in Figure 6.2. Figure 6.3 shows that fothe

Figure 6.3: Worst-case memory access demdBk;] of taskt; w.r.t the number of cache colors
assigned to;.

worst-case memory access demant} & maximum, i.e.MDj[k] = MD{"® Also, fork; = 0 since
no cache space is assigned;tthere cannot be any useful cache blocks, UEB = 0. Moreover,
sinceMD;[k;] is a non-increasing function w.r.t. the number of cache cdonrse observe that by
increasings;, MDj[ki] is decreasing.

6.5 Bounding Inter-task Cache Interference 103

This decrease iMDi[k;] of taskt; is due to an increase in its number of UCBs, i.e., by in-
creasing the number of cache col&rgor cache space) assigned fpmore instructions/data of
may remain cached and therefore reused without having to reload them from main memory. This
effectively increases the number of UCBstgfleading to a reduction in its worst-case memory
access demand. The change in the worst-case memory access ddiditiof t; due to an
increase in the number of cache colkrassigned td; can be bounded bPMD;[ki], where

DMDi[k] = MD™* MD;[k] (6.6)

As the change in worst-case memory access dematid®fiue to an increase in the number of
accesses to UCBs tf. Formally,

UCB(kl) N; dmem DMDi[ki] (6-7)

whereN; is the average number of times each UCR ;a6 accessed while it is cached.
SinceDMD; [ki] bounds the time to reload all UCBs yffor a given cache color assignmeit

it also bounds the total CRPD can suffer due to eviction of its UCBs by tasks i(f)pHowever,

we know from Lemma 6.1 that when taskis preempted by a higher priority task 2 hp(i),

UCBs of all tasks in affi; j) can be evicted. Therefore, to bound the total CRPhay suffer

due to preemptions by a task2 hp(i) the change in the worst-case memory access demand of

all tasks in affi; j) should be considered.

Lemma 6.2. The total CRPD cost suffered by a taskdue to preemptions by a higher priority
taskt; 2 hp(i) is bounded by

8j2hp(i):d? & DMDgk] (6.8)
8s2 aff(i;j)
Proof. Assuming tasks are assigned priorities in ascending order such that taslas a higher
priority thant;, we prove by induction that Equation (6.8) hoRis2 hp(i).
Base Case:Considert; andt; 1 such that; 1 has a priority just above that ¢f. Therefore,
aff(i;i 1) = t;.

The total CRPD that; may suffer due to task; 1, i.e., g‘;?‘ 1, can never be larger than the
time to reload all UCBs of; N; times from the main memory, i.e., the number of times UCBs of
t; were accessed in cache whgrxecutes in isolation. Whereas, Equation (6.7) implies that that
time is bounded bpMDi[k]. Hence, forj= i 1,¢'$" DMD;[k].

Induction step: Consider another tadk having a priority higher that; and assume that Equa-
tion (6.8) holds forj = s, then Equation (6.8) also holds fpr= s 1.
Forj=s 1, aff(i;js 1) = ft;;:::itsg, so using Equation (6.5) we know that wheq ;

Also, by the same reasoning than above we know that the total CRPD every tadk;m aff) =
ft;;::::itsg may suffer due to tasks 1 is bounded by DMD;[ki]; ::::DMDg[Ks]g respectively.

104 Evaluating the Impact of Memory Layout of Tasks on Schedulability

So, it follows that forj = s 1, the total CRPDD; may suffer due td; is bounded such that
99" &gea(i;j) DMDs[Ks].
Therefore, by induction Equation (6.8) holds for i hp(i). O

I m
Since a higher priority task; 2 hp(i) can reIeaseTLj jobs during a time window of length

t and the CRPD caused by each of these jobs;aan also be bounded usi@j" (i.e., Equa-
tion (6.5)), therefore the total CRPDQ may suffer due td , i.e., ¢, during a time window of
lengtht is bounded such that}' ¢ g%

Consequently, The total inter-task cache interference in terms of CRPD suffergedusyto a
higher priority task 2 hp(i) in a time interval of length is upper bounded b@lii;r}te”g(t), where
!

——) t
Clil;rjlter,g(t) - min - g??'; é DMDglKg] (6.9)
J 8s2 aff(i; j)

6.5.2 Inter-Task Cache Interference due to CPROs

In Chapter 4 and Chapter 6, we presented different approaches to compute the CPRO of tasks.
However, in this chapter we will focus on a CPRO-union (i.e., Equation (4.5)) alike approach
to bound CPRO under the proposed cache coloring approach. To calculate the CPRO of a task
tj 2 hp(i) executing during the response timetef the CPRO-union approach uses the set of
PCBs of task j and the set of ECBs of all tasks in gt ; (see Equation (4.5)). However, as
already discussed for the CRPD calculation (Section 6.5.1), it is not possible to directly use the
CPRO-union approach (i.e., Equation (4.5)) under the cache coloring technique considered in this
chapter, mainly because the actual set, i.e., their accurate placement in cache, of PCBs and ECBs
may not be known. Therefore, to bound the CPRO of a tadlexecuting during the response

time of t;) under our cache coloring approach, we use a similar technique to the one used in
Section 6.5.1. We rst bound the worst-case number of cache colors that may be evicted between
two subsequent jobs of.

Assumingt; andtj are assigned a set ok andck; cache colors respectively, then the max-
imum number of cache colors of that can be evicted between its successive jobs due to the
executions of all tasks in h€p nt during the response time bf can be bounded bbyj-’;i calcu-
lated as follows.

= ckj\ [cks (6.10)

8ts2heqi)nt ;

k(J?;i
wherek(j’;i bounds the number of cache colors that can be affected by evictions between two suc-
cessive jobs of ;. Therefore, the produét?;i kS bounds the maximum number of cache sets
that can be evicted between two successive joltg.dflowever, that is obviously pessimistic and

to have a tighter bound on the CPRO in terms of the number of PCBstbat may be evicted
between its two successive jobs, we deP€B (k), i.e.,

» PCB(kj): The maximum number of PCBs of taskwhen it is assigneld cache colors.

6.5 Bounding Inter-task Cache Interference 105

PCB(k) can also be computed in a similar mannerB6B (ki) and UCB;i(k) as detailed in
Section 6.5.1. Furthermor®CB;(kj) andECB(k;) can be used to bound the CPRO of a task
tj 2 hp(i) executing during the response timetpfising the following lemma

Lemma 6.3. r ﬁ?‘ bounds the CPRO or the maximum number of PCBs of ttaskat may be
evicted between two successive jobis;afue to eviction ofk cache colors by tasks imeg(i) ntj,
where ()

o

r%= dpem min PCBi(k); & ECBy(K;) Vs; (6.11)
8ts2hedi)nt

where ;=1 if jck\ ckjj>0 and \j= 0; otherwise.

Proof. We prove that bottPCB;(k;) andégtSZhem)mj(ECBS(k(jJ;i) Vs j) are upper bounds on the
CPRO cost jcfi". Therefore, a minimum between the two bounds is also an upper bounﬁ"on
(1). By de nition of PCBs, the CPRO of a task is upper bounded by its number of PCBs. Hence,
assumingt; is assignedk; cache colors, the maximum number of PCBstpfare given by
PCB;j(kj). Therefore, the maximum CPRO one jobtgfcan suffer during the response time
of tj is upper bounded b CB;(k;).

(2). The worst-case memory interference of any task heg(i) nt; ont; is when it loads all its
ECBs between two subsequent jobg pfWith cache coloring, iks cache colors are assigned to
ataskts 2 heq(i) nt;, the maximum number of ECBs ¢f that can be loaded between two jobs
of t; are bounded bfECBs(ks).

(3). However,ts can only evict PCBs of task;j only if jcks\ ckjj > 0 (i.e.,Vs; = 1) and not all
cache colors used hty (i.e., cks) may overlap with cache color used byexcept fork(j);i cache
colors (see Equation (6.10)). EffectiveEzCBs(k?;i) Vsj bounds the number of ECBs tf that
may overlap and potentially evict PCBstqf

Since allts 2 hef(i) nt; may execute between two successive jobs;qfotentially evicting
its PCBs. The worst-case memory interference of &8l heg(i) ntj on PCBs oft j is bounded by
&st oheriyt, ECB(K]; Vsj). So the lemma follows. O

The CPRO (i.e.r jc;?') suffered by a single job of a higher priority task2 heg(i) executing
during the response time &f can be bounded using Lemma 6.3. However, since the CPRO
accounts for the extra memory accesses of a tagkue to eviction of its PCBs, it may also
depend on the memory access demarig giiven thatt j is assigned; cache colors.

To further illustrate this point, consider the example plot (i.e., Figure 6.4) of attasdp-
resenting the same (i.ddct) benchmark from the Malardalen benchmark suite with the same
cache con guration as used in Figure 6.3. The plot in Figure 6.4 shows two types of memory ac-
cess demands of taskwith respect to the number of cache colors (kg) assigned to, i.e., the
worst-case memory access demaidd([k;]) and the residual memory access demaMDK[kj]).

From Figure 6.4, we observe that when the number of cache colors assigneateédess than or
equal to 3, the worst-case memory access derMidglk;] of tj is equal to its residual memory

106 Evaluating the Impact of Memory Layout of Tasks on Schedulability

Figure 6.4: Variation in the worst-case and residual memory access demand bf task the
number of cache colors assigned.

access demardD}[k;], showing that fok; ~ 3,t; has no PCBs. However, by further increasing
the cache colors assignedttp(i.e., fork; > 3), we can see an increasing difference between the
worst-case memory access demaid;[k;] and the residual memory access dembamfj [k;] of
tj. This difference is due to an increase in the number of PCBg and is denoted bpMD)[ki],
where

DMDj[kj]= MDj[kj] MDjlk;] (6.12)

DMDrj [kj] corresponds to the reduction in time to access main memory due to an increase in the
number of PCBs of ;. Therefore DMDj[k;] effectively bounds the number of PCBstgfgiven
thatt ; is assigned; cache colors, i.e.,

PCB;(kj) N;

whereNf is the average number of times each PCB a6 accessed. Sind?eMDﬁ[kj] bounds the
number of PCBs of task;, it also bounds the CPRO suffered tywhen it executes during the
response time of a lower priority task

Lemma 6.4. The CPRO due to the eviction of PCBs of a job of tigsk hp(i) executing during
the response time of a task i.e.,r jc’;{‘e, is upper bounded by the difference between the worst-case
and the residual memory access demantpi.e.,
rire DMD|[kj] (6.14)
Proof.
(1). Equation (6.11) implies that the CPRO of one job of tagR hp(i) executing during the
response time of a taskis upper bounded by the time to reload all PCBsjdfom main memory
given a cache color assignmeéqti.e.,r Jo;?e PCB;j(kj) dmem
(2). Also, from Equation (6.13) it follows that the time to reload all PCB$ pofor a given cache
color assignmerk; is bounded by the difference between the worst-case and the residual memory

access demand of, i.e.,PCB;j(kj) N;) Omem DMDJ[Kj].

6.6 Optimizing Cache Color Assignment 107

(3). By de nition of PCBs,Nf 1. So the lemma follows. O

Lemma 6.4 can be used to bound the CPRO of one job oftta8khep(i) executing during
the response time of a task However, we know that task may execute several times during
the execution of; therefore, the total inter-task cache interference in terms of CPRO suffered by
tj while executing during the response timet p€an be bounded using the following theorem

Theorem 6.1. The total inter-task cache interference in terms of CPRO suffered by a higher pri-
ority taskt ; 2 hp(i) due to evictions of its PCBs by taskshie(i) nt j in a time interval of length
t is bounded by C;;'fte” , where

t

(;|ji;r;‘9”r = £ 1 min r ¢ ; DMD![kj] (6.15)
j

Proof. I m
t

(2). Itis proved in Lemma 4.2 that in a time interval of lengtit most T 1 jobs of task
can suffer CPRO.
(2). It implies that bothr jc;?' (Equation (6.11)) an®MD)[k;] (by Lemma 6.4 and Equation (6.12))
upper bound the CPRO suffered by one jolh péxecuting during the response timetaf There-
fore, the minimum between the two bounds is also an upper bound on the CPRO suffered by a
single job oft ; during the response time of

The theorem directly follows from the two points above. O

6.6 Optimizing Cache Color Assignment

In this section, we detail how we optimize the cache color assignment of tasks to balance the intra-
and inter-task cache interference such that it results in improving task set schedulability. We have
used &Simulated Annealin(SA) approach to optimize cache color assignment of tasks. Simulated
annealing (Kirkpatrick et al., 1983) is a meta-heuristic that allows to nd a near optimal solution
to an optimization problem in a reasonable computational time. It starts with a randomized state
and in a polling loop moves to neighboring states always accepting the moves that improve the
value of the objective function. However, the SA may also accept bad moves (i.e., that does
not improve upon the objective function) according to a probability distribution dependent on
the“temperature”. This is different from other local search based techniques that only accept
solutions that are better than the initial solution and may get stuck into a local optimum rather than
global optima. Our SA-based cache coloring approach is given by Algorithm 6.1.

When allocating cache colors to tasks, Algorithm 6.1 starts by assigning sequential cache
colors to alln tasks in a given task s& Cache colors are assigned to tasks in priority order with
the highest priority task rst. Once the sequential cache color assignment is done, the algorithm
checks the schedulability of each task@n If all tasks in task seG are schedulable with the
sequential cache color allocation (i.&js schedulable), no changes are made to the cache color
assignment of tasks and the algorithm returns true and exit. Howe@wy#s not schedulable

108 Evaluating the Impact of Memory Layout of Tasks on Schedulability

Algorithm 6.1 Simulated annealing based algorithm to optimize cache color assignment of tasks

1: fori 1ltondo
fckg=0
end for
AssignSequentialColorgka):;
if isSchedulablégp) then
return true;
else
SimulatedAnnealindg);
if isSchedulable®) then
return true;
else
return false;
end if
: end if
: Function SimulatedAnnealing®)
: CurrentTemp 400DesiredTemp 0:001;CoolingRate 0:99;

e N o o
QA wWNRO

17: while CurrentTemp DesiredTemmo

18: TaksetSlackOld CalculateTasksetSla(®);
19: SelectRando(ReAllocaté); ShiftLayouf) ; ReSiz@);
20: TaksetSlackNew CalculateTasksetSla(®);
21: DSlack TaksetSlackOld TaksetSlackNew
22: if DSlack Othen

23: Accept new cache color assignment @&r
24: else

25: Randomprob rand(0;1)

26: if Randomprokx eCWZ%{ET‘%methen

27: Accept new cache color assignment @r
28: else

29: Discard new cache color assignmenGf
30: end if

31: endif

32: CurrentTemp= CurrentTemp CoolingRate
33: end while

34: end function

with the sequential cache color allocation, cache color assignment of tasks is optimized using SA.
The SA algorithm uses the sequential cache color assignment of tasks as the initial solution and
then iteratively tries to improve it by randomly performing one of the following operations:

» Re-allocate(): Swap the set of cache colors assigned to two distinct tasks. Namely two op-
erations can be performed, (@ap-neighbors()swapping the set of cache colors assigned
to two neighboring tasks. This swap is based on the order of tasks in the main memory rather
than their priorities ;(2swap-random¢)swap the set of cache colors of two randomly cho-
sen tasks. These tasks may or may not be adjacent in main memory. If the chosen tasks are
not adjacent in memory, cache color assignment of tasks in between them is also updated.

« Shift-layout(): Increasing/decreasing the starting offset of a randomly chosen task in the

6.6 Optimizing Cache Color Assignment 109

main memory (i.e., shifting tasks right or left). To avoid creating gaps between tasks in
main memory we essentially left/right shift all tasks in the main memory.

» Re-size():Randomly choose a task and re-allocate the number of cache colors assigned to
that task, i.e., either by increasing or decreasing the number of cache colors assigned to that
task.

As we later show in Section 6.6.1, re-sizing the cache space assigned to tasks can be very
bene cial especially when the tasks have large cache footprints. Also, increasing/decreasing
the number of cache colors assigned to tasks effectively allows to trade between the intra-
and inter-task cache interference which may result in improving task set schedulability.

To evaluate different cache color assignments, the WCRT analysis (i.e., Equation (6.2)) can
be used at every iteration of the SA algorithm, i.e., checking the schedulability of all tasks in
G after performing any of the above mentioned operations. However, this may be computation-
ally expensive. Also, the boolean result given by Equation (6.2) can only distinguish between
schedulable/unschedulable cache color assignments and does not provide any information about
the impact of different cache color assignments on the intra- and inter-task cache interference suf-
fered by the tasks. Therefore, to better quantify the quality of a cache color assignment of tasks
and to guide the SA algorithm towards an optimal solution, we use the notslaad SlackSI of
a taskt; is denoted bySk and is de ned asthe difference between the relative deadline and the
WCRT ot;”, i.e.,Sk= D; R, whereR,; is calculated by considering the worst-case interference
ont; by all higher priority tasks in hfp), i.e., by settingR; == D; in Equation (6.2). The total
slackSF of task seGis given as

sfot = gwi S (6.16)
i=1

wherew; is the weight assigned to everry2 Gsuch that,
wi=0 if S§ 0 and w;=1; otherwise.

Note that only the tasks with a negative slack will be assigned a non-zero weight; €1, This

is mainly because these are the tasks that were not schedulable for a given cache color assignment
but may become schedulable by changing their cache color assignment. The total task set slack
is calculated after randomly performing any of the above mentioned moves during every iteration
of the SA algorithm. If the change in the total task set slack from the last iteration is positive
then the new cache color assignment of tasks will always be accepted. However, even if the
change in task set slack is negative the new cache color assignment of tasks may still be accepted
depending on how negative the change is and the current temperature of the SA algorithm, i.e.,
if a randomly chosen probability between 0 and 1 is less than the probability of accepting the
negative change, i.eeCurr%%ItaT%kmp (see Algorithm 6.1), then the new cache color assignment for

G will be accepted. Otherwise, the new cache color assignment will be discarded. After every

iteration, the temperature of SA is reduced by multiplying it with a cooling factor until it reaches

110 Evaluating the Impact of Memory Layout of Tasks on Schedulability

the desired temperature. The initial temperature, desired temperature and the cooling factor de nes
the maximum number of iterations for the SA algorithm. In general, when the temperature is high,
the SA algorithm is more open to negative changes that may be useful to escape local minima.

6.6.1 Working Example

To evaluate the effectiveness of the SA-based cache color assignment approach detailed in the pre-
vious section, we performed a small experiment using a single task set comprised of 10 tasks from
the Malardalen benchmark suite (Gustafsson et al., 2010) shown in Table 6.2, zeminmax

to t1p = bsortl00, wheret1 has the highest priority. The selection of tasks was purely random
and although these tasks may not represent a real task set, they do represent typical code found in
real-time systems. For each task, the WGE[k;], worst-case memory access dema#id;[ki],
worst-case processing demaPD; and the number of ECBs (i.d£CB(k;)), UCBs (i.e.,UCB(k;))

and PCBs (i.e.PCB(k;)) were extracted using the Heptane static WCET analysis tool (Hardy

et al., 2017) as presented in Chapter 4 and 5. Note that the valu€gkdrMDi[k] andPD; in

Table 6.2 arg in clock cycles. The number of cache colors used by each task, ieere set

such thak; = E"kﬁz(e‘“) . The target architecture was MIPS R2000/R3000 assuming an instruction
cache with line size of 32 Bytes and the total cache size of 16kB such that the cache has a total of
32 cache colors, i.ek®@ = 32 with each color having a size of 512 Bytes, ilk€2= 512 Bytes.

The block reload timé,emwas set to 16ws.

Table 6.2: Task set parameters used in the working example

Name | Ci[ki] PDi | MDilk] | ki T,
minmax | 2522 122 2400 2 14315
lcdnum 3440 984 2740 | 2 73143

cnt 10090 | 7191 3818 | 2 85816
ns 30149 | 28149 | 6172 | 2 169744

statemate 43344 | 10586 | 35257 | 18| 636613
insertsort| 7574 5974 2343 | 1 734873
nsichneu| 316409 22009 | 294400| 32 | 1889824

qurt 26141 | 9241 | 17713 | 5 2899034
fft 157880| 123681| 45816 | 9 6550339
bsort100 | 712289| 710289| 90893 | 2 | 267271122

The task set was created by xing the core utilization at 0.8, with task utilizations generated
using the UUnifast algorithm (Bini and Buttazzo, 2005). Task periods were set such that
GCilki]=Ui. All tasks had implicit deadlines with priorities assigned in deadline monotonic order.
We checked task set schedulability using the following approaches:

* No preemption cost: The WCRT analysis was performed assuming there is no preemption
cost.

6.6 Optimizing Cache Color Assignment 111

» SA-based cache color assignmen€ache color assignment of tasks was optimized using
the SA algorithm detailed in Section 6.6.

» SA-based cache color assignment without re-sizingthe SA algorithm was used to opti-
mize cache color assignment of tasks however, re-size() operation was not permitted.

» Sequential cache color assignmenffasks were assigned cache colors in a sequential man-
ner with the highest priority task rst.

« Full cache partitioning: The cache partitioning algorithm presented in (Altmeyer et al.,
2014, 2016) was used to assign independent non-overlapping cache colors (i.e., partitions)
to all tasks.

« SA-based cache color assignment without cache persisteritiee SA algorithm was used
to optimize cache color assignment of tasks without considering cache persistence.

We observed that the task set was schedulable only with two approaches, i.e., no preemption
cost and the SA algorithm with re-sizing. All other approaches were not able to schedule the task
set. The nal cache color allocations for the sequential cache color assignment, full cache parti-
tioning and the SA algorithm with re-sizing, are shown in Figure 6.5a, 6.5b and 6.5c¢ respectively.

The sequential cache color assignment of tasks (see Figure 6.5a) was subjected to high inter-
task cache interference (i.e., CRPD and CPRO), mainly because most cache colors were shared
among tasks. This results in making the task set unschedulable. On the contrary, with full cache
partitioning (see Figure 6.5b) there is no inter-task cache interference. However, the task set was
still not schedulable due to an increase in the intra-task cache interference of some tasks that were
assigned fewer cache colors than the actual number of cache colors needed by those tasks. The
layout of tasks in cache resulting from the SA algorithm with re-sizing is shown in Figure 6.5c. The
task set was schedulable mainly because the overall cache interference between tasks was reduced
by trading between intra- and inter-task cache interference, e.g., the inter-task cache interference
caused byt 7 on all lower priority tasks (i.etsg, t9 andtio) was reduced by increasing the intra-
task cache interference bf (i.e., by reducing the number of cache colors used-AyNote that
the task set was also not schedulable using the SA algorithm without re-sizing. This shows that
even with an optimized task layout, allowing tasks an unconstrained use of the cache may still
result in higher inter-task cache interference that can make the task set unschedulable.

112 Evaluating the Impact of Memory Layout of Tasks on Schedulability

(a) Sequential cache color assignment.

(b) Full cache partitioning.

(c) SA-based cache color assignment with re-sizing.

Figure 6.5: Different cache color assignments of task set in Table 6.2.

6.7 Experimental Evaluation

In this section, we evaluate how our proposed SA-based cache coloring approach performs in
terms of schedulability in comparison to few existing task layout optimization techniques. Ex-
periments were performed using the Malardalen benchmark suite with parai@gkgisPD;,
MD;[ki], MDj[ki], UCBi(ki), ECB(ki) andPCB(k;) extracted using Heptane for the same cache
con guration as uged in Sgction 6.6.1. The number of cache colors used by each tagkwere

set such thak; = ECkEZ(e'“) . Each task was randomly assigned the valugig], PD;, MD;[ki],
MD;Tki], UCBi(ki), ECB(ki), PCB (ki) andk; of one of the analyzed benchmarks. Other task set

6.7 Experimental Evaluation 113

parameters were randomly generated as follows. The default number of tasks was 10 with task
utilizations generated using UUnifast (Bini and Buttazzo, 2005). Task periods were set such that
Ti = Ci[ki]=Ui. Task deadlines were implicit and priorities were assigned in deadline monotonic
order.

We conducted different experiments by varying core utilization, number of cache colors, size
of cache colors and number of tasks. Schedulability analysis was performed using the same task
sets for all the approaches detailed in Section 6.6.1 using their respective WCRT analysis.

1) Core Utilization: In this experiment, we randomly generated 1000 task set (each comprised of
10 tasks) at different core utilizations varied from 0.05 to 1 in steps of 0.05. Figure 6.6a shows
the average number of task sets that were deemed schedulable using all the analyzed approaches
against the total core utilization. The green line marked as “No preemption cost" is an upper bound
on the maximum number of task sets that were schedulable without considering any CRPD/CPRO.
Figure 6.6a shows that the proposed SA-based cache color assignment with/without re-sizing was
able to schedule more task sets than all the other approaches. Also, we note that while initially
the full cache partitioning approach performs worst however, at higher core utilizations it tends to
outperform the sequential cache color assignment and the SA-based cache color assignment (no
persistence) approach. This is mainly because at higher core utilizations, task periods become
smaller resulting in higher inter-task cache interference. It is due to higher inter-task cache inter-
ference that at core utilizations of8b and 09 the difference between the full cache partitioning
approach and the SA-based cache color assignment without re-sizing is minimal. However, the
SA-based cache color assignment with re-sizing counters this increase in inter-task cache inter-
ference by trading intra-task cache interference, i.e., increasing intra-task cache interference to
reduce inter-task cache interference. Consequently, this results in improving task set schedulabil-
ity even at higher core utilizations. For example at a utilization:8f the SA-based cache color
assignment with re-sizing was able to schedule up to 11 percentage points more task sets than the
SA-based cache color assignment without re-sizing and up to 13 percentage points more task sets
than the full cache partitioning approach.

2) Number of Cache Colors: In this experiment, we evaluate the impact of cache size on the
performance of the analyzed approaches by varying the number of cache color from 4 to 64.
As the size of cache colors is constant (i.e., 512 B), increasing the number of cache colors also
increases the cache size. All parameters other than the number of cache colors have the same
values as used in the previous experiment. We have used the weighted schedulability measure
(see Equation (4.20)) de ned by Bastoni et al. (Bastoni et al., 2010) to plot the results as shown
in Figure 6.6b. We observe that initially increasing the number of cache colors (i.e., from 4 to 8)
decreases the schedulability of all approaches except the full cache partitioning approach. This is
mainly because in this interval most cache colors were shared between tasks resulting in higher
inter-task cache interference. However, even in this interval the SA-based cache color assignment
with re-sizing outperforms all other approaches. A further increase in the number of cache colors
results in reducing the number of cache colors that are shared among tasks. Therefore, we see
an increase in the schedulability of all approaches. Understandably, the performance of the full

114 Evaluating the Impact of Memory Layout of Tasks on Schedulability

(a) Varying core utilizations

(b) Varying the number of cache colors (or cache size)

Figure 6.6: Schedulability w.r.t core utilization and cache size

cache partitioning approach is almost linear w.r.t the number of cache colors. Moreover, when the
number of cache colors is large (e.g., 64) all approaches have similar results due to lower cache
interference.

6.7 Experimental Evaluation 115

(a) Increasing number of cache sets per cache color

(b) Varying the number of tasks

Figure 6.7: Schedulability w.r.t number of cache sets per color and number of tasks

3) Number of cache sets per cache coloWWe also performed an experiment by increasing the
number of cache sets per cache color whilst keeping the cache size constant. We varied the size of
one cache color between 1 to 128 cache sets with all other parameters set to default values. The
resulting plot of weighted task set schedulability w.r.t the number of cache sets per cache color is

116 Evaluating the Impact of Memory Layout of Tasks on Schedulability

shown in Figure 6.7a. We observe that when the size of a cache color is smaller all approaches
were able to schedule more task sets. This is mainly because a smaller cache color size results in
a tighter bound on the CRPD/CPRO suffered by the tasks. Whereas, increasing the size of a cache
color decrease the total number of cache colors, potentially increasing the number of shared cache
colors and the CRPD/CPRO suffered by the tasks. This results in decreasing task set schedulability
for all approaches. Note that since the full cache partitioning approach uses the number of cache
sets rather than cache colors, its performance is not affected by the size of a cache color.

4) Number of Tasks: To analyze the performance of all approaches w.r.t the number of tasks,
we varied the number of tasks from 5 to 25 with all other parameters set to the same values
as used in the core utilization experiment. Figure 6.7b shows the result of the experiment. We
observe that schedulability for all approaches decreases as the number of tasks is increased. For
the full cache patrtitioning approach this decrease in schedulability is due to an increase in intra-
task cache interference, i.e., as the number of tasks increase, less cache colors can be assigned to
each individual task potentially resulting in increasing its intra-task cache interference. For the
other approaches, the reduction in schedulability is due an increase in inter-task cache interference
due to sharing of cache colors between several tasks. However, we observe that the SA-based
cache color assignment with re-sizing still achieves much higher schedulability than all the other
approaches.

6.8 Chapter Summary

In this chapter, we evaluated the impact of memory layout of tasks on schedulability. We showed
that intra- and inter-task cache interference can be interrelated and balancing their respective con-
tribution to tasks WCRT may result in improving task set schedulability. We use a cache coloring
approach to optimize task layout in memory such that the trade-off between intra- and inter-task
cache interference can be balanced. We also showed how the intra- and inter-task cache interfer-
ence can be bounded under a cache coloring approach. Lastly, a simulated annealing algorithm
is proposed to optimize the cache color assignment to tasks by re-allocating and re-sizing the
cache colors assigned to tasks such that the task set's schedulability is achieved. Experiments
were performed by varying different parameters using values from the Méalardalen benchmarks.
Experimental results show that the proposed SA based cache color assignment of tasks dominates
the existing approaches used to optimize task layout in memory.

Part Il

Analysis of Single- and Multi-level
Set-associative Caches

117

Chapter 7

CPRO Analysis for Set-associative
Caches

We have seen in the previous chapters that to accurately quantify the inter-task cache interfer-
ence suffered by the tasks it is essential to consider both CRPDs and cache persistence. We also
showed that for tasks scheduled under xed-priority preemptive scheduling (FPPS), the worst-case
response time (WCRT) analyses that account for cache persistence between jobs along with cache
related preemption delays (CRPDs) dominates the analyses that only consider CRPDs. But, the ap-
proaches presented in Chapter 4 and Chapter 5 to analyze cache persistence (and compute CPROSs)
in the context of WCRT analysis can only support direct-mapped caches and may not work for pro-
cessor architectures based set-associativeaches. This is mainly because in a direct-mapped
cache, each cache set can hold at most one memory block whereas, in a set-associative cache, each
cache set may hold as many memory blocks as there are wegis¢ or the cachessociativity.
Therefore, in case of a cache con ict between two tasksdt ;, each memory access performed
duringt j's execution may evict at most one PCBtefn a direct-mapped cache, while it may lead

to multiple evictions in a set-associative cache. This is known asabeadingeffect. An example

of such cascading effect is shown in Figure 7.1. We can see that for a direct-mapped cache (see
Figure 7.1a) a single cache con ict betwegrandt j (i.e., due to preemption @f by t ;) can only

cause one cache miss whereas the same cache con ict leads to multiple cache misses for a set-
associative cache (see Figure 7.1b). Therefore, for set-associative caatesd@PRO estimate

can only be obtained by accounting for the cascading effect which is not considered by the CPRO
analysis presented in the previous chapters that focus on direct-mapped caches. Therefore, in this
work, we present different solutions to analyze cache persistence for set-associative caches and
integrate those solutions in the WCRT analysis of FPPS. The main contributions of this chapter
are as follow:

1. topropose a solutionto nd persistent cache blocks (PCBs) of tasks considering set-associative
caches;

2. to present three different approaches to calculate CPROs on platforms implementing set

119

120 CPRO Analysis for Set-associative Caches

(a) Direct-mapped Cache

(b) Set-associative Cache

Figure 7.1: Example execution of a task(from left to right) considering (a) a direct-mapped
cache with 4 cache sets, i.6.5;S;S; g and (b) a 4-way set-associative cache having one
cache sefy using a Least-Recently-Used (LRU) cache replacement policy. The LRU age of a
block b refers to how many accesses were performed to the cache set inlwikishved since the

last access tb.

associative caches. These approaches are (1) the PCB-ECB approach, that uses only the set
of PCBs of the task under analysis and the set of ECBs of all other tasks in the system to
evaluate the CPRO, (2) the ResilienceP analysis, that removes some of the pessimism in the
PCB-ECB approach by considering tiesilience(see De nition 3.8) of PCBs, and (3) the
multi-path ResilienceP analysis, that considers the variation in the resilience of PCBs over
different executions of a task in order to have an even tighter CPRO bound.

3. An experimental evaluation showing that our proposed approaches result in up to 22 per-
centage points higher task set schedulability than the state-of-the-art resilience analysis (Alt-
meyer et al., 2010) that only considers CRPDs when analyzing inter-task cache interference
for architectures with set-associative caches.

7.1 Assumptions on the System Model

In addition to the general system model detailed in Chapter 2 and Chapter 4, in this chapter we
make the following assumptions on the system model.

« In this chapter, we focus on single-core processor with a private set-associative single-level
instruction cache (also referred to as L1) using the LRU replacement policy, i.e., on a cache
miss the least recently used memory block (or equivalently the block with the largest LRU-
age) within the targeted cache set is evicted. The number of memory blocks that can be
stored in each cache set is referred to as the number of ways or the associativity of the cache
and is denoted bw. The set of all cache sets is denoteddyy

The list of important symbols used in this chapter is provided in Table 7.1.

7.1 Assumptions on the System Model

Table 7.1: List of important symbols used in Chapter 7

121

A

Symbol Description

G Task set of size

W The number of cache ways or the associativity of the cache

S The set of all cache sets

t; Task with index

tik K job of Taskt;

G Worst-case execution time of taskin isolation

Ti Minimum inter-arrival time of task;

D; Relative deadline of task

R; Worst-case response time of task

PD; Worst-case processing demand of tgsi isolation

MD; Worst-case memory access demand of tagk isolation

MD;] Residual memory access demand of tgsk isolation

MD;(t) Total memory access demand of taskn a time interval of lengtl

hp(i) The set of tasks with higher priority than

her(i) The set of tasks with higher priority thanincludingt;, i.e., hefi) =
hp(i)] t;.

aff(i; j) The set of intermediate tasks (includityy that may preempt; but may
themselves be preempted by some higher priority task

dmem Time to reload one cache block from the main memory

Br, The set of memory blocks that are persistent in a cachs agér the
execution of task;

J The maximum number of jobs any taskcan release in a time intervs
of lengtht

JERj The number of possible execution paths of tagk

ECBH The set of evicting cache blocks (ECBs) of tagk

ECB The set of ECBs of tasls in a cache set

UCB; The set of useful cache blocks (UCBS) of task

PCB The set of persistence cache blocks (PCBs) of task

PCB The set of PCBs of task in a cache set

D?;i The disturbance all tasks in hgpnt ; may cause on PCBs of taskin
a cache set

PersistentAgs(m;) | LRU-age of a PCBn; of taskt ; at any program point P during the exe-
cution oft;.

P Set of all program points

maxage(m;) The maximum LRU-age of a PCBy; of taskt ; over all program points

during the execution df;.

Continued on next page

122 CPRO Analysis for Set-associative Caches

Table 7.1 — continued from previous page

Symbol Description
resca(m;) Resilience of a PCn; of taskt
riii CPRO of one job of a higher priority task 2 hp(i) during the response
time of a lower priority task;
Fii Total CPRO of task j in an interval of lengttt while executing during
the response time of task
r Js, CPRO suffered by one job of a higher priority tagk? hp(i) during the

response time of a lower priority task due to a cache set computed
using the PCB-ECB approach.

r js;?t Total CPRO suffered by one job of a higher priority tagk hp(i) dur-
ing the response time of a lower priority taskunder the PCB-ECBE
approach.

ri CPRO suffered by one job of a higher priority tagk2 hp(i) during the

response time of a lower priority task due to a cache sef computed

using the ResilienceP analysis.
ries Total CPRO suffered by one job of a higher priority tagi hp(i) dur-

ing the response time of a lower priority taskunder the ResilienceP

analysis.
rj:m (D3 J) The maximum number of times any PGB of taskt; can contribute

to the CPRO ot in a time interval of length assuming the values g
disturbance suffered Ry, i.e.,D and the number of jobs releasedtqy

i.e.,J, are known.
M ress CPRO suffered by one job of a higher priority task2 hp(i) during the

N
response time of a lower priority task due to a cache set computed

using the multi-path ResilienceP analysis.
rM res Total CPRO suffered by one job of a higher priority tagk2 hp(i) dur-

N
ing the response time of a lower priority taskunder the multi-path
ResilienceP analysis.

=

7.2 Finding PCBs for set-associative caches

For direct-mapped caches, determining the set of PCBsPIGB, of a task; is relatively simple.

as presented in Section 4.5, i.e., a memory bloclof taskt; belongs toPCB if it is the only
memory block oft; mapped to a given cache set. However, under set-associative caches, several
memory blocks of; may be mapped to a single cache set and the presence of a memory block in
cache depends on the LRU-age of that memory blockV-Avay set-associative LRU-cache can

hold up toW memory blocks in each cache set and the LRU-age of each memory block can be
between 0 anilv 1 (respectively representing the most-recently and the least-recently accessed

7.2 Finding PCBs for set-associative caches 123

memory block in the cache set). Given a program pBinf the LRU-age of a memory block at
P is greater than or equal W then an access to that memory bloclatill be a cache miss, i.e.,
the memory block is not in the cache anymore. We can leverage this information to nd PCBs of a
taskt; under a set-associative cache. By de nition, once loaded into the cache hy tdlsRCBs
of t; will not be evicted or invalidated bt; while executing in isolation. Therefore, all memory
blocks used by; that have an LRU-age less than or equaito 1 at every program point P in
t; can be PCBs of;. However, knowing that PCBs are potentially reused by the same but also
by every next job executed by task using only one job execution of to bound the maximum
LRU-age of PCBs may not be suf cient. To illustrate this last property, consider the control- ow
graph (CFG) and mapping of the memory blocks of two successive jobs of;tés&., t;., and
ti-2) shown in Figure 7.2. In that example, all memory blocks, &, mp, mg, andmy, used by
t; map to the same cache seih a 4-way set-associative cache. We can see in Figure 7.2a that
when considering only one job ¢f, i.e.,t;.1, the maximum LRU-age, i.e., the maximum number
of distinct accesses between two references to a memory block, of memory bigcks, m,
andmy is 3, 2, 1, and 0 respectively (see Section 3.2.2 for details on the computation of maximum
LRU-age of memory blocks). However, if we consider the execution sequenfr#lowed byt .2,
we can see that the maximum LRU-age of all the memory blocks is 3. Note that underestimating
the maximum LRU-age of memory blocks may lead to false positives, i.e., a memory block may
be categorized as a PCB (i.e., LRU-ag&V 1 over the execution of one job) while it is not
(i.e., LRU-age> W 1 over the execution of a sequence of jobs). Therefore, in order to soundly
estimate the set of PCBs of a tagk it is important to calculate the maximum LRU-age of all
memory blocks used bt after any execution sequence of jobst p{in isolation). This can be
done by assuming thatis cyclic, i.e., aloop is assumed between the end point E and start point S
of t; (see Figure 7.2b). The cyclic assumption ensures that the maximal number of different cache
accesses between the last use of a memory bigck one job oft; and the rst access afiy in
the next job ot; are considered when determining the maximum LRU-ag®g of

Formally, the analysis to nd PCBs of a taskis performed as follows:

1. Apply the standargersistencanalysis (Theiling et al., 2000; Cullmann, 2013) on the code
of taskt; to determine the set of memory blocRg, that are persistent in each cache set
at the end of;. The Persistence analysis determines if a memory block will not be evicted
after it has been loaded in the cache, i.e., the rstreference to that memory block may result
in a cache miss but all subsequent references to that memory block will be cache hits (see
Section 3.1.3 for a detailed description on the persistence analysis). A memorynplisck
persistent in a cache seif its LRU-age insis less than or equal v 1 at the end of;'s
execution.

2. Apply the persistence analysis again (i.e., to account for the cyclic assumptigrgssum-
ing that each cache setlready contains thB;;, memory blocks at the start bfs execution
and that each of those blocks has its maximum LRU-age derived in step 1. All memory
blocks inBy, that are in evenAbstract Cache StatACS) (see De nition 3.1)) of the sec-

124 CPRO Analysis for Set-associative Caches

(a) (b)

Figure 7.2: Maximum LRU-age of memory blocks of tdska) over the execution of two jobs of
ti, and (b) under the assumption thats cyclic

ond persistence analysis (i.e, memory block with LRU-aiy¢ 1 in all ACSs) are PCBs
of tj in cache ses and are denoted B§CB’. The nal set of PCBs of task; is then given
by
PCB = [PCB (7.1)
25S

7.3 CPRO Analysis for Set-Associative Caches

In this section, we present two approaches for the calculation of the CPRO for set-associative
caches, namely, the PCB-ECB approach and the ResilienceP analysis.

7.3.1 PCB-ECB Approach

As we have previously explained in Chapter 4 and Chapter 5, for direct-mapped caches, the CPRO
can be computed by using the intersection between the set of PCBs of the task under analysis and
the set of ECBs of all other tasks that may evict PCBs of that task. For example, under the CPRO-
union approach (i.e., Equation (4.5)) presented in Section 4.3, the CRRMe job of a higher
priority taskt; 2 hp(i) may suffer while executing during the response time of a lower priority
taskt; is computed using the set of PCBs of tdski.e., PCB;, the set of ECBs of all tasks in

heg(i) ntj, i.e., g, 2negiynt; ECB, anddmemWwhich is the time required to reload one PCB from

the main memory (see Theorem 4.1, for a formal proof of Equation (4.5)). The bound resulting
from Equation (4.5) is sound for a direct-mapped cache where each ECB of taskgijntgp

can evict at most one PCB bf. However, using Equation (4.5) to calculate the CPR®, ainder

a set-associative cache may result in underestimating the CPRQIo€ to the cascading effect

7.3 CPRO Analysis for Set-Associative Caches 125

mentioned earlier using Figure 7.1, i.e., several/all PCBs ofttaskay be evicted due to a single

ECB of another task mapped to the same cache set. Considering that in a set-associative cache,
each cache sstcan be analyzed independently, a sound estimate of the CPRO suffered by one job
of taskt j due to a cache sef2 Scan be obtained by using the two following properties:

1. PCBs of task ; mapped in cache sstmay be evicted and hence participate to the CPRO
of t; during the response time of another tagkonly if one or more ECB(s) of tasks in
hefi) nt; are mapped to the same cache sefTo formally characterize the impact of
ECB(s) of tasks in hgjp) nt; on PCBs of task ; in a cache ses$, we de ne the notion of
Disturbancei.e.,

De nition 7.1 (Disturbance) The disturbance suffered by a taskon a cache set s due to
another set of taskb is de ned as the total number of ECBs of taskJinthat are mapped

to the cache set s. The disturbance dug taés thus the maximum number of memory blocks
of tasks inT that compete with; for space in cache set s.

Based on the above de nition, PCBs of taskmapped in cache sstcan be evicted and
hence participate to the CPRO tof, only if the disturbance task; may suffer due to all
tasks in hefi) ntj in sis greater than or equal to one.

2. The participation of a cache seto the CPRO ot ; is upper bounded by the number of
PCBs oft j in that cache set multiplied bmem i.€.,dmem] PCB‘J-Sj.

Therefore, the CPRO one job of taskmay suffer due to cache sets upper bounded by

JHI
where 8
sets <jPCBj ifD§; 1
N~ = Omem '

_ (7.2)
-0 otherwise
whereDJii is the disturbance all tasks in Hgpnt; may cause on PCBs of in a cache ses.
By de nition, the maximum disturbance task may suffer due to all tasks in h@pnt j is upper
bounded b}éStkzhem)ntijCQj, i.e., the total number of ECBs of tasks in igmt ; mapped to
cache ses. Therefore DS, &sgt,2neiynt; JECE]. The rationale of using ECBs of all tasks in
heq(i) nt; to bounde;i is to account for nested/multiple execution of tasks in(Hept ; between
two jobs of taskt;. Since, in the worst-case all tasks in (igmt; may sequentially execute
between two jobs ofj, the cumulative impact of tasks in hgpnt; on PCBs oft; is upper
bounded b¥A g2 hegiynt ; IECE-

Note that Equation (7.2) accounts for the cascading effect by considering that a single ECB of
tasks in hefi) nt; mapped to a cache seinay evict all PCBs of j in that cache set.

The total CPRO one job df; may suffer during the response timetofs given by

set_ 8 sets
rir=arj; (7.3)
8s2S

126 CPRO Analysis for Set-associative Caches

7.3.2 ResilienceP Analysis

The PCB-ECB approach presented above assumes that if one ECB of any taski)mbefs
mapped to a cache sethen all the PCBs of; in swill be evicted. This assumption is safe but
very pessimistic. To illustrate, consider the example depicted in Figure 7.3. It shows a sequence

Figure 7.3: Example scenario to highlight the pessimism in the PCB-ECB approach

of cache references during the execution of a tgsffrom left to right) assuming that; has 4
PCBs in cache se i.e., PC?} = fa;b;c;dg. We also assume that the value of disturbdh@pis
equal to 1, i.e., only one ECB of tasks in ligmt ; is mapped to cache sgt UsinngCB?j =4
andD?;i = 1in Equation (7.2) (i.e., the PCB-ECB approach) the CPRQ alue to cache setis
calculated to be 4 dmem However, we can see in Figure 7.3 that only one cache refererige of
will be a miss after the execution of tasks in (igmt ;. Therefore, the actual CPRO of due to
cache sesisonly 1 dmem

The ResilienceP analysis removes excessive pessimism in the PCB-ECB approach by nding
PCBs of task j that may remain cached (and therefore does not contribute to the CPRO) even
after the execution of tasks in higpnt; thanks to their resilience. Based on the de nition of
resilience, i.e., De nition 3.8, the resilience of a P@B of taskt j is given by the maximum value
of disturbanceD$,; thatm; can endure before being evicted from the cache due to the execution of
tasks in hefi) nt;.

As already explained in Chapter 3 (Section 3.2.2), the resilience-analysis proposed in (Alt-
meyer et al., 2010) can be used to determine the resilience of all memory blocks used by, a task
at every program point P during the executiort pfHowever, using the state-of-the-art resilience-
analysis (Altmeyer et al., 2010) to determine the resilience of PCBs may result in overestimating
the resilience of PCBs. This is mainly because the resilience-analysis (Altmeyer et al., 2010) was
proposed to calculate the resilience of UCBs instead of PCBs. By de nition, UCBs of &itask
may only be reused during the same job execution; @nd hence it is suf cient to consider the
execution of only one job df; when bounding the maximum LRU-age of its UCBs. However,
PCBs are different from UCBs considering that PCBs may be reused during the execution of the
same job and/or any next job bf. Therefore, to have a sound estimate of the resilience of PCBs
of t; itis necessary to calculate the maximum LRU-age of PCBs after any execution sequence of
jobs oft ;. See Figure 7.2 that shows that considering only one job ofttasiay result in under-
estimating the maximum LRU-age (i.e., overestimating the resilience) of memory bitecks
andm.

The ResilienceP analysis uses the approach described in Section 7.2 to determine the resilience
of PCBs of each task. Ld&ersistentAgs(m;) denote the LRU-age of a POR; at any program

7.4 Multi-path ResilienceP Analysis 127

point P during the execution of task resulting from the analysis detailed in Section 7.2. Then,
the maximum LRU-agenaxaggm;) of m; is calculated by maximizingersistentAgs(m;) over
all program points during the executiontqf i.e.,

maxaggm;) = Er;rFlcz';\g’(PersistentAg,ga(mj) (7.4)

whereP is the set of all program points. Consequently, the resilience of RCIB then given by
resece(m;) = (W 1) maxagegm;).
Therefore, the ResilienceP analysis upper bounds the CPRO that may be suffered by one job

of taskt ; due to cache satby r {5°°, wherer 3> is computed as follows

ji = Omem PCBn mjresrca(m)) Dj

r R (7.5)

whereresecg(m;) is the resilience of a PCBy; 2 PCB? and Djs;i is the maximum disturbance all
tasks in hefi) ntj may cause to a cache set

Note that Equation (7.5) excludes PCBs pthat remain cached after the execution of tasks
in heg(i) nt; (i.e., those for whichescg(m;) D?;i) from the CPRO. Therefore, it provides a
tighter bound on the CPRO than the PCB-ECB approach.

The total CPRO of one job of tagk executing during the response time of another task
thus bounded by

rie=a e (7.6)
82S
I m

Finally, knowing from Lemma 4.2 that in a time interval of lengtht most TL, 1 jobs of
t; may suffer CPRO. Therefore, the total CPRO of tagkn a time interval of lengti can be
bounded by j;(t) (i.e., given by Equation (4.6)), wherg;; can be calculated either using the
PCB-ECB approach or the ResilienceP analysis (i.e., by using Equation (7.3) or Equation (7.6)).

7.4 Multi-path ResilienceP Analysis

The ResilienceP analysis always considers the worst-case (i.e., minimum) resilience for every
PCB and for every job of; that may execute in a time interval of lengthThis assumption is

exact in the case whetg has only a single execution path as shown in Figure 7.2b. Howevegr, if

has multiple execution paths, the resilience of PCBs may vary depending on the actual execution
paths taken by two successive jobst pf Therefore, always considering the minimum resilience

of PCBs over all job executions bf may overestimate the total CPROQmay suffer. To illustrate

this, Figure 7.4a shows the CFG of a tagkvith two execution paths and four possible execution
ows between two jobs of j, i.e.,p1! p2,p2! pl,pl! plandp2! p2. The cache content
along each execution ow is also shown in Fig. 7.4a. We assume that all memory blotks of
exceptmy andms map to the same cache saif a 4-way set-associative cache. For simplicity, we
only focus on PCB.

128 CPRO Analysis for Set-associative Caches

(a) Variation in the resilience of PCBs of task

(b) Different job executions of tagk and task

Figure 7.4: Highlighting the pessimism in the ResilienceP analysis

We can see in Figure 7.4a that the resiliencenpfis minimum, i.e.,resocg(m) = 0O, if the
rst job of t; follows path pl and the next job follows patp2. Now consider the example
schedule shown in Figure 7.4b showing four jobs péxecuted together with three jobs of a task
ty 2 heg(i) nt; such thaECB; = fm,g, i.e, D?;k = 1. Figure 7.4b shows the contents of cache set
s after the execution of every job of taskand tasK .

Since the minimum resilience ofy is 0 ande;k > resscp(m), the ResilienceP analysis
(i.e., Equation (7.5)) implies that every tinig preemptd ; or executes between two subsequent
jobs oft j, m will be evicted. This results in a CPRO equal to 8nem However, we can see in
Figure 7.4b that this is not true. In fact even when we maximize the number of jobsotibwing
the execution ow with the minimum resilience (i.gpy ! p2), My is evicted and reloaded only
two times resulting in a CPRO of 2dnem The reason behind this result is that if the rst two
jobs oft ; execute according to the execution og¢ ! py, then the second and third jobstgf
can either follow the execution ovp,! piorp2! p2Inboth cases, the actual resiliencenaf

7.4 Multi-path ResilienceP Analysis 129

Table 7.2: CPRO-table for every PGB of taskt |

Number of jobsot; (J) |
2 3 o TLjI -
@ 1] rjm(L2) | rjm(L3) | rj;mj(l;I TLJrrz
-C‘ES 2| rim(22) | rij(23) || rim(2 TL,)
2 % % o |
a W 1 2 % le 1

is equal to 1 (instead of 0 as assumed by the ResilienceP analysis).

The multi-path ResilienceP analysis reduces the pessimism of the ResilienceP analysis by
considering the variation in the resilience of PCBs across different job execution ows of a same
taskt j. It computes the total CPRO taskmay suffer in a time interval of lengttby rst creating
a CPRO-table (See Table 7.2) for all PCB4 pin each cache set. The CPRO-table determines
how many times each PQOR; 2 PCB? can be evicted in an interval of lengtleonsidering a given
disturbanceéd and the maximum number of jodgeleased by in the interval of length. Given
the values oD andJ, one entry in Table 7.2 tells us how many times P@Bmay be evicted and
must therefore be reloaded.

7.4.1 Building the CPRO-table

In this subsection we discuss how a CPRO-table can be built for PCBs.
First, we make use of a couple of simple properties to bound the size of that table:

1. Itis proved in Lemma 4.2 that if a task released jobs in a time interval of length the
maximum number of times each PQfg 2 PC?} can be evicted is upper boundedby 1.

2. If the disturbanc® suffered by a PCBn; is greater than or equal to the number of weys
in the cache (i.eD W) then the entire cache sewill be lled by the ECBs of disturbing
tasks and PCBn; will be evicted after every job execution i.e., it will be evictéd 1 times.

We use that information to Il all the CPRO-table entries such hat W (see Table 7.2).

The remaining entries (noted;m, (D;J)) are calculated using Algorithm 7.1. Algorithm 7.1
uses the set of all possible execution pdii of taskt ; and the maximum lengthof the interval
in which its PCBm; may be evicted as input. It then lls row-wise all entries in Table 7.2. The
function PathsPermutations() at line 1 returns a set that contains all possible executions
paths combinations between two jobs ¢f Given that task ; hasjEPR,j possible execution paths,
the number of possible execution ows between two jobsjak given byFlows where the size
of Flowsis 28R,

The external loop (lines 2 to 17) is used to iterate over all disturbance vRAlletween 1
andW 1 (all table entries foD W are already lled). As previously discussed, the resilience

130 CPRO Analysis for Set-associative Caches

Algorithm 7.1 Building the CPRO-table for PCB; of taskt

Input: Interval lengtht; PCBm;; Set of all possible execution pat&®; of t ;.
Output: All 1 j:m; (D;J) entries in Table 7.2.

1: Flows:= PathsPermutatio(is;;EP;j)
2: forD:= 1toW 1do

3: PossibleFlows= FindPathsCombinationsy, Flows, D)
4. L:=FindLonges}flomossiblePaths

5. forJ:= 2to TL, do

6 if jPossibleFlows= 0then

7

8

rjm;(D;J) == 0;

else
9: MaxCPRO=J 1
10: if L MaxCPRGCthen
11: rj:m; (D;J) == MaxCPRQ
12: else
13: rim(D;J) == MaxCPRO 5 ;
14: end if
15: end if
16: end for
17: end for

of a PCBm; may vary depending on the speci ¢ combination of execution paths taken by two
successive jobs df; (see Figure 7.4a). Therefore, the functlindPathsCombinations()
(line 3) returns the set of paths combinations of two successive jaysfaf which the resilience
of m; is less tharD. By the de nition of resilience, the memory bloeck; may be evicted only
for those paths combinations. FunctiBmdLongestFlow() then generates (at line 4) the
longest execution ow composed of path combinationBassibleFlowsFor example, assuming
PossibleFlowgontains the three paths combinatignd p», ps! piandps! p,. The longest
execution ow that may be generated BindLongestFlow() isp3! p1! pz. The function
thus returns 2 as the lengthof that ow. Note that by de nition ofPossibleFlowsthere exists

a (possibly different) program poiftin each path composing that execution ow for which the
resilience ofm; is less tharD. Therefore, if the maximum disturban€eis applied at each of
those program points, then; will be evictedL times. Moreover, sincindLongestFlow()
generates the longest such execution ow, there cannot be mord.teancessive evictions of
m;j. The nested loop (lines 5 to 16) is then used to upper bound hqw many ines| be
evicted for every possible value df(note thatI for n:\sporadic tasks, at mos% jobs oft; may

be released in any interval of lengththusJ TLJ). If the set of possible paths combinations
returned by the functioRindPathsCombinations() is empty, thenm; cannot be evicted for
the disturbance value and hence j.m (D;J) is equal to O (line 6). Otherwise, if there exists some
paths combinations for whiam; may be evicted with a disturbang€k i.e.,jPossibleFlows> 0,
then two cases must be considered:

1. IfL J 1,thenwe know from Lemma 4.2 that the CPRO suffered byccessive jobs of
ataskt; is upper bounded by 1 and thus j;,(D;J)=J 1 (line 11).

7.4 Multi-path ResilienceP Analysis 131

Algorithm 7.2 Computing the total CPRO of task in a time interval of length
Input: Interval lengtht; CPRO-table of every PCB; of taskt j; DlsturbanceDS for everys2 S
Output: The total CPRO of task; in a time interval of length, i.e.,r M eS(t).

I m
L1.—= t
.J';A— T

res, —_
i ():=0
: for 8s2 Sdo

riMj ress =0
D:= DS
for 8m, 2 PCB; do

M Tess M eSSy (D)
end for

M reS(t) — rM reS(t)+ rM ress

o © N P?.U.".J?w!\? =

end for

=

2. If L< J 1, then, by the de nition ofL, m; may be evicted at modt times in every
execution ow composed df + 1 successive jobs df;. Therefore, the maximum number
of timesm; may be evicted for a successionbjobs is bounded byJ 1) ﬁ (line
13).

Example 7.1. Consider memory block yin Figure 7.4. By applying Algorithm 7.1 With?[g =1
(i.e.,JECB}j = 1), L=1 (i.e., the execution ow p! pp) and J= 2;3;4g, we getr ;;m,(1,2) = 1
rim(1,3)= landr j;m(1;4) = 2which is consistent with the scenario depicted in Figure 7.4b.

7.4.2 Bounding the CPRO

After creating the CPRO-table of every PCB of taskusing Algorithm 7.1, the total CPRO that
taskt; may suffer in a time interval of lengthcan be bounded using Algorithm 7.2. The inputs
to Algorithm 7.2 are the CPRO-tables of every P@Bof taskt j, the maximum disturbance task
t; may suffer for everys2 S due to the execution of tasks in {gmt;, i.e. Df,, and the length
of time intervalt. The output of Algorithm 7.2 is the total CPRO of taskip a fime interval of
lengtht denoted by ,M ®%(t). Given the length of the time intervalJ := Tl] upper bounds
the number of job$; may execute irt (line 1). For every cache sef2 S, the value ofD is set
using D$- (line 5). Given the values dd andJ the inner loop (lines 6 to 8) iteratively computes
the CPRO of task; in every cache set2 S, i.e.,r;. M eSS using values from the CPRO-table of
every PCBm; 2 PCB;. The outer loop (lines 3 to 10) then sums up the valueq'?’bfress for all

s2 Sto boundr | "(t).

132 CPRO Analysis for Set-associative Caches

(@)

(b)

Figure 7.5: Task sets schedulability by varying (a) total task set utilization and (b) the total number
of tasks in a task set

7.5 WCRT Analysis 133

7.5 WCRT Analysis

The WCRT analysis that accounts for both CRPDs and CPROSs considering direct-mapped caches
is given by Equation (4.9) and (4.18). The same equations can also be used to calculate the WCRT
R of a taskt; when considering set-associative caches; (i) by calculating the CPRO using any
of the approaches presented in Sections 7.3 and 7.4, and (ii) by calculating the CRPD using the
state-of-the-art resilience-analysis (Altmeyer et al., 2010) (i.e., Equation (3.12)). The WQRT

taskt; is then calculated by using simple xed-point iteration I&n whereR; is initialized toC;.

In every iteration, the values of CPRO are updated based on the chosen approach. For example, if
multi-path ResilienceP analysis is used, Algorithm 7.2 is executed at every iteration to update the
total CPRO suffered by the tasks based on the CPRO-tables previously built using Algorithm 7.1.
To reduce computation time, the CPRO-table of every PCB of each task can be built only once
by settingt = Dy, in Algorithm 7.1, whereD, denote the deadline of the lowest priority tagkn

the task set. The iteration stops as sooRadoes not evolve anymore & > D; (i.e., the task is
deemed unschedulable).

7.6 Experimental Evaluation

In this section, we evaluate how our proposed approaches that account for both cache persistence
(i.e., CPROs) and CRPDs perform in terms of schedulability in comparison to the state-of-the-
art resilience-analysis (Altmeyer et al., 2010) that only considers CRPDs when analyzing set-
associative caches. We performed experiments using synthetic task sets where tasks parameters
GCi, PD;, MD;, UCB;, ECB andPCB were taken from Table 5.2. Each task in the task set was
randomly assigned the valu€s, PD;, MD;, UCB;, ECB and PCB of one of the benchmarks
referred in that table. The system was setup to model a MIPS R2000/R3000 architecture assuming
a 8-way set-associative cache with 64 sets, a line size of 32 Bytes (i.e., a total cache size of 16kB)
and a memory reload timépem= 10ns.

The default number of tasks in a task set was 10 with task utilizations generated using UUni-
fast (Bini and Buttazzo, 2005). Task periods and deadlines were set sudhtiatCi=U;. Task
priorities were assigned in a deadline monotonic order. Furthermore, to evaluate the performance
of the multi-path ResilienceP analysis each task was randomly assigned between 1 to 4 execution
paths.

We performed different experiments by varying the total core utilization, number of tasks,
number of cache ways and memory reload tupgn, A WCRT based schedulability analysis is
performed using the same task sets for all the analyzed approaches.

1. Core Utilizations: In this experiment, we varied the total core utilization from 0.025 to 1

in steps of 0.025 and randomly generated 1000 tasksets at every value of the core utilization.
Figure 7.5a show the number of task sets that were deemed schedulable by all the analyzed ap-
proaches. The plot also show the number of task sets that were deemed schedulable without
considering any CRPD and CPRO (i.e., green line). Note that we only show cropped version of

134 CPRO Analysis for Set-associative Caches

(a) Varying the number of cache ways

(b) Varying memory reload timémyem

Figure 7.6: Weighted schedulability results by varying (a) number of cacheWaysl (b) mem-
ory reload timedmnem

the plot starting from a utilization of 0.6 as all approaches produce identical results below this
utilization. Figure 7.5a shows that our approaches that also account for cache persistence (i.e.,

7.6 Experimental Evaluation 135

CPROs) along with CRPDs dominate the state-of-the-art resilience-analysis that only consider
CRPDs and does not account for cache persistence. Among the three proposed approaches, the
PCB-ECB approach has the least number of task sets that were deemed schedulable. This is in-
tuitive, since the PCB-ECB approach pessimistically assume that every PCB of a task in a cache
set will be evicted if one or more ECBs of any other task are mapped to the same cache set. This
pessimism is reduced by the ResilienceP analysis by considering the resilience of PCBs which
results in accepting more task sets. Finally, the multi-path ResilienceP analysis was able to sched-
ule even more task sets than the ResilienceP analysis by considering the variation in the resilience
of PCBs over multiple job executions. Our proposed approaches improve task set schedulability
by 6 to 22 percentage points over the state-of-the-art analysis. Note that on an Intel core i-7 pro-
cessor (3.4GHz) the average computation time to generate the plot shown in Figure 7.5a was 210
seconds.

2. Number of Tasks: In this experiment, we varied the total number of tasks in a task set between

5 to 25 in steps of 5 keeping default values of all other parameters. Since we varied both the
number of tasks and core utilizations we have used the weighted schedulability measure de ned by
Equation (4.20) to plot the results in Figure. 7.5b. We can see in Figure. 7.5b that by increasing the
number of tasks, the total number of task sets that were deemed schedulable by all the approaches
decreases. Indeed, this is due to an increasing number of cache evictions and reloads leading to
higher CRPD and CPRO. However, we can still observe that our approaches always dominate
the state-of-the-art analysis. Note that by increasing the number of tasks, all the three proposed
approaches tend to produce similar results. This is mainly because by increasing the number of
tasks, the number of ECBs of tasks sharing cache space with PCBs of other tasks also increases,
i.e., the disturbance is increased. Therefore, even if PCBs of some tasks have a greater resilience
they might still be evicted due to a higher disturbance.

3. Number of Cache Ways (W):The number of waygV de nes how many memory blocks can

be mapped to one cache set. We increased the number of cache ways from 2 to 32, keeping default
values for all other parameters. The results are shown in Figure 7.6a. We can see in Figure 7.6a that
by increasing the number of cache ways the total number of schedulable task sets decreases. This
is mainly because we assume that the total cache size is constant hence by increasing the number of
cache ways the number of cache sets decreases. This results in more tasks sharing the same cache
sets which in turns leads to higher CRPD and CPRO. However, we can still see that all the three
proposed approaches dominate the state-of-the-art resilience-analysis. In fact due to lower CPRO,
for a cache associativity of 2 and 4, the performances of our analyses are considerably better. Note
that for all the experiments in this chapter, we assume a sequential layout of tasks in memory (and
in cache), however, task layout optimization techniques, e.g., as proposed in Section 6.6, can also
be used to further improve task set schedulability.

4. Memory Reload Timedyem We varied the value of memory reload tirdgem from 6ms to

16ns in step of 2s. The results are presented in Figure 7.6b. We can see in Figure 7.6b that for
lower values oflemthe difference between the weighted schedulability of our approaches and the
state-of-the-art analysis is signi cantly higher. This is mainly because for lower valuggeaf

136 CPRO Analysis for Set-associative Caches

the reduction in memory access demand due to cache persistence dominates the CPRO. In fact, we
can see in Figure 7.6b that when the valuelgf,is equal to &ns, analysis that account for cache
persistence even outperform the “No CRPD and CPRO" analysis. This is mainly because the “No
CRPD and CPRO" analysis does not account for cache persistence and only use the WCET of
tasks to compute the response time.

We also note that fodlhey 12ms the performances of the PCB-ECB approach and the state-
of-the-art analysis are identical. This is due to the excessive pessimism in PCB-ECB approach
which is removed by the ResilienceP (and multi-path ResilienceP) analysis.

Figure 7.7: Performance of ResilienceP and multi-path ResilienceP analysis w.r.t the number of
execution paths

5. Number of execution paths: It is obvious from the results that the multi-path ResilienceP
analysis dominates all other approaches. However, the performance of the multi-path ResilienceP
analysis depends on the number of execution paths of tasks and the resilience of PCBs along those
paths. To evaluate this, we varied the maximum number of execution paths in each task between
1 to 8 and compared the performance of ResilienceP and multi-path ResilienceP analyses. The
results are presented in Figure 7.7. We can see in Figure 7.7 that if tasks are only allowed to have
a single execution path, both ResilienceP and multi-paths ResilienceP analyses produce identical
results. Moreover, for number of execution paths between 2 to 6 the multi-path ResilienceP anal-
ysis tend to produce better results than the ResilienceP analyses. However, for a further increase
in number of paths, the difference between the ResilienceP and multi-paths ResilienceP analy-
ses tend to disappear. The is due to the fact that when the number of paths increase, it becomes
more probable that there exist several execution ows for which the resilience of the PCBs is low.
The functionFindPathsCombinations() of Algorithm 7.1 will then more easily return very

7.7 Chapter Summary 137

long execution ows with low resilience. This eventually leads to account for the same number of
evictions of PCBs as under the ResilienceP analysis.

7.7 Chapter Summary

In this chapter, we proposed a solution to analyze cache persistence for set-associative caches
in the context of the WCRT analysis of FPPS. We showed how persistent cache blocks of tasks
can be determined when considering set-associative caches. We then presented three different
approaches to calculate the CPRO under set-associative caches. Our rst analyses, i.e., the PCB-
ECB approach, is very coarse-grain. To improve the analysis performance, we explained how
the resilience of PCBs can be computed and factored in the analysis. Therefore, the resulting
ResilienceP analysis performs considerably better. Lastly, the multi-path ResilienceP analysis
uses the variation in the resilience of PCBs over different job execution ows to derive an even
tighter CPRO bound. The experimental evaluation shows that our proposed approaches result in
up to 22 percentage point higher task set schedulability than the state-of-the-art analyses.

Chapter 8

Tightening the Bound on Inter-task
Cache Interference for Multilevel
Caches

In Chapter 4-7, we focused on bounding the inter-task cache interference considering only a single-
level cache. However, modern computing platforms usually use a hierarchy of cache memories
which poses additional challenges during the analysis of WCET/WCRT of tasks. These chal-
lenges stem from the computation of intra- and inter-task cache interference for multiple cache
levels and their integration when performing timing analysis of tasks. As previously mentioned in
Section 3.1.4, several different approaches have been proposed in literature to bound the intra-task
cache interference considering multilevel caches (Ferdinand and Wilhelm, 1999; Theiling, 2002;
Hardy and Puaut, 2008; Sondag and Rajan, 2010) however, the literature on the computation of
inter-task cache interference is relatively scarce. In Section 3.2.3, we have brie y discussed the
only two existing approaches (Chattopadhyay and Roychoudhury, 2014; Zhang and Koutsoukos,
2016) in the state-of-the-art that focus on the computation of inter-task cache interference (more
speci cally CRPDs). It has been shown in (Chattopadhyay and Roychoudhury, 2014; Zhang and
Koutsoukos, 2016) that when considering multilevel caches, a precise CRPD bound can only be
obtained by accurately quantifying the indirect effect of preemption (see De nition 3.9) and be-
cause of the indirect effect of preemption, the traditional UCB concept used to analyze CRPD in
single-level caches is hard to use in case of multilevel caches. Consequently, the works in (Chat-
topadhyay and Roychoudhury, 2014; Zhang and Koutsoukos, 2016) introduce the notion of mul-
tilevel UCBs (see De nition 3.10) and that of useful positive references (see De nition 3.11) to
compute CRPDs. However, these existing approaches (Chattopadhyay and Roychoudhury, 2014;
Zhang and Koutsoukos, 2016) may still result in generating imprecise CRPD bounds mainly due
to two reasons, i.e.,

» Due to an overestimation in the number of memory blocks that can contribute to the indirect
effect of preemption suffered by a memory block. This overestimation in the indirect effect
of preemption suffered by the tasks may lead to imprecise CRPD bounds.

138

8.1 Assumptions on the System Model 139

« When accounting for CRPD due to a memory block that has multiple references categorized
as L2-hits in the absence of preemption (but may result in L2-misses after preemption), the
existing analysis (Chattopadhyay and Roychoudhury, 2014; Zhang and Koutsoukos, 2016)
assume that all references to that memory block can be impacted due to a single preemption
and therefore contribute to CRPD. This leads to pessimistic CRPD bounds considering that
multiple references to the same memory block may result in L2 cache hits but not all those
references are impacted due to a single preemption and therefore may not contribute to the
CRPD.

Building on the above two points, in this chapter we aim to reduce the pessimism in the compu-
tation of inter-task cache interference for multilevel caches by providing a tighter bound on the
CRPD suffered by the tasks. The main contributions of this chapter are as follows:

1. We de ne the notion of useful cache blocks (UCBs) for multilevel caches based on the
cache level from which those UCBs may be re-used. We then show how these UCBs can be
determined considering a two-level non-inclusive cache hierarchy;

2. we present a hew approach to bound the indirect effect of preemption suffered by memory
blocks. We show that a tighter bound on the indirect effect of preemption can be obtained
by calculating the indirect effect of preemption that can be caused instead of calculating the
indirect effect of preemption that can be suffered due to preemptions;

3. we present a new analysis to compute the CRPD due to memory blocks that were categorized
as L2-hits in the absence of preemption but may become L2-misses due to preemption. Our
approach identi es how many references to such memory blocks can be impacted due to a
preemption and therefore may contribute to the CRPD;

4. we incorporate the CRPD bounds resulting from our proposed approach into a WCRT based
schedulability analysis and perform an extensive experimental evaluation that compares the
performance of our analysis against the state-of-the-art CRPD analysis presented in (Chat-
topadhyay and Roychoudhury, 2014). The results show that our proposed CRPD analysis
results in up to 20 percentage points higher task set schedulability than the CRPD analysis
in (Chattopadhyay and Roychoudhury, 2014).

8.1 Assumptions on the System Model

In this chapter, we make the following assumptions on the systems model:

» We focus on a single-core processor having two-lexai-inclusivecache hierarchy (i.e.,
we consider only L1 and L2 caches). Non-inclusive cache hierarchy implies that the content
in the L1 cache may or may not be duplicated in the L2 cache. We only consider instruction
references and assume that both L1 and L2 caches are set-associative and use the Least-
Recently-Used (LRU) cache replacement polity.andW, respectively denote the number

140

Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

of cache ways or cache associativity of L1 and L2 caches. The set of all L1/L2 cache sets is
denoted by5,=S,. The total number of cache sets in the L1 and L2 are givgisfjyand;jSyj
respectively. Speci cally, we focus on the following cache con guration, i8j | S

andW, Wb,

We consider a task s& comprising ofn sporadic task§t1;t»;:::ithg. Each task; 2 Gis

de ned using a triplet, i.eC;, Ti andD;. C; denote the worst-case execution time (WCET)

of taskt;, T; is its minimum inter-arrival time an®; is the relative deadline of each job of

t;. We assume tasks have constrained deadlinesDi.e.,T;. R denote the WCRT of;.
Furthermore, tasks can be scheduled using any xed-priority preemptive scheduling (FPPS)
algorithm such as Rate or Deadline Monotonic (Liu and Layland, 1973).

We assume that the set of all memory blocks accessed by &;tdsking its execution is

given byM; = f my;j; mpi; i1 mzig. For any memory reference, L1 cache is always accessed.

If a memory block is not available in the L1 cache but it is available in the L2 cache (i.e.,
an L1 cache miss but a L2 cache hit), that memory block will be rst loaded into the L1
cache. The time needed to load that block from L2 cache to L1 cache is givkn.dythe
required memory block is not present in both L1 and L2 caches (i.e. an L2 cache miss), it
is loaded from the main memory to both cache levels. The time needed to load/reload that
block from the main memory to both cache levels is giverdpy+ d, », whered, > denote

the L2 cache miss penalty.

The list of important symbols used in this chapter is provided in Table 8.1.

Table 8.1: List of important symbols used in Chapter 8

Symbol Description
G Task set of size
Wy The number of cache ways or the associativity of the L1 cache
W, The number of cache ways or the associativity of the L2 cache
S The set of all cache sets in the L1 cache
S, The set of all cache sets in the L2 cache
ti Task with index
C Worst-case execution time of taskin isolation
Ti Minimum inter-arrival time of task;
Di Relative deadline of task
R Worst-case response time of task
M;i Set of all memory blocks accessed by tas#luring its execution
My Any memory blockx used by task; during its execution
hp(i) The set of tasks with higher priority than

Continued on next pag

D

8.1 Assumptions on the System Model 141
Table 8.1 — continued from previous page
Symbol Description

heg(i) The set of tasks with higher priority than including t;, i.e., hefji) =
hp(i)] t;.

aff(i; j) The set of intermediate tasks (includitg that may preempt; but may
themselves be preempted by some higher priority task

di1 L1 cache miss penalty

dio L2 cache miss penalty

S Any set in the L1/L2 caches

CUr'?{j Maximum LRU-age of a memory blocky; of taskt; in the L1 cache)
w.r.t a program point P

CUr'?;j Maximum LRU-age of a memory blocky; of taskt; in the L2 cache)
w.r.t a program point P

MayACSg;:1(S Set of all memory blocks that may be cached in the L1 cach8 deting
the execution of task;

MayACS;2(S Set of all memory blocks that may be cached in the L2 cach8deting
the execution of task;

Syl Cache set where memory blook;; of taskt; is mapped in the L1 cache

Snyir2 Cache set where memory blook;; of taskt; is mapped in the L2 cache

ECB?“’““l Set of ECBs of task; that map to the same L1 cache set as memory block
my; of taskt;

ECB?“’““2 Set of ECBs of task; that map to the same L2 cache set as memory block
my; of taskt;

ID[{; Set of memory blocks that contribute to the indirect effect of preemption
suffered by any memory bloaky;; 2 M; (accessed at any program point
r) due to preemption of task by a higher priority task j 2 hp(i) at a
preemption point P.

R Set of program locations where a memory blank 2 M; may be ac-
cessed by task after its preemption by a higher priority task2 hp(i)
at a preemption point P. All program locationRimust be reachable from
the preemption point P.

Dy Set of all those memory blocks of taskthat have at least one reference
categorized as an L1 cache hit starting from the entry nodeasfd end-
ing at any program location r.

IDQ@"P The maximum indirect effect of preemption suffered by any memory

block my; 2 M; (accessed at any program point r) due to preemptio
taskt; by a higher priority task; 2 hp(i) at a preemption point P.

n of

Continued on next pag

D

142

Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Table 8.1 — continued from previous page

Symbol

Description

CRT}

CRPD cost due to all the memory blocks of tdskhat may suffer only|
a L1 cache miss penalty due to preemption by a higher priorityttagk
hp(i) at a program point P.

CRT;'"

CRPD cost due to all the memory blocks of tasthat may suffer both L1

and L2 cache miss penalties due to preemption by a higher priority|task

tj 2 hp(i) at a program point P.

ICRT}

CRPD cost due to rst access to all the memory references ofttabiat

were L1 cache misses and L2 cache hits in the absence of preemption but
may suffer L2 cache miss penalties due to preemption by a higher priority

taskt ; 2 hp(i) at a program point P.

ICRT}?

CRPD cost due to subsequent accesses (excluding the rst access) to all

the memory references of taskthat were L1 cache misses and L2 caghe

hits in the absence of preemption but may suffer L2 cache miss penglties

due to preemption by a higher priority task2 hp(i) at a program point
P,

Set of all program points in tagk

P>

Set of all program location of tagk with L1 cache misses and L2 cache
hits, that are reachable from the preemption point P.

MustAgem;; P 1)

Function that returns the LRU-age of a memory blogk in the levelt
cache at any program location P in taskThe LRU-age is derived using
the Must-cache analysis (Hardy and Puaut, 2008).

IL2ing Upper bound on the number of L2 cache misses to any memory reference
solely due to the indirect effect of preemption.

UCBﬁ'?l Set of L1-UCBs of task; at a program point P.

UCE}'?Z Set of L2-UCBs of task; at a program point P.

gﬁ' CRPD cost suffered by tagk due to a single preemption by any higher
priority taskt ; 2 hp(i) when considering a two-level non-inclusive caghe
hierarchy. g'j' is computed using the CRPD analysis proposed in (Chat-
topadhyay and Roychoudhury, 2014).

Indﬁw Set of memory blocks that contribute to the indirect effect of preemption
suffered by any memory blocky; 2 M; due to a single preemption of
taskt; by any higher priority task; 2 hp(i) at a preemption point P.

FA,PM Program location where any memory blaok; of taskt; is rst accessed
after the preemption point P.

Py Set of all program locations between the preemption point P and program

point FAT,

[1%)

Continued on next pag

8.2 State-of-the-Art CRPD Analysis for Multilevel Caches (Chattopadhyay and Roychoudhury,

tion

L

|

ption

ce to

2014) 143
Table 8.1 — continued from previous page
Symbol Description
Indm;j'?P Set of memory blocks that contribute to the indirect effect of preemp
suffered by any memory bloaky; 2 M; due to multiple preemptions @
taskt; by any higher priority task;j 2 hp(i) w.r.t a preemption point P.
g CRPD cost due to all L1-UCBs of tagk that are evicted from the L1
cache (but are available in the L2 cache) due a preemption ot tdsk
any higher priority task; 2 hp(i) at a preemption point P
g'?]le CRPD cost due to all L1-UCBs of tagk that are evicted from both L]
and L2 caches due a preemption of taskoy any higher priority task
t; 2 hp(i) at a preemption point P
gﬂLz CRPD cost due to all L2-UCBs of tagkthat are evicted from L2 cach
due a preemption of task by any higher priority task; 2 hp(i) at a
preemption point P
P, Set of all program locations with L2 cache hits between the preemy
point P (including P) and end poietof a taskt;
Rﬁw Set that contains all program locations after the preemption point P where
a reference to memory bloek; is a L2 cache hit
”} First program location after the preemption point P where a referen
memory blockmy; is a L2 cache hit
g"*T CRPD cost suffered by tagk due to a single preemption by any higher
priority taskt ; 2 hp(i) when considering a two-level non-inclusive caghe
hierarchy.gﬁ is computed using our proposed CRPD analysis.
gﬁ;max Maximum CRPD cost suffered by task due to a preemption by an

higher priority task j 2 hp(i) when considering a two-level non-inclusi
cache hierarchy.

<

e

8.2 State-of-the-Art CRPD Analysis for Multilevel Caches (Chattopad-
hyay and Roychoudhury, 2014)

As mentioned previously in Section 3.2.3, there exist only two works in the state-of-the-art (Chat-

topadhyay and Roychoudhury, 2014; Zhang and Koutsoukos, 2016) that focus on the computation
of CRPDs for multilevel caches. However, as we consider a non-inclusive cache hierarchy, we

will brie y explain the CRPD analysis of Chattopadhyay et al. (Chattopadhyay and Roychoud-
hury, 2014). Chattopadhyay et al. (Chattopadhyay and Roychoudhury, 2014) de ned the notion
of UCBs for two-level caches (see De nition 3.10) and used that notion of UCBs to analyze CRPD
for multilevel non-inclusive caches. The sets of UCBs of tasks are computed using the Must-cache

analysis (Theiling, 2002; Hardy and Puaut, 2008) along with a backward ow analysis. Recall

144 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

that the Must-cache analysis (see Section 3.1.1) determines the set of memory blocks that are in
the cache at any given program point under all circumstances, i.e., the reference to such memory
blocks will always be cache hits w.r.t that program point. The result of the UCB analysis presented
in (Chattopadhyay and Roychoudhury, 2014) is a tLGILIJq%:i = (CU%;CU%) that captures the
xed-point on the maximum LRU-age of a memory blook; of taskt; at a program point P in

both L1 and L2 caches. If memory block; is not present in L1 cache w.r.t a program point

P, CUri;i is given by the tupIQ¥;CUrﬁxﬁ), where¥ represent all scenarios wharg; may not be
present in the L1 cache, i.@U,f{xﬁ W;. Similarly, if my; is not present in the L2 cacf@U,fM is

given by(CUr'TD{j;¥). Note that according to the state-of-the-art de nition of two-level UCBs (i.e.,

De nition 3.10), any memory blockn,; of taskt; can only be categorized as a UCB at a program
point P ifCUT | 6 (¥;¥).

To compute the set of ECBs of the preempting task, €;gthe analysis in (Chattopadhyay
and Roychoudhury, 2014) use the May-cache analysis (Hardy and Puaut, 2008). Recall that the
May-cache analysis (see Section 3.1.2) determines all memory blocks that may be in the cache at
a given program point, i.e., it over-approximate the content in the cache w.r.t a program point. For
any cache se8, the set of ECBs of the preempting taskin Sis computed by applying the May-
cache analysis at the end po@of taskt ;. The May-cache state of cache Sait e will always
include all possibly accessed memory blocksthyn S. The output of the May-cache analysis
w.r.t a cache sebis given by the tupléMayACS;(S) = (MayACS;:1(9); MayACS;.2(9), where
MayACS;:1(S=MayACS;.2(S) represent the abstract caches state (see De nition 3.1) of a L1/L2
cache sebw.r.t the end poine of taskt ;. Effectively, MayACS;.1(S=MayACS;:»(S) contain all
memory blocks that may be cached in a L1/L2 cacheésskiring the execution of tagk.

Assuming that the mapping of a memory black; of taskt; in L1(L2) cache is de ned by
the tupleSy,;;1(Snw;:2) such thalS,, ;.1 denote the cache set wherg; is mapped in the L1 cache
andSy,;;» denote the cache set wherg; is mapped in the L2 cache. Then, the number of ECBs
of a higher priority task j 2 hp(i) that may overlap witm,.; in L1(L2) cache are given by

JECE™"| = jMayACS;:1(Sny)i and (8.1)

JECB™} = |MayACS;2(Sn,2)]

whereECB; ?“l(ECBj ”;2) is the set of ECBs of tasl that map to the same L1(L2) cache set as
memory blockm;; of taskt;.

Using the set of ECBs de ned by Equation (8.1) the CRPD analysis in (Chattopadhyay and
Roychoudhury, 2014) determines if a memory blogk of taskt; will be evicted from L1(L2)
cache due to preemptions. Effectively, it is assumed tiyatcan be evicted from the L1(L2)
cache due to a preemption of taskby taskt; 2 hp(i) at a program point P, only if the sum of
the maximum LRU-age af; in L1(L2) cache at P, i.eCUr'?;j(CUrﬁj), and the number of ECBs
of t that may overlap withm; in L1(L2) cache, i.e.jECBJ- ?“lj(jECBj 3“2j), is greater than or
equal to the associativity of the L1(L2) cache, iWi(W,). Formally, ifCU,{'?x';i + JECB, ?“'j W

8.2 State-of-the-Art CRPD Analysis for Multilevel Caches (Chattopadhyay and Roychoudhury,
2014) 145

then memory blockny; of t; will be evicted from the level-cache due to a preemption of task
by any higher priority task; 2 hp(i) at a preemption point P.

8.2.1 Calculating the Indirect Effect of Preemption

By de nition (see De nition 3.9) indirect effect of preemption is experienced when a memory ref-
erence that was a L1 cache hit in the absence of preemption access the L2 cache after preemption
(e.g., the second reference to memory block A during the preempted execution ipfghstvn in
Figure 3.6). Due to this extra reference to the L2 cache, the amount of intra-task cache con icts
generated in the L2 cache may increase after preemption. This increase in intra-task L2 cache con-
icts may result in generating L2 cache misses for memory references that were categorized as L2
cache hits in the absence of preemption (e.g., the second reference to memom bidghlke pre-
empted execution of tagk shown in Figure 3.6). Consequently, it can be stated the indirect effect
of preemption is suffered by all those memory blocks that may be accessed from the L2 cache after
preemption. Under the CRPD analysis presented in (Chattopadhyay and Roychoudhury, 2014),
the indirect effect of preemption any memory blaok; 2 M; (accessed at any program point r)
can suffer due to preemption of taskby a higher priority task ; 2 hp(i) at a preemption point
P is given byle”'ij, wherelDﬁEi is a set comprising of all memory blocks; 2 M; that satisfy
the following constraint, i.e.,

n o}
IDIY = Myijmyi 6 My Myi 2 D™ (Smgi2= Sigi2)* CUpy 8 (¥;¥) A CURT + JECB, > Wy

(8.2)

Equation (8.2) states that any memory bloglk 2 M; can cause an indirect effect of preemption
on any other memory blocky,; 2 M; accessed at any program point r after preemptiomif
satisfy all four conditions in Equation (8.2). These conditions are explained as follows:

+ First condition, i.e.myi 6 my;, implies that the same memory blocks can not cause an
indirect effect of preemption on each other, i.emi§ = m,; and the reference tmy; was
a L1 cache hit in the non-preempted execution;dfut the same reference becomes a L1
cache miss after preemptiontefby t . Then,my; can be reloaded either from the L2 cache
or from the main memory. However, in both cases the state of L1/L2 cachemy nill
be the same, i.emy; will be the youngest element in both L1 and L2 cache after the reload
from L2 cache or main memory. Therefore,nik;; = my;, my; can not suffer an indirect
effect of preemption due ;.

» The second condition, i.emy; 2 D¢, implied thatm,; can only cause an indirect effect of
preemption ormy;, i.e., increasing the LRU-age ai; in L2 cache, ifmy; 2 D¢;;. Where
D¢, is a set of all those memory blocks; (i) that must be accessed along some path starting
from the entry node of; and ending at r, and (ii) that must have at least one reference
categorized as a L1 cache hit (by the intra-task cache analysis) in the absence of preemption
and that reference must be reachable from program point r. Effectdelyincludes all
memory blocks of task; that have at least one reference categorized as a L1 cache hit along

146 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

any execution path df starting from the entry node ¢f and ending atr. In (Chattopadhyay
and Roychoudhury, 2014)+., is computed using a forward- ow analysis (along with the
Must-cache analysis (Theiling, 2002)) which starts from the entry point oftteeshd ends
atr.

* Third condition, i.e.,Sn ;2 = Sy,;;2, implies that any memory blocky; 2 M; can only
cause an indirect effect of preemption on any other memory higgk? M; if both my;
andmy; are mapped to the same L2 cache set. This is intuitive, since each cache set of
a set-associative cache can be analyzed independently. Therafpiean only suffer the
indirect effect of preemption from all memory blocks that are mapped to the same L2 cache

set agmy;.

. CU,'T:;X;i 6 (¥;¥) implies that formy; to cause an indirect effect after a preemption ahR,

must be a UCB at P. The last condition, i@Ur; + JECB™"] > W, states that fomy;

to cause an indirect effect of preemption i, my; must be evicted from the L1 cache
due to preemption at P by the higher priority task If m; is evicted from the L1 due to
preemption at P, the rst accessng;; after preemption will resultin a L1 miss. Henasy;
will be accessed either from L2 or is reloaded from the main memory. In both cages,
will cause an indirect effect on all memory blocks (includimg) that map to the same L2
cache set asy;. Finally, the setDEnF;i contains all memory blocksy.; 2 M; that satisfy all
the above mentioned conditions.

Considering that a memory block,; can be accessed at several different program locations (i.e.,
r) that are reachable from the preemption point P, the worst-case indirect effect of preemption
thatmy; can suffer is computed by maximizing Equation (8.2) over all program locations where
my; may be accessed and are reachable from the preemption pointR.deztote the set of all

such program locations then, the worst-case indirect effigctmay suffer due to a preemption at
program point P is given bbD?ﬁ’fP, where

IDMXP = maxjIDLP 8.3
mi T grepd o myl (8.3)

Example 8.1. To demonstrate how the indirect effect of preemption is computed for the CRPD
analysis of (Chattopadhyay and Roychoudhury, 2014), let us use Eqatijrio calculate the
indirect effect of preemption suffered by memory block m, i.&%,IBr the execution scenario
shown in Figure 3.6. We havesp= f Ag and memory block A satisfy all constraints in Equa-
tion (8.2)in case of a preemption at P. Therefore, we havi Il f Ag and IDR®P = 1,

More details on the formulation of Equation (8.2) and (8.3) can be found in (Chattopadhyay
and Roychoudhury, 2014).

8.2 State-of-the-Art CRPD Analysis for Multilevel Caches (Chattopadhyay and Roychoudhury,
2014) 147

8.2.2 CRPD Computation

Under the analysis presented in (Chattopadhyay and Roychoudhury, 2014), the CRE Dniagk
suffer due to a single preemption by a higher priority thsk hp(i) at any arbitrary preemption

- . - 1 2 1 2 1
point P comprises of four components, |@F,2T:3J : CRT:DJ : ICRT:DJ : andICRTP CRTP cap-
tures the CRPD due to all those memory blockg;ahat are evicted from the L1 cache due to

preemption byt ; at P but may still be available in the L2 cache, i.e.,
CRT = diy | Mipaj (8.4)

whereM;._1 is the set of all memory blocks ikl; that might be L1 cache hits in the absence of
preemption, but may suffer L1 miss penalties after preemption, i.e.,

n (0]
Mii1= mgjCUg 6 (¥;¥)" CUR" + JECB; i WAcuP2+JECBS'W J+|Dm6‘X"<v\/2

(8.5)
Similarly, CRTPZ accounts for the CRPD due to all those memory blocks; dat are evicted
from both L1 and L2 caches due to preemption, i.e.,

CRT::;)’jzz(dLl-i- di2) J MiLizj (8.6)
where
" Snn 0
Mitiz= mgiCUR, 6 (¥:¥)" CURT+JECE™"] Wi CURZ+]ECE™ j+ DR W,
(8.7)

By the de nition of UCBSs provided in (Chattopadhyay and Roychoudhury, 2014) (De nition 3.10),

all memory blocks irM; that are L2 cache hits in the absence of preemption are not categorized as
UCBs. Therefore, to account for the CRPD due to all those memory blocks, the analysis in (Chat-
topadhyay and Roychoudhury, 2014) checks all program locations with memory references that
were L2 cache hits in the absence of preemption but may become L2 cache misses due to preemp-
tion. The set of all such program location of tagkhat are reachable from the preemption point

P is denoted by,.

The CRPD analysis in (Chattopadhyay and Roychoudhury, 2014) assume that any reference
to a memory blockn,; 2 M; at any program point2 P, can suffer multiple L2 cache misses due
to preemptions. The rst reference ta,; after preemption may suffer a L2 cache miss due to the
combined affect of the preempting task, i.e., due to ECBs of the preempting;téskt map to
the same cache set ag; given bijCBS“”“Zj and the indirect effect of preemption suffered by
my; at that program point2 P, i.e.,lerP] ConsequentIyCRTPl captures the resulting CRPD
cost for the rst reference to memory blook;; after preemption, i.e.,

8
< . o . Srryi;z. . rp:
0 if MustA i.r;2)+ |JECB + jIDLT <
ICRTil?jl_ o . gér‘nfl) J]]t ny,] \NZ (88)
r2P2 d> otherwise.

148 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

whereMustAgé€my;; r; 2) is the LRU-age of memory bloaky; in the L2 cache immediately before

the program point 2 P, and is computed using the Must-cache analysis (Hardy and Puaut, 2008).

The CRPD analysis in (Chattopadhyay and Roychoudhury, 2014) assume that the same memory

block, i.e.,my;, can also be evicted solely due to the indirect effect of preemption. Consequently,

ICRTi'?j2 captures the CRPD cost due to referencesjahat may suffer an L2 cache miss penalty

after preemption only due to the indirect effect of preemption, Wl“(éRi‘T:?jz is given as
8

CRTZ= 12, & 0 | MustAGEMin2) D) < Ve

) (8.9)
r2P,* dio otherwise.

In Equation (8.9)IL2;,q denotes an upper bound on the number of L2 cache misses to any memory
reference solely due to the indirect effect of preemption. It is proved in (Chattopadhyay and
Roychoudhury, 2014) that if the cache con guration is suchjiigt j Syj andWy W, then the
value ofIL2j,q is upper bounded by 1, i.dL,2jng 1.

Finally, the worst-case CRPD suffered by taskue to a single preemption by taiskis given
by maximizing Equation (8.4)-(8.9) over the set of all program pBirite.,

gl = max CRT’'+ CRT.?+ ICRT = + ICRT.? (8.10)
07 eop i i i it

Readers are direct to (Chattopadhyay and Roychoudhury, 2014) for details on the formulation of
Equation (8.1)-(8.10).

8.3 Multilevel Useful Cache Blocks

The state-of-the-art de nition of UCBs for two-level caches (i.e., De nition 3.10) assume that any
memory blockmy; of taskt; can only be categorized as a UCB at a program pointmifis not
evicted from both L1 and L2 caches before being reused at a later program point Q. However, con-
sidering that multilevel non-inclusive caches do not strictly enforce content inclusion, it is likely
that memory blockny; can be available in only one cache level (e.g., L1 or L2) at program point Q
and hence will be re-used from that cache level. For example, in Figure 3.6 both memory blocks
A andm are cached in L1 and L2 at program point P, however, only memory block A remains
cached in both L1 and L2 before its next reuse. Therefore, by De nition 3.10 only memory block
A will be categorized as a UCB at program point P even though memory btaslonly evicted

from L1 cache and is later reused from the L2 cache.

In a non-inclusive multilevel cache, a memory block can be available in any of the cache levels.
Therefore, using this insight, we can re-de ne the notion of UCBs for multilevel caches based on
the cache level from which a memory block might be reused. For example, in a two-level cache a
memory blockmy.; can be re-used either from L1 or L2 cache (i.e., L1 or L2 cache hit). Therefore,
myi can be categorized as a L1- or L2-UCB. Formally, for a cache with two levels, UCBs can be
categorized into:

8.3 Multilevel Useful Cache Blocks 149

De nition 8.1 (L1-Useful Cache Blocks (L1-UCBs):)A memory block g of taskt; isa L1-UCB
w.r.t a program point P if (i) m; is cached in L1 at P and (ii) m is reused at a program point

Q that must be reachable from P without eviction qf fifom the L1 cache, i.e., the reference to
myi at program point Q should be categorized as a L1 hit. The set of memory blocks of task
categorized as L1-UCBs w.r.t a program point P is given by @1(:8

De nition 8.2 (L2-Useful Cache Blocks (L2-UCBs):A memory block i of taskt; is a L2-UCB
at program point P if (i) ng; is cached at P in L2 and (ii) pj is reused at a program point Q that
must be reachable from P without eviction af;jrfrom the L2 cache, i.e., the reference tg; rat
program point Q is categorized as a L2 cache hit. The set of memory blocks of tatkgorized
as L2-UCBs w.r.t a program point P is denoted by L}?QB

Based on the above de nitions, a memory block can be both a L1-UCB and a L2-UCB w.r.t a
program point P, i.e., the reference to that memory block at any program point Q that is reachable
from P can be a cache hit in both L1 and L2 caches. However, in this case, that memory block
will only be considered as a L1-UCB as it will always be accessed from the L1 cache during non-
preempted execution of a task. Note that the above de nitions of UCBs can also be generalized to
I-level caches.

It is argued in the existing works (Chattopadhyay and Roychoudhury, 2014; Zhang and Kout-
soukos, 2016) that the concept of UCBs is dif cult to use for the analysis of CRPDs for multilevel
cache. However, as we later show in Section 8.5, by categorizing UCBs based on the cache level
from which they might be re-used, the UCB concept can be used to compute CRPD for multilevel
caches.

8.3.1 Finding L1/L2-UCBs

The set of L1-UCBs and L2-UCBs of a taskat a program point P can be determined by using the
Must-cache analysis (Hardy and Puaut, 2008) along with a backward ow analysis as proposed
in (Chattopadhyay and Roychoudhury, 2014). As mentioned earlier, the result of the UCB analysis
in (Chattopadhyay and Roychoudhury, 2014) is a t@il§, | = (CUg:;CUn>) that captures the
xed-point on the maximum LRU-age of a memory bloak.; of taskt; at a program point P.
Consequently, the set of L1-UCBs of a taskat a program point P can be computed using the
following expression
n 0
UCB = mygjmgi2 MiA CUTl 6 ¥ ACUR26¥ _ CURl6 ¥ CUR = ¥
(8.11)

Equation (8.11) implies that given a program point P, all memory blogks2 M; with a maxi-
mum LRU-age in L16 ¥ are L1-UCBs ot; w.r.t P.

Similarly, the set of L2-UCBs of task at a program point P can be computed as follows

n 0]
UCBY, = myjm,; 2 Mi* CURT = ¥ CU2 6 ¥ (8.12)

150 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Equation (8.12) implies that any memory block; 2 M; is a L2-UCBs at a program point P, if
my; may be evicted from L1 along some path reachable from P,Old(f;j = ¥, but it remains
cachedin L2, i.e.CUrf{j 6 ¥. Similarly, to compute the number of ECBs of a higher priority task
t; 2 hp(i) that may map to the same L1(L2) cache set as the L1/L2-UCBs ot tasle will also
use the May-cache analysis (Hardy and Puaut, 2008), i.e., Equation (8.1).

8.4 Tightening the Bound on the Indirect Effect of Preemption

The state-of-the-art approach to calculate the indirect effect of preemption (i.e., Equation. (8.2))
provides a sound estimate on the indirect effect of preemption that can be suffered by the memory
blocks. However, that approach may result in overestimating the indirect effect of preemption.
This overestimation is due to an over-approximation on the set of memory blocks that can cause
the indirect effect of preemption. To illustrate consider the following example:

Example 8.2. Figure 8.1 shows a sequence of memory reference (from left to right) during non-
preempted (top) and preempted (bottom) execution of ttaskVe assume that L1 and L2 are
two-way set-associative LRU-caches, i.e;,3WW, = 2. All memory blocks used by task i.e.,

A, B and m, are mapped to the same L1 and L2 cache set. For clarity, we only focus on the
computation of indirect effect of preemption suffered by memory block m due to preemption at
program point P. We can see in Figure 8.1 that the second reference to memory block m is a

Figure 8.1: Highlighting the pessimism in the calculation of indirect effect of preemption by (Chat-
topadhyay and Roychoudhury, 2014).

8.4 Tightening the Bound on the Indirect Effect of Preemption 151

L2-hit in both non-preempted and preempted executioty.ofHowever, if we use analysis of
(Chattopadhyay and Roychoudhury, 2014) to calculate the indirect effect of preemption that can
be suffered by memory block m due to a preemption at P, we will get® D¢,, = fA;Bg

w.r.t program locations y and r, where m is accessed after preemption. Moreover, both memory
blocks A and B satisfy all constraints in Equati($2), i.e., (i) A and B are UCBs at program
point P; (ii) both A and B will be evicted from L1 (and L2) cache due to preemption at program
point P by a higher priority task; 2 hp(i) and (iii) both A and B map to the same L2 cache

set as m. Therefore, the analysis in (Chattopadhyay and Roychoudhury, 2014) will conclude
that both memory blocks A and B can cause an indirect effect of preemption on memory block
m, i.e., I04F = IDRZP = fA;Bg and IDR*F = 2 (by using Equation(8.2) and (8.3)) after a
preemption at P. Consequently, if we use this bound on the indirect effect of preemption of m in
Equation(8.9), it results that m will be evicted from L2 solely due to indirect effect of preemption,
i.e., MustAgém;ry;2) + jIDI2Pj = 2+ 2> Wsx. However, we can see in Figure 8.1 that this does
not happen. In fact, the second reference to memory block m remains a L2 cache hit even after
preemption because m will not suffer any indirect effect of preemption.

Example 8.2 shows that overestimating the indirect effect of preemption may lead to pes-
simistic CRPD values. Therefore, we propose an improved analysis that computes a tighter bound
on the indirect effect of preemption using Algorithm 8.1. Instead of calculating the indirect effect
of preemption that can be suffered by memory blocks, Algorithm 8.1 bounds the indirect effect
that can be caused by memory blocks as a result of a preemption. We prove the correctness of
Algorithm 8.1 using the following Lemma

Algorithm 8.1 Calculating the indirect effect of preemption caused due to preemption ofjtask
by t; at a program point P

Output: The indirect effect of preemption suffered by every memory blogk2 M; due to preemption
at program point P, i.elndﬁw.

1: for 8my; 2 M; do
2: Ind,'?vi =0

3: end for’

4: for 8my; 2 UCB; do

5. if CURL + JECB™" W, then

6: FA,ﬁ'w = GetFirstAccessny;; P)

7: for 8my; 2 Mjnmy; do

8: if ((MUStAgéﬁv;i:F%;i;Z) & ¥)" (Sn;2== Sy "
((MustAgémy;;FAR, :2) = ¥) _ (MustAgémy; FAT, :2) > MustAgémy;FAT, ;2)))) then

9: In.drﬁ"y;i = Ind,ﬁ’w[Myi;

10: end if

11: end for

12: endif

13: end for

Lemma 8.1. The indirect effect suffered by any memory blogk2rM; of taskt; due to a preemp-
tion at any program point P is upper boundedjh}d,ﬁ’yij, where In(ﬁM is a set of memory blocks
that can cause the indirect effect of preemption gnamd is computed using Algorithm 8.1.

152 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Proof. (1). By the de nition of indirect effect of preemption (i.e., De nition 3.9), it can be caused
by only those memory blocks that are used from the L1 cache in the absence of preemption (i.e.,
L1-UCBs) but may be accessed from the L2 or the main memory after preemption. Therefore, for
any preemption point P, the set of memory blocks that may cause an indirect effect of preemption
on any memory blockn,; 2 Mj is upper bounded by the set of L1-UCBstgft that preemption
point P, i.e.,UCB{?l. Consequently, the external loop in Algorithm 8.1 (i.e., lines 4 to 13) iterates
over all memory blocksn,; 2 UCB.;.

(2). Any L1-UCB my; 2 UCE;'?l can cause an indirect effect of preemption on any other memory
blockmy; 2 M; due to preemption at a program point P onlynf; is evicted from the L1 cache

due to that preemption, i.eC,U,ﬁj + JECB; i > W4. In Algorithm 8.1 line 5 checks this condi-

tion for all L1-UCBs inUCB};.

(3). For any memory blockny; that is a L1-UCB at P the rst reachable referencesrg af-

ter P (e.g., at program Iocatid?A,FT’}x;i computed using functioetFirstAccessny;; P) in Algo-

rithm 8.1) determines whethen;; is evicted from the L1 cache or not and hence it may or may
not contribute to the indirect effect of other memory blocksmif is evicted from the L1 cache

due to preemption (i.e(2) holds) then the rst access toy; after P, i.e., aFA,ﬁ’W can either be a

L2 cache hit or a L2 cache miss. However, in both cases an access & program poinFA,FT’}x;i

may generate an indirect effect on all memory blocks that are in L2 caﬁ@@t i.e., reloading

my; from the main memory or from the L2 cache may increase the LRU-age of memory blocks
that are already in L2 cache at program p(ﬁAﬁw.

(4). Sincemy;; can cause an indirect effect of preemption on only those memory blocks that are in
the L2 cache at program poiﬁAﬁM. The nested loop in Algorithm 8.1 (lines 7 to 11) determines
all memory blockam,; 2 M; nmy; that can suffer indirect effect of preemption duentg;. The
computation is based on four conditions that are explained as follows:

(4.1). my; can only cause an indirect effect of preemption on any other memory bfipck
Minm; if my is in the L2 cache at program poiﬁAR;i. This is determined using the Must-
age (Hardy and Puaut, 2008) f;; at program poinFA,FT’}x;i, i.e.,m;; can only suffer an indirect
effect of preemption due t;; if (MustAgeénM;FAﬁM;Z) 6 ¥).

(4.2). my; can cause an indirect effect of preemptionnap if both m,; andmy; map to the same

L2 cache set, i.eSy ;2 == Sy, 2.

(4.3).Ifthe access tay; at program poinFA,'fw isa L2 cache miss, i.eMustAgém,.; FA,'?)X;i ;2) =

¥, thenmy; will be reloaded from the main memory to both L2 and L1 caches. This will increase
the LRU-age of all existing memory blocks in the L2 cache includimg Hence m; will suffer

an indirect effect of preemption due ta;.

(4.4).But, if the access toj at program poinFA,ﬁw is a L2 cache hit, themy; will be reloaded

from L2 to L1 cache. Moreover, in this case an accessipcan only change the LRU-ages of
memory blocks that are younger them; in the L2 cache. San;; can only suffer an indirect
effect of preemption frommy;; if I\/IustAgeérm;i;FA,FT’ki;Z) > MustAgeém),;i;FA,'?ki;Z) holds. Note
that(4.3)and(4.4) are mutually exclusive, therefore only one of them needs to be trugfoio
cause an indirect effect of preemption ;.

8.4 Tightening the Bound on the Indirect Effect of Preemption 153

Finally, if all the above conditions hold for any memory blatk; 2 M; nmy;, my; will be
added to the set of memory blocks that can cause an indirect effect of preemptiy, are.,
Ind,f'% [my;. Consequently, the cardinality of the s*.leujﬁ;ﬁi upper bounds the indirect effect that
can be suffered by any memory blogk; 2 M; due to preemption at any program point P. [

Example 8.3. Using Algorithm 8.1 to calculate the indirect effect of preemption of memory block
m in Figure 8.1, we can see that both memory blocks A and B are L1-UCBs at PA.Bg 2

UCB;. Also, both A and B will be evicted from L1 due to preemption and also map to the same
L2 cache set as memory block m. However, m is not in the L2 at the rst access of memory block
A (and B) after preemption point P, i.e., MustAgeFAYR;2) = ¥ (and MustAgém; FAE;2) = ¥).
Therefore, m will not suffer any indirect effect due to eviction of A and B at preemption point P,
i.e.,jindbj = 0.

8.4.1 Handling Nested/Multiple Preemptions

Algorithm 8.1 computes the indirect effect of preemption that may be suffered by memory blocks
of taskt; due to a single preemption by a higher priority tagk hp(i). However, in reality;

can be preempted several times by the same task or by different tasks during its execution. It has
been shown in the state-of-the-art CRPD analysis for single-level set-associative caches (Altmeyer
et al., 2010) that multiple preemptions of taskby the same task, e.d¢.j, does not pose any
additional challenges in the computation of CRPD for single-level caches. This is mainly because
the May-cache analysis (Theiling et al., 2000) used to compute the set of ECBs tf thakmay
overlap with the set of UCBs of tagk in the L1 cache, over-approximate the set of ECBS§;pf

i.e., even if certain memory blocks may not be accessed in one job executipthef/ do appear

in the set of ECBs. Therefore, the contribution every preemption; lman make to the CRPD of

t; can be analyzed independently. Similarly, it is also shown in (Altmeyer et al., 2010; Altmeyer,
2013) that in case of multiple preemption of tasky different tasks in hfd), the CRPD cost can

be computed by simulating nested preemptions, i.e., when computing the CRPD due to a single
preemption of task; by any higher priority task; 2 hp(i), it is assumed thdt; has itself already

been preempted by all higher priority tasks in(fjp Consequently, the analysis in (Altmeyer
etal., 2010; Altmeyer, 20%3) that accounts for multiple preemptions, use the union of set of ECBs
of all tasks in hefyj), i.e.,j gnoneyj) ECB, ?i;lj, instead of only using the set of ECBs of tagk
i.e.,jECBj ;i;lj, when computing the CRPD due to a single preemption of tasly any higher
priority taskt j 2 hp(i).

However, when computing CPRD for multilevel caches in the presence of multiple preemp-
tions, only simulating nested preemptions of tasks, i.e., using the union of ECBs of the preempting
tasks, may not be enough. This is mainly due to the indirect effect of preemption that exists in
multilevel caches, i.e., multiple preemptions by the same or different task(s) may “collaborate”
to cause more indirect effect than they would in “isolation”. To illustrate this point, consider the
example given below:

154 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Example 8.4. Figure 8.2 shows a sequence of memory references during the execution of;a task
considering different preemption scenarios. We assume that L1 and L2 are 4-way set-associative
LRU caches and all memory blocks used by tasknd the preempting task, e.g;, map to the

same L1 and L2 cache set. Note that we only focus on computing the indirect effect of preemption
that can be suffered by memory block m due to preemptions at program poars B.

During the non-preempted executiontp{see Figure 8.2a), rst reference to memory block A
after R and the rst reference to memory block B afterd®e L1 cache hits. Moreover, the second
reference to memory block m is also a L2 cache hit. We assume thdt @k be preempted by
a higher priority taskt j 2 hp(i) at program points Pand B such thatt ; only has one L1 cache
con ict with t;, i.e.,tj only loads ECB X in the L1 cache. When considering preemptionsbgf
tj at B and B independently or in isolation (see Figure 8.2b), we can see that by just considering
the preemption at{only the rst reference to memory block A will be impacted and it will result
in a L1 cache miss (but a L2 cache hit). Similarly, a preemption @t Bsolation can only impact
the rst reference to memory block B aftes Rhich results in a L2 cache miss. Furthermore,
since both preemptions, i.e., at&d B, can only evict one L1-UCB, the maximum indirect effect
(computed using Algorithm 8.1) that memory block m may suffer due to a preemptipora®P
will be 1. Consequently, we can see in Figure 8.2b that the second reference to memory block m
will remain a L2 cache hit when considering both preemptions in isolation.

However, when considering consecutive preemptions ot tdsktaskt ; (see Figure 8.2c) we
can see that the preemption at program poiptcBn collaborate with the preemption a.PThis
collaboration generates an indirect effect of 2 on memory block m which results in the eviction of
memory block m from the L2 cache after a preemptiorpatsshown in Figure 8.2c.

Example 8.4 shows that Algorithm 8.1 may underestimate the indirect effect of preemption
suffered by memory blocks in the presence of multiple preemptions. This is mainly because when
using Algorithm 8.1, the indirect effect of preemption that can be caused at a preemption point
P is upper bounded by the number of L1-UCBs of tasks that may be evicted from the L1 cache
only due to preemption at P. However, as we just demonstrated in Example 8.4, two consecutive
accesses to the memory block under analysis, i.e., the memaory block for which the indirect effect
is being computed (e.gm in Figure 8.2), may enclose two or more preemption points (e.g.,

P, andP; in Figure 8.2) and all L1-UCBs that be may be evicted due to preemptions between
those preemption points may contribute to the indirect effect suffered by the memory block under
analysis. Therefore, to have a sound estimate on the indirect effect that can be caused due to
multiple preemptions w.r.t a program point P, we need to consider all L1-UCBs that may be evicted
from the L1 cache between the preemption point under analysis, e.g., P and the program point
where the memory block under analysis is rst accessed after Pyefpr example, ifn; is the
memory block under analysis which is accessed at any programrpafiter the preemption point

P. Then, the indirect effect of preemption timat; can suffer due to one or more preemptions by
any higher priority task; 2 hp(i) at P is upper bounded by the maximum number of L1-UCBs of
taskt; that may be evicted from the L1 cache between program points P.afml compute the
indirect effect of preemption in the presence of multiple preemptions we propose Algorithm 8.2

8.4 Tightening the Bound on the Indirect Effect of Preemption 155

(a) Non-Preempted Execution of

(b) Isolated Preemptions of by t j at program poinP, andP..

(c) Combined Preemptions tfby t j at program poinP; andP>

Figure 8.2: Multiple preemption scenarios with collaborating and isolated preemptions. The indi-
rect effect of preemption suffered by memory blouldue to consecutive preemptions, i.e.Pat
andP,, is higher than the indirect effect caused by individual preemptions.

which is an inclusive version of Algorithm 8.1. The major difference between Algorithm 8.1
and 8.2 is the functio®etProgamPointd>, FA,F,’M) that compute®; (line 4), which is the set of
all program location®” (including P) that are between the preemption point under analysis, i.e., P,
and the program point where memory blou; is rst accessed after P, i.d?A,'?M. Algorithm 8.2
then computes the indirect effect of preemption for all program locafoasP, using the exact
same steps as used in Algorithm 8.1. Note that the additional conahitip& Indr’?\;‘i';P ensures
that every memory blocky; that is a L1-UCB at any program point between P Eﬁﬁw and is
evicted from the L1 cache due to preemption, will only contribute once to the indirect effect of
preemption of memory blocky,i. This is mainly because, if an access to a memory biogkat
any program location i1 results in a L1 cache miss themy; will be reloaded in the L1 cache
from the L2 cache or from the main memory. In both casgs will become the youngest element
in the L1 and L2 caches and therefore can not cause any more indirect effect of preemption on
memory blockmy; that has higher LRU-age in the L2 cache timag.

Finally, the indirect effect of preemption that can be suffered by a memory bigck M; due
to one or more preemptions by a higher priority tag hp(i) is bounded bylndrﬂy‘jtpj, where
Ind,T‘y‘j';P is a set that contains all memory blocks that can cause an indirect effect of preemption on

my; even in the presence of multiple preemptions.

156 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Algorithm 8.2 Calculating the indirect effect of preemption that can be suffered by all memory
blocks used by task; when considering multiple preemptions by higher priority task2 hp(i)
w.r.t preemption point P

Output: Upper bound on indirect effect of preemption suffered by evemy; 2 M; w.rt a pre-
emption point P, when considering multiple preemptions by a higher priority task2 hp(i), i.e.,
jindmAtPy.
1: for 8my; 2 Mjnmy; do
2 IndpeP =0

3: FA,E,"%i = GetFirstAccessny;; P)

4: Py := GetProgamPoint@, FAEM)

5. for 8P"2 Py do .

6: for 8my; 2 UCB; do
0, S]

7: f (CUR+ 7 srznerj) ECB™] > Wh) » (g 2 Indf) then
0

8: FAR, = GetFirstAccessny; P)

9: if ((MUStAgEm, ;AR 12) 6 ¥)" (Sm,2== Sing2) "

((Mustagemy;; AR, ;2) = ¥) _ (MustAgéme; FAR, :2) > MustAgémy;; FAF, :2)) then

10: Ind” = Indm® [myi;

11: end if

12: end if

13: end for

14: end for

15: end for

8.5 Improved CRPD Analysis for Multilevel caches

In this section, we will demonstrate how the notion of multilevel UCBs, i.e., L1-UCBs and L2-
UCBSs, can be used to compute the CRPD for multilevel non-inclusive caches.

8.5.1 CRPD due to Eviction of L1-UCBs

L1-UCBs of a taskt; can be evicted from the L1 cache only due to a direct preemption by any
higher priority task ; 2 hp(i). This is mainly because the L1 cache is always accessed by the tasks
so the amount of intra-task cache interference that can be suffered by any memory block stored
in the L1 cache will not be changed due to preemptions. However, when analyzing the L2 cache
conicts to a L1-UCBsmy; of taskt; both the direct effect of preemption, i.e., ECBs of higher
priority tasks, and the indirect effect of preemption sufferedry must be considered. This is
mainly because the indirect effect of preemption is only suffered by memory blocks that may be
accessed from the L2 cache only during the preempted execution of tasks.

To compute the CRPD due to eviction of L1-UCBs of tasks a result of a preemption by
any higher priority task j 2 hp(i) at any arbitrary program point P, we use a similar approach as
presented in (Chattopadhyay and Roychoudhury, 2014) (i.e., Eq. (8.4) and (8.6)). L1-UCBs of
taskt; can be evicted from the L1 cache because of a preemption but may still be available in the

L2 cache. We usg'?'jLl to denote the CRPD cost due to all those L1-UCBs of tal,'swl«/heregf)'jLl

8.5 Improved CRPD Analysis for Multilevel caches 157

is computed as follows:

i 0 i
gl;)]Ll = diy Myij My 2 UC&'?lf\ Curﬁj + ECB™ lJ WA
h2heg(j)
P2, . L 2. . (8.13)
CUns*] ECB, “"j+ Indp " < W,
h2heg(j)

Note that when computing the L2 cache con icts to a memory blogk2 UCBZi, Equation (8.13)
also considers the indirect effect of preemption that may be sufferes.py.e., Indrr{{x‘;‘i';':, which is
computed using Algorithm. 8.2. The union of set of ECBs of all tasks irf jjap used to account
for nested/multiple preemptions of tagkby tasks in hfi).

Similarly, some L1-UCBs of task; might be evicted from both L1 and L2 caches due to
preemptions. We us@?'j"lz to denote the CRPD cost due to all those L1-UCBs of tasiwhere

g2 is computed as follows:

_ 0 1.
gile =(dp+ dio) Myij My:i 2 UC&'?l" CUF% +) ECE,™ 1J Wit
h2hef(j
[er)) - | (8.14)
CUR2+j ECB, ™"} + Indpi® W,
h2heg(j)

8.5.2 CRPD due to Eviction of L2-UCBs

All memory blocks used by tagk with one or more memory references categorized as L2 cache
hits in the absence of preemption, i.e., L2-UCBs;dkee De nition 8.2), may be evicted from the

L2 cache; (i) directly due to preemptions by the preempting tasks(in bp(ii) due to the indirect

effect of preemption or (iii) due to a combination of both (i) and (ii). However, before presenting
our analysis to compute the CRPD due to evictions of L2-UCBs of tasks, we highlight a source
of pessimism in the existing analysis (Chattopadhyay and Roychoudhury, 2014). The pessimism
lies in the use of Equation (8.8) and (8.9) that are used by the analysis in (Chattopadhyay and
Roychoudhury, 2014) to compute the CRPD due to memory references that were L2 cache hits
in the absence of preemption but may become L2 cache misses after the preemption. When cal-
culating the CRPD due to a memory reference, e.g., to a memory bipgckf taskt;, that was

a L2 cache hit in the absence of preemption but may result in a L2 cache miss after preemption,
the analysis in (Chattopadhyay and Roychoudhury, 2014) assume that each reference to memory
block my; after preemption may suffer up to two L2 misses after preemption, i.e., by using both
Equation (8.8) and (8.9) to check for the eviction of same memory reference. However, this is not
true, as we demonstrate using the following example.

Example 8.5. We calculate the CRPD costs ICRTand ICRT?, i.e., using Equation(s.s)

and (8.9), for the example scenario shown in Figure 8.3. We hayeW¥ and W = 3 and we
assume that all memory blocks used by taske., A,B,C,D and m, map to the same L1/L2 cache

set. We can see in Figure 8.3 that three references to memory block m are L2 cache hits in the

158 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

non-preempted execution of taski.e., at program pointsyr, r» and r;. Therefore, the set of pro-
gram locations with L2 cache hits w.r.t to a program point P, iRs.,is given byP, = fry;ro;rag.

The Must-age of m atyf ro and r3 is computed to be MustA@e;rq;2) = MustAgém;ry;2) =
MustAgém;rs;2) = 2. The number of ECBs of the preempting task, i that map the same L2
cache set as m are given @CB?“?Zj = 2. Using Equation(8.2)to calculate the indirect effect of
preemption suffered by m at,ir> and r; we ge§ID3Pj = 0 andjID!2"Pj = jID!3Pj = 1. Moreover,
sincewe hav§, SandW W, we setlL?,q = 1in Equation(8.9). Now using all these values

in Equation(8.8), we have MustAden; r; 2) + jECBjS“;zj + jIDIPj > W, for every r2 P,. Hence, the
resulting value of ICR{El willbe 3 dp». Similarly, using the values of Must-age and the indirect
effect of preemption of m in Equati¢®.9) we have MustAden;r;2) + jIDLPj > W, for rp and 13

in P2. Therefore, the resulting value of ICRTwill be 2 d_,. Consequently, the total CRPD
cost due to L2 cache misses resulting from preemption is calculated to bé?JiLG-RTJRTﬁjZ =

(3+2) di=5 d However, we can see from the preempted execution scenario shown in
Figure 8.3 that this bound on the CRPD is very pessimistic and the actual CRPD cost due to all
references to memory block m after preemption is @nlyd, ».

Figure 8.3: Example scenario to demonstrate the pessimism of (Chattopadhyay and Roychoud-
hury, 2014) when calculating the CRPD due to L2 cache misses resulting from preemption.

There are two main reasons why the analysis of (Chattopadhyay and Roychoudhury, 2014)
overestimates the CRPD due to L2 cache misses resulting from preemptions; (1) the analysis does

not differentiate between memory references that may be accessed inside a loop and the memory
references that are not in a loop, i.e., the same memory reference may lead to more than one cache

miss only if it is accessed in a loop, and (2) the analysis assume that all memory references that
were L2 cache hit during non-preempted execution of a task may be impacted both directly and
indirectly due to preemptions, i.e., it evaluates Equation (8.8) and (8.9) for all program locations
with L2 cache hits. Although, it is true that multiple references to the same memory block (e.g.,

8.5 Improved CRPD Analysis for Multilevel caches 159

memory blockm in Figure 8.3) may result in a L2 cache hit, not all those references can be
impacted directly/indirectly due to preemptions.

To reduce the pessimism in the existing analysis (Chattopadhyay and Roychoudhury, 2014),
we will focus on bounding the number of references to memory blocks that may be impacted
directly/indirectly due to preemption. We start by computing the set of L2-UCBs of & taskt
a program point P, i.eUCEﬁ'?Z. UCE;'?2 is the set of memory blocks that have at least one reference
categorized as a L2 cache hit, starting from the program point under analysis, i.e., P, until the end
pointe of taskt;. Formally,
UCB, = [UCB, (8.15)

8r2P,
wherePs is the set of all program locations between P amdth L2 cache hits.

Let UCEg'?2 = fmyi; mpi; mg;i; i Mg be the result of Equation (8.15), then for every memory
blockmy; in UCE{’2 we de ne a seRf’,.w that contains all program locations after the preemption
point P where a reference toy; is a L2 cache hit, i.e.Rﬁvi = fRm.; R :::;R,kn;';g. Effectively,
any memory blockn,; can have up t& accesses classi ed as L2 cache hits w.r.t a program point
P. The rationale of de ning?ﬁw is to investigate how many references to memory blogk
can be impacted directly or indirectly due to preemptions and therefore may contribute to CRPD.
According to the CRPD analysis in (Chattopadhyay and Roychoudhury, 2014) all references to
a memory blockmy; 2 UCB,F;’2 of taskt; can be impacted both directly and indirectly due to a
preemption by a higher priority tagk 2 hp(i) at a program point P. However, this is not true,
in fact for any memory blockn,; 2 UCB{’2 itis only the rst reference tan; after preemption,
ie., atR,lT;\;, that can be directly impacted due to a preemption. All subsequent referenogs to
after program poinR,lﬁfi, i.e., atf an;j; G R,'%;g, can only be impacted due to the indirect effect of
preemption.

Lemma 8.2. For any memory block g 2 UCB{? , it is only the rst reference to gy after the
preemption point P, i.e., at program poin&gﬁ, that can be directly impacted due to preemption.
All subsequent references tq;nafter F%{Z i.e., atf ;F:; e F%%fig, can only be impacted due to
the indirect effect of preemption suffered by, m

Proof. By de nition if my; 2 UCE{’2 then the reference to memory blook;; at program point
R,lT;;: will be a L2 cache hit during the non-preempted execution of taske., after an access to
my;i athlr;;, my; will be the youngest element in both L1 and L2 caches. Now, after the preemption
at program point P, the accessrty; at R,lnf: may result in a L2 cache hit/miss. If the reference
to my; at R,lnfl is a L2 cache hit after preemption, the sate of the L1 and L2 cachesny.mill
remain the same as in case of the non-preempted executiomyj.vjll be the youngest element

in both L1 and L2 caches aft@%iz. Similarly, even when the reference atR,lﬁyF; results in

a L2 cache miss after preemptiany; will be reloaded from the main memory into both L1 and
L2 caches aR,lnyP, This will again makemy; the youngest element in both L1 and L2 caches after
program poinﬂ?ﬁ{i. Therefore, the direct impact of preemption g will be neutralized after

a L2 cache hit/miss ékrlnf, and all subsequent referenceang can only be impacted due to the
indirect effect of preemption suffered Iny;;. O

160 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Using Lemma 8.2 we can compute the CRPD cost taskay endure due to the eviction
of one of it's L2-UCB, e.g.m; 2 UC&F;’ , resulting from a preemption by any higher priority
tasktj 2 hp(i) at a program point P. We use two equations to compute that CRPD cost, i.e.,
Equation (8.16) and (8.17). Equation (8.16) computes the CRPD cost due to the rst reference to
memory blockmy; 2 UCE{’2 after the preemption point P, i.e.,
8 . S . .
SO if MustAGEM; RE: 2+ | anery ECBY™) + JINdiitP] < W

. (8.16)
- d otherwise.

Similarly, the CRPD cost due to all subsequent reference to memory trigck UCE‘F;’2 after the
program poinR,lTﬁ can be calculated as follows

8

< i - o mukPs
0 if MustA in2)+ jIindm," j <
8 g€myi;r;2)+ jindm;" j < We 617
8r2RP, nRE d» otherwise.

It is straightforward to see that if any reference to a memory blogk2 UCB{?Z is not in a

loop, it can contribute only once to the CRPD. However, the problem emerges when one or more
references to memory bloaky; are inside a loop, in which case we need to bound how many
times each reference o can contribute to the CRPD.

Lemma 8.3. Any reference to a memory block; UCBF;’2 which is inside a loop, e.g., R@fy;),
can contribute at most two L2 cache misses to the CRPD suffered bl thsi to preemption at
a program point P.

Proof. Any reference to a memory bloch; 2 UCI%F;’2 which is inside a loop, e.gRef(m;), can

be classi ed as a L2 cache hit in the absence of preemption w.r.t a program point P under two
conditions; (1) if there are fewer thaf, con icting L2 memory blocks accessed between two
references ton;; w.r.t to program point P and (2) if at leasf con icting L2 memory blocks are
accessed between two accessypw.r.t program point P, however there exist at least one memory
reference which is a L1 cache hit, i.e., it does not generate an L2 cache commigt.ttf (1) is true,

then the referencRef(m,;) can only become a L2 cache miss after preemptianifis directly
evicted due to preemption at P aRdf(m;) can suffer at most one L2 miss after preemption. Also,

if (2) holds then the referendeef(m,;) may also become a L2 miss after preemption due to the
indirect effect of preemption caused by memory references that were L1 cache hits in the absence
of preemption but may access the L2 after preemption. However, it is proved in (Chattopadhyay
and Roychoudhury, 2014) that if the cache con guration is suchi$atj S;j andwy W, then

any memory reference that was a L2 cache hit in the absence of preemptioRef{(\;), can

lead to at most one L2 miss due to the indirect effect after preemption. Knowingétf(a;) is

in a loop so both (1) and (2) can be true along different paths reachaBlefty;). Therefore,

we can deduce that if referenBef(my;) is inside a loop, it may cause up to two L2 cache misses
after preemption. The lemma follows. O

8.5 Improved CRPD Analysis for Multilevel caches 161

We also know from Lemma 8.2 that after a preemption at a program point P, it is only the rst
reference to memory bloaky;, i.e., at program poirﬁzﬁz, that can be directly impacted due to
preemption. This leads to the following Lemma

Lemma 8.4. Any reference to a memory block;in2 UC&'?Z which is inside a loop, i.e., R@hy;),
can cause up to two L2 cache misses after a preemption at any program point P only when
Ref(my;) is the rst reference to iy after P, i.e., at Elﬁ':

Proof. We prove this lemma by contradiction. Let us assume there exist a memory reference to
myi, i.e., RAef(mﬁ), which is inside a loop and can cause up to two L2 cache misses after the
preemption at P bURAef(rrly,i) is not the rst reference tan,; after the preemption point P, i.e.,
Ref(my;) is performed aR, 6 R,

For RAef(m),,i) to cause two L2 cache misses after the preemption at P, there must be at least
two paths reachable tEAef(m),,i) after P wheramy; will be evicted either directly or indirectly.
However, we know from Lemma 8.2 that it is only the rst referencengf after preemption,
ie., atR,lT;\;, that can cause an L2 cache miss directly due to a preemption at P and all subsequent
references tan,; after the program poirR,lTA; can only be evicted from the L2 cache due to the
indirect effect of preemption. Moreover, it is proved in (Chattopadhyay and Roychoudhury, 2014)
that any reference to a memory blagk; can lead to at most one L2 miss solely due to the indirect
effect of preemption. Therefore,l#ef(nyi) is notthe rstreference tan; after preemption it can
cause at most one L2 cache miss due to the indirect effect of preemption suffergg lbyence,
we reach a contradiction. O

Finally, by using Lemmas 8.2, 8.3 and 8.4 we can bound the maximum number of times any
memory blockmy; 2 UCI%'D;2 can contribute to the CRPD suffered by tasklue to a preemption
by any higher priority task; 2 hp(i) at an arbitrary program point P.

Lemma 8.5. The contribution of a memory block 2 UCB, to the CRPD suffered by task
due to a preemption by any higher priority task2 hp(i) at an arbitrary program point P is upper
bounded bynin(k;jindm."j+ 1) dio. Where k is the cardinality of the sef, -

Proof. We prove that for a memory bloaky; 2 UCB, bothk andlnd%‘jtﬂ 1 are upper bounds
on the number of additional L2 cache misses that can be generated due to preemption at a program
point P. Therefore, m(rk;jlndmy‘j';':j + 1) dy upper bounds the contribution of;; to the CRPD
suffered by task; at a program point P.

If memory blockmy; hask memory references classi ed as L2 cache hits in the absence of
preemption after the program point P, then, in the worst-caderaferences ton; may result in
L2 cache misses due to preemption at P. Considering that the penalty of a single L2 cache miss
is dio, therefore, the produdt d.> upper bounds the contribution afy; to the CRPD due to
preemption at a program point P.

From Lemma 8.2, we know that only the rst reference to memory blogkafter preemption
may resultin a L2 cache miss directly due to preemption and all subsequent referag¢eafter

the rst reference can result in a L2 cache miss only due to indirect effect of preemption. We

162 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

also know thajlndm“' Pj is an upper bound on the number of memory blocks that can cause an
indirect effect of preemption omy; after a preemption at P. So, the worst-case scenario is when
each memory block ntndm“'F> is accessed between every two referencesjoand every access

to a memory block |r1ndmy,'P leads to a L2 cache miss faw;;. Consequentlymn,; can suffer up
tOJIndm“' Pj L2 cache misses due to the indirect effect of preemption caused by memory blocks in
Indm“' P. Moreover, from Lemma 8.4, we know that if the rst reference to memory bloglkafter
preemption is in a loop we can have one additional L2 cache miss after preemption. Consequently,
atotal ofjlndm“' Pj + 1 L2 cache misses can be generated for memory biggR UC& after the
preemption at P. Thereforejndmﬂj + 1) dy2is also an upper bound on the contributiom

to the CRPD suffered by tagk due to a preemption at program point P. The lemma followsl

8.5.2.1 CRPD Computation

We now show how to compute the total CRPD cost that taskay bear due to all its L2-UCBs

in UCB,F;’2 that may be evicted from the L2 cache due a preemption at program point P by any
higher priority task ; 2 hp(i). We use Algorithm 8.3 to calculate that CRPD cost. The working of
Algorithm 8.3 is explained as follows: The output of Algorithm 8.3 is the maximum CRPD cost,
i.e., denoted bg'?}Lz, that can be suffered by taskdue to eviction of all its L2-UCBs itVCB},.

g'?'jLZ is computed by rst computing the CRPD cost due to every memory bingk? UCEgP; ,

i.e., denoted bg';]"zj For every L2-UCBmy; 2 UCE{’2 (external loop line 4 to 27), the algorithm
starts by extracting the L2 cache hit locations using the functietH itLocationQ') (line 5). The
output of the functiorGetHitLocationg:) is the seRy, , i.e., R = fR%1y i’ R,'%ypg The
algorithm then checks if the rst reference to memory bloajk after preemptlon point P, i.e., at
R, is in a loop. IR, is in a loop, reference tow; at Ry, may result in up to two L2 cache
misses (see Lemmas 8.3 and 8.4). So, the algorithm checks for the evictign vdm the L2
cache at program poimrly;\; using both Equation (8.16) and (8.17) (lines 6 to 13). Similarly, if
R%‘;'; is not in a loop, reference tmy,; at R,lrﬁ can only be evicted from the L2 cache due to the
combination of ECBs of the preempting tasks ir{ih@nd the indirect effect of preemption (i.e.,
lines 14 to 16). From Lemma 8.2, we know that all subsequent referenog lm‘terRﬁ;?, ie.,
atfR,ZT;\;;:::;Rfr;.';g, may only result in a L2 cache miss due to the indirect effect of preemption
suffered bym;. Therefore, the algorithm checks for the evictiomgf at all references except
R,lr;; using only Equation (8.17) (lines 19 to 21). Furthermore, from Lemma 8.5, we know that
the maximum CRPD task can suffer due to any L2-UCBy,; 2 UC&'?Z is upper bounded by
min(iRE, i Jlndm“'Pj + 1) dy», which is considered in the last construct of Algorithm 8.3 (i.e.,
lines 23 and 24). Finally, the CRPD cost suffered by tagkue to any L2-UCBm; 2 UCB, is
given bygf‘y"zJ and the total CRPD cost taskmay suffer due to eviction of all of its L2-UCBs in
UCBY, is summed up ing}2.

8.5 Improved CRPD Analysis for Multilevel caches 163

Algorithm 8.3 Algorithm to calculate the total CRPD cost due to eviction of L2-UCBs of task
w.r.t a preemption point P
Output: The total CRPD cost, i.e., denoted Qli]P’ that can be suffered by taskdue to the

eviction of all its L2-UCBs inUCE{’Z, in case of a preemption at program point P by any higher
priority taskt j 2 hp(i).

Ply._
Logj:
2: for SWi 2 UCB, do
Pl ._
8 Ongj = 0
4: end for
5: for 8my; 2 UCBY, do
6: Rﬁwz GetHitLocationgmy;; P)
7. f Rm] is in loopthen
8: if MustAgQw.,%,,Zﬁ i h2hert) ECBh i+ jindme®j Ws then
9: gs;zj = g;'l‘z + d|_2
10: end If
11 if MustAgémyi; Riy;2)+ jindme"j W then
12: g(':‘{"lzj = g(';}'l‘Z + di2
13: end If
14: else
15: if MustAgéw.,%,,Zﬁ I h2heg) ECBr. i+ jindRiT] W then
16: g‘lf);?J = g+ di
17: end If
18: endif
19: for 8r2 Rﬁ&i nR,l;WF; do
20: if MustAgémyi;r;2)+ jindmaj W then
21: g;'l‘lzj = g';yl‘z +do
22: end If
23: end for
24: gfr’,yLZJ > min(jRE, j;jindm; "+ 1) dio then
25: g;/LZJ = min(iRE,J; jIndmePi+ 1) dio
26: endif
. ngL2 - gPL2+ PLIZJ
28: end for

8.5.3 Computation of total CRPD and WCRT Analysis

The sum of Equation (8.13) and (8.14) upper bounds the CRPD any; tasky suffer due to evic-

tions of its L1-UCBs by any higher priority tagk 2 hp(i). Similarly, Algorithm 8.3 can be used
to upper bound the CRPD of because of the eviction of its L2-UCBs by task Therefore, an

upper bound on the CRPD of taskdue to a preemption by task can be obtained by maximizing
Equation (8.13), (8.14) and Algorithm 8.3 over all program points,ine.,

o} = maxal + o+ o) (8.18)

164 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

However, we know that any higher priority taisk2 hp(i) can preempt any task 2 aff(i; j) during

the response time of task Therefore, to ensure that the maximum CRPD cost is considered for
a preemption of task by tasktj 2 hp(i), we maximize Equation (8.18) over all tasks in(&ff),

ie.,

H;max _ H
L= max gl 8.19
9 8|<2aff(i;j)g’J ()

Equation (8.19) is safe since it accounts for both nested preemptiond (ipgeempted byt
which is preempted by;) and consecutive preemptions (gfby tx andt;j). The CRPD cost
of a direct preemption of tast by taskt; 2 hp(i) is accounted for in the terrg;ﬁj;max, whereas
the indirect CRPD cost tadk may generate due to preemption of any tagR aff(i; j) during

the response time df (i.e., a nested preemption) will be accounted for in the tegfb@ax, ie.,

due to the use of union of ECBs of all tasks tigpwhen computingyi. Finally, g;ﬁj;max can be
incorporated into computation of WCRR; of a taskt; as follows
— O S R _ H;max

R=C+ a Ci+4g; (8.20)

8j2hp(i) Tj

Note that Equation (8.20) is recursive. However, a solution can be found using simple xed-point
iteration onR; by initializing R; to C;. The iteration stops as soon Rsconverges oR; > Dj, in

which case the task is deemed unschedulable.

8.6 Experimental Evaluation

In this section, we will explain how our proposed WCRT analysis that provides a tighter CRPD
bound for non-inclusive multilevel cache compares against the state-of-the-art analysis in (Chat-
topadhyay and Roychoudhury, 2014). First, we explain how the input quantities required for the
analysis in (Chattopadhyay and Roychoudhury, 2014) and our proposed analysis can be computed.
We then perform experiments by varying different parameters to compares the performance of both
analyses.

8.6.1 Deriving Parameters for the Analyses

To derive task parameters needed to compare the CRPD analysis of (Chattopadhyay and Roy-
choudhury, 2014) against our proposed analysis we have used the Heptane (Hardy et al., 2017)
static WCET analysis tool. Heptane is an open source WCET analysis tool that supports cache
hierarchies. Speci cally, it supports multilevel non-inclusive caches and implements the WCET
analysis presented in (Hardy and Puaut, 2008). However, currently the tool only output the WCET
of the analyzed benchmark and few cache statistics such as the total number of references to each
cache level and the number of cache hits/misses for each cache level. Therefore, we have modi ed
Heptane to compute the parameters needed for our analysis.

We have added a hew module naméditiCRPDAnalysis to Heptane that enables us to
compute different parameters needed for our multilevel CRPD analysis. The set of L1- and L2-

8.6 Experimental Evaluation 165

UCBs w.r.t a benchmark are computed using the Must-cache analysis along with a backward
ow analysis on the control ow graph. The backward ow analysis computes the abstract cache
state at the exit of a basic block by using the join operation on all the abstract cache states at
the entry of its successors. For every memory blogk used by a task; the analysis starts

by alssumingturfki = (¥;¥). Then for each program point P, the analysis checks the accessed
memory block and update the abstract cache state using the Must-update and Must-join operations
de ned in (Hardy and Puaut, 2008). A memory blogi; is considered a L1-UCB at program

point P if it satis es Equation (8.11). Similarly, all memory blocks that satisfy Equation (8.12)
w.r.t a program point P are considered L2-UCBs at that program point. Note that our analysis to
derive the set of L1-UCBs for multilevel caches is similar to the UCB analysis in (Chattopadhyay
and Roychoudhury, 2014) however, we additionally derive the set of L2-UCBs w.r.t every program
point P. The set of ECBs of tagk are computed using the May-cache analysis that determines
the set of all memory blocks used by taslat each cache level. To compute the indirect effect of
preemption, we use a forward ow analysis along with the Must-cache analysis (Theiling et al.,
2000). Since, the indirect effect of preemption is caused by memory blocks that were L1 cache
hits in the absence of preemption but may be accessed from the L2 cache or main memory after
preemption, the forward ow analysis (along with Must-case analysis) upper bounds the set of
memory blocks that have one or more reference categorized as L1 cache hits in the absence of
preemption and can cause the indirect effect of preemption on any memoryrolga task

ti. For the analysis in (Chattopadhyay and Roychoudhury, 2014), the forward ow analysis is
performed starting from the entry point of the program and ending at programrpehmerem;

may be accessed. For our analysis, the forward ow analysis is performed for each pair of program
locations between two access to memory blogk. In both cases, the largest set of memory
blocks is used when computing the indirect effect of preemption on any memoryrojgcince
Heptane allows to analyze each cache level, other parameters needed for the implementation of
Equation (8.2) and Algorithm 8.2 are extracted using the Must-cache analysis. Similarly, the
cfglib used by Heptane allows to compute loop bound for each basic block. This information is
then used in Algorithm 8.3 to compute the CRPD due to the eviction of L2-UCBs.

8.6.2 Experiments

To evaluate the performance of our proposed CRPD analysis against the existing analysis, we
conducted different experiments with various parameter settings. All experiments were performed
using the Méalardalen benchmark suite (Gustafsson et al., 2010). For every benchmark, parameters
such as the WCET, set of L1- and L2-UCBs, set of L1- and L2-ECBs, maximum LRU-ages of
memory blocks, total number of references, number of references in loops etc., were extracted
using Heptane. The target architecture was MIPS R2000/R3000 with a two level instruction cache
hierarchy such that, L1 cache is 2-way set-associative with 32 sets and line size of 32-bytes, and
L2 cache is 4-way set-associative with 64 sets and line size of 64-bytes. The L1 cache miss
penalty was 10 processor cycles, idgs4 = 10, and the L2 cache miss penalty was 100 processor
cycles. Table 8.2 shows some benchmark parameters used in the experiments. Also, some task

166 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Table 8.2: Benchmarks parameters from the Malardalen Benchmark Suite (Gustafsson et al., 2010)
used during the experimental evaluation

Name G L1-ECBs | L2-ECBs | L1-UCBs | L2-UCBs
bs 4020 11 6 11 2
bsort100 | 5811344 20 10 19 3
crc 1782419 43 22 43 10
expint 647343 19 11 18 3
bcall 14023 8 4 8 3
insertsort| 52245 16 8 16 4
lcdnum 8640 12 6 12 1
matmult | 1795585 28 14 28 3
ns 129598 20 10 20 5
qurt 111554 53 33 53 24
r 96215 22 11 22 4
prime 248299 17 9 17 7
select 145160 26 14 26 3
sqrt 20159 26 13 25 5
minmax 4435 17 9 16 6
ud 145170 75 38 74 6
minver 58155 167 84 167 58
fft 1252363 141 71 140 13
statemate 229575 261 133 254 37
fdct 101944 106 53 106 2
jfdctint 100331 96 48 96 2
ludcmp | 341583 98 49 98 8
nsichneu| 515015 1377 512 1377 422

set parameters were randomly generated as follows. The default number of tasks in each task set
were 10 with task utilization generated using UUnifast (Bini and Buttazzo, 2005). Each task was
randomly assigned values of one of the benchmark in Table 8.2. Task deadlines were implicit with
priorities assigned in a deadline monotonic order. Task periods were set suth=hGtU;.

We performed several experiments by varying the total task set utilizations, number of tasks
per task set, L1 cache miss penalty, L2 cache miss penalty, number sets in the L1 cache, number
of sets in the L2 cache, number of ways in the L1 cache and the number of ways in the L2 cache.
A WCRT based schedulability analysis is performed using the same task set for all the analyzed
approaches.

8.6 Experimental Evaluation 167

8.6.2.1 Task set Utilizations

In this experiment, we varied the total task set utilization from 0.025 to 1 in steps of 0.025 and
randomly generated 1000 task sets per utilization point. Figure 8.4 shows the number task sets
that were deemed schedulable using the “SoA Multilevel CRPD analysis", i.e., the CRPD analysis
of (Chattopadhyay and Roychoudhury, 2014), and our “Proposed Multilevel CRPD analysis". The
green line marked as “No Preemption cost" provides an upper bound on the number of task sets
that were deemed schedulable without considering any CRPD cost. For clarity, we only show a
cropped version of the plot in Figure 8.4 starting from a utilization of 0.6. All approaches pro-
duce identical results below this point. Figure 8.4 shows that our proposed approach performs

Figure 8.4: Number of task set deemed schedulable by varying total task set utilization

signi cantly better in comparison to the SoA analysis. The proposed analysis dominates the SoA
analysis mainly due to two reasons: (i) it provides a tighter bound on the indirect effect of preemp-
tion that can be suffered by UCBs of tasks and (ii) it accurately estimates the CRPD suffered by
tasks due to memory blocks that were L2 cache hits in the absence of preemption (i.e., L2-UCBS),
but may suffer L2 cache misses after preemption. Although, the major improvement in the CRPD
computation results from the treatment of L2 cache hits, however, we can see that the number
of L2-UCBs of tasks (see Table 8.2) is very small in comparison to the number of L1-UCBs of
tasks. But, still our proposed analysis results in improving task set schedulability by up to 20%
percentage points over the existing analysis.

168 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

8.6.2.2 Number of Tasks

To evaluate how total number of tasks in a task set may impact the analyzed approaches, we
performed an experiment by varying the total number of tasks in a task set between 5 to 25 in
steps of 5. For all other parameters default values were considered. Since, we varied both the total
task set utilizations and the number of tasks, we have used the weighted schedulability measure
(see Equation (4.20)) to generate the plot shown in Figure 8.5. Intuitively, increasing the number of
tasks tends to decrease task set schedulability because of an increase in the number of preemptions
(which leads to an increase in the overall CRPD cost). The same can be con rmed from the plot

Figure 8.5: Wighted schedulability measure by varying the total number of tasks in a task set

shown in Figure 8.5. However, we can also see that our proposed CRPD analysis always dominates
the SoA CRPD analysis. In fact, for higher number of tasks per task set (e.g., for 20 or 25 tasks per
task set) the difference between the weighted schedulability of both approaches tends to increase.
This is due to an excessive pessimism in the SoA CRPD analysis which may count the evictions
of the same memory blocks several times in the CRPD cost. This pessimism is reduced by our
analysis by bounding the number of times each memory block can contribute to the CRPD cost.

8.6.2.3 Number of Ways in the L1 CacheW)

In this experiment, we varied the L1 cache associativity, i.e., the number of ways in the L1 cache
Wi, and evaluated its impact on the performance of all the analyzed approaches. All other param-
eters were set to their default values. However, since we focus on a cache con guration where L1
cache associativity is always less than or equal to the L2 cache associativiy; i.eW\b. There-

8.6 Experimental Evaluation 169

fore, for this experiment, we also xed the L2 cache associativity to 32,Wes 32. We then

varied the number of ways in the L1 cache between 2 to 32 and plotted the weighted schedulability
for both approaches as shown in Figure 8.6. Note that increasing the number of ways in the L1
cache will also increase the size of the L1 cache.

Figure 8.6: Weighted schedulability measure by varying number of ways in the L1 cache. The
number of ways in the L2 cache were set to 32, .= 32

We can see in Figure 8.6 that by varying the number of ways in the L1 cache (i.e., L1 cache
size), both approaches produce similar results with the proposed approach marginally improving
task set schedulability. This is mainly because, for both approaches the CRPD analysis for the L1
cache is very similar except for the computation of the indirect effect of preemption. Moreover,
with the number of ways in the L2 cache set to 32, the L2 cache size becomes relatively larger w.r.t
the analyzed benchmarks, which leads to almost no CRPD due to the L2 cache. Therefore, we
observe that increasing the number of ways in the L1 cache has a similar effect on both analyses.

8.6.2.4 Number of Ways in the L2 CacheWb)

We also performed an experiment by varying the number of ways in the L2 cachébj.ketween
2 to 32 and evaluated their impact on task set schedulability. Default values were used for all the
other parameters. The resulting plot is shown in Figure 8.7. Note that increasing the number of
ways in the L2 cache also increases its size.

Figure 8.7 shows that when varying the number of ways in the L2 cache (i.e., increasing
the L2 cache size), the difference between the performance of both analyses is very clear, with
the proposed analysis clearly outperforming the existing analysis. This is because our analysis

170 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Figure 8.7: Weighted schedulability measure by varying number of ways in the L2 cache

provides much tighter bound on the L2 CRPD cost than the existing analysis. We can see in
Figure 8.7 that when the L2 cache is smaller, i.e., the potential CRPD due to the L2 cache is higher,
our approach performs signi cantly better than the existing analysis. However, by increasing the
number of ways in the L2 cache, the difference between the performance of both analysis tends to
reduce. This is mainly due to an overall reduction in the L2 CRPD due to a larger L2 cache.

8.6.2.5 Number of Sets in the L1 Cachg&ij)

In this experiment, we varied the number of sets in the L1 cachej%g,,between 16 to 256

and plotted the resulting weighted schedulability measure in Figure 8.8. Note that to ensure that
the number of sets in the L1 cache are always less than or equal to the number of sets in the L2
cache, i.e.jSij | Sj, for this experiment we sg6,j = 512. Default values were used for all
other parameters.

We can see a similar trend in Figure 8.8 which was observed by increasing the L1 cache asso-
ciativity (i.e., Figure 8.6). Also, due to the same reasoning as previously explained in experiment
3, i.e., due to the similarities in the L1 CRPD analysis and a relatively larger L2 cache, both
approaches tend to behave similarly when the L1 cache size is increased.

8.6.2.6 Number of Sets in the L2 Cachg %))

Figure 8.9 shows the weighted schedulability measure resulting from an increase in the number of
sets in the L2 cache. As an increase in the number of sets in the L2 cache also increases its size,

8.6 Experimental Evaluation 171

Figure 8.8: Weighted schedulability measure by varying number of sets in the L1 cache. The
number of sets in the L2 cache were xed to 512, ij8;j = 512

Figure 8.9: Weighted Schedulability measure by varying number of sets in the L2 cache. The
number of sets in the L1 cache were set to their default valuejS¢ 5 32

172 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

we can see a similar trend in Figure 8.9 which was previously observed in Figure 8.7. Therefore,
this behavior can be explained using the exact same reasoning described in experiment 4.

(a) Varying the L1 cache miss penalty ()

(b) Varying the L2 cache miss penalty;)

Figure 8.10: Weighted schedulability results by varyihgandd, »

8.7 Chapter Summary 173

8.6.2.7 Varying the L1 and L2 Cache Miss Penaltiesd{ 1 and d;)

We conducted two more experiments by varying the L1 and L2 cache miss penalties. Default
values were used for all other parameters.

In the rst experiment, we varied the L1 cache miss penalty between 10 to 100 processor
cycles and the resulting weighted schedulability measure is shown in Figure 8.10a. Since, the L1
miss penalty can not be larger than the L2 miss penalty, for this experiment, wg, setl00
cycles. We can see in Figure 8.10a that by increasing the L1 cache miss penalty the weighted
schedulability for both approaches decreases. However, difference between the performance of
both analysis remains nearly constant due to a similar L1 CRPD analysis.

For the second experiment, we varied the L2 cache miss penalty between 40 to 140 processor
cycles keeping the default value for L1 cache miss penalty. The results are shown in Figure 8.10b.
We can see that for lower values of L2 cache miss penalty the difference between the weighted
schedulability of both approaches is smaller. However, by increasing the value of L2 miss penalty
the difference between the performance of both approaches also increases which is due to a tighter
bound on the L2 CRPD by the proposed analysis.

8.7 Chapter Summary

In this chapter, we presented a CRPD analysis for multilevel non-inclusive caches. We rede ned
the notion of UCBs for multilevel caches, showed how these UCBs can be computed and used
them to compute the CRPD. We showed that a tighter bound on the indirect effect of preemption
can be obtained by calculating the indirect effect of preemption that can be caused instead of
calculating the indirect effect of preemption that can be suffered by memory blocks. We then
presented a new analysis to compute the CRPD due to memory blocks that were categorized as
L2 cache hits in the absence of preemption but may become L2 cache misses due to preemptions.
Our analysis provides a tighter CRPD bound than the existing analysis by identifying how many
references to a memory block can be impacted due to preemptions and therefore may contribute
to the CRPD.

We evaluated the performance of our proposed CRPD analysis against an existing analysis
from the state-of-the-art in terms of schedulability. Experiments were performed by varying dif-
ferent parameters with most values taken from the Malardalen benchmarks. Experimental results
show that our proposed CRPD analysis for multilevel non-inclusive caches dominate the state-of-
the-art analysis and results in up to 20% percentage points higher task schedulability.

Part Il

Extension to Multicore Platforms

174

Chapter 9

Evaluating the Impact of Inter-task
Cache Interference on Memory Bus
Contention in Multicore Systems

In the previous chapters, we have discussed how to derive a tighter bound on the inter-task cache
interference considering different cache con gurations, i.e., direct-mapped, set-associative and
multi-level caches. This chapter now evaluates how a sound estimate on the inter-task cache
interference may impact the contention due to sharing of memory bus in multicore systems.

In a multicore system, data and instructions are transferred from the main memory to the
requesting core overgharedmemory bus. Due to the use of a shared memory bus, main memory
requests by a tagk running on one core may be delayed by tasks executing on other cores, thereby
increasing the WCRT df;. This increase in the WCRT of depends on many factors such as (i)
the number of main memory requests generated;gnd all other tasks running on the same
core, (ii) the number of main memory requests generated by all tasks executing on different cores
thant; and (iii) the memory bus arbiter. One of the main aspects that impact (i) and (ii) is the
number ofcache missesuffered by each task during its execution. Indeed, the number of main
memory requests generated by a task strongly depends on whether the instructions and data it
requires are available in the cache memory (cache hit) or not (cache miss), which in turn depends
on the intra- and inter-task cache interference suffered by the task. The number of cache misses
or the number of main memory requests generated by attasken executing in isolation can
be bounded by using the intra-task cache interference analysis (see Section 3.1). However, when
taskt; executes concurrently with other tasks, the number of bus/main memory requests generated
by t; may also depend on the inter-task cache interference (i.e., CRPD and CPRO) suffered by
the task. Consequently, the total memory bus contention suffered by;tdeking its execution
depends mainly on the inter-task cache interference suffered by;tasHd all other tasks running
on the same core as well as the inter-task cache interference suffered by all tasks executing in
parallel witht; on different cores thaty.

There exist few approaches in literature that account for CRPDs (Davis et al., 2018b; Altmeyer

176

9.1 Assumptions on the System Model 177

et al., 2015) when bounding the memory bus contention in multicore systems. However, as we
showed in Chapter 4 and Chapter 7, only considering CRPDs when computing the inter-task cache
interference of tasks may lead to pessimistic WCRT bounds and the analysis that accounts for both
CRPDs and cache persistence dominates the analysis that only consider CRPDs. In this chapter,
we evaluate how a tighter bound on the inter-task cache interference may impact memory bus
contention in multicore platforms considering both work conserving and non-working conserv-
ing bus arbitration policies. We analyze multicore architecture considering both single-level and
multilevel caches. For architectures with single-level caches, we built on the analysis presented
in Chapter 7 to compare the performance of memory bus contention analysis that only accounts
for CRPDs against the memory bus contention analysis that accounts for both CRPDs and cache
persistence. For architectures with multiple cache levels, we evaluate how the two CRPD anal-
ysis discussed in Chapter 8 may impact the memory bus contention suffered by the tasks under
different bus arbitration policies.

9.1 Assumptions on the System Model

In this chapter, we make the following assumptions on the system model:

We consider multicore platforms with identical timing-compositional corgs to py. By
timing-compositional we mean that it is safe to separately account for interference from
different sources such as cores, caches and memory bus (Hahn et al., 2013).

« When considering multicore architectures having a single cache level (i.e., L1) we will
consider the system model detailed in Section 7.1.

» For multicore architectures that support a two-level non-inclusive cache hierarchy (i.e., com-
prising of L1 and L2 caches) we will consider the system model and assumptions detailed
in Section 8.1.

* We assume that the cache(s) is/are set-associative and use the Least-Recently-Used (LRU)
cache replacement policy. The last level cache is connected via a shared bus to the global
main memory. The worst-case time for one access to the main memory is gicip.hy
Note that when considering multicore architectures with two-level caches, the worst-case
time for one access to the main memory is given by the sum of L1 cache miss p&nalty
and the L2 cache miss penatly,, i.e.,dmem= di1+ dio.

* We consider a sdb of n sporadic constrained deadline tasks ftq;t,;:::thng. Each task
t; 2 Gis de ned by a quadrupleRD;, MD;j, Dj, T;) wherePD; is the worse-case execution
time of a job oft; considering that every memory access is a cache hit. Consequently, it
only accounts for execution requirements of the task and does not include the time needed
to fetch data and instructions from main memoMD; is the worst-case memory access
demand of a job of;, i.e., the maximum number of main memory request generated by

Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore
178 Systems

any job oft;. Note that the values &®D; andMD; are calculated assumirig executes in
isolation Dj is the relative deadline df andT; is the minimum-inter arrival time between

two jobs oft;. We assume that tasks are scheduled with a partitioned task-level xed priority
scheduling algorithm where each task is statically assigned to a core at design time. Tasks
assigned to a corpy are denoted bys,. Tasks can be assigned priorities using any xed
priority assignment scheme (e.g., Rate or Deadline Monotonic (Liu and Layland, 1973)).
Furthermore, we assume that the priority of each task is unigque thus providing a global
priority order such that; has the highest priority ang, the lowest.R; denotes the WCRT

of taskt; and is de ned as the longest time between the arrival and the completion of any of
its jobs.

The list of important symbols used in this chapter is given in Table 9.1.

Table 9.1: List of important symbols used in Chapter 9

Symbol Description

G Task set of size

Px Corex of a multicore processor

G Set of tasks assigned to cqrgof a multicore processor
ti Task with index

PD; Worst-case processing demand of tisia isolation
MD; Worst-case memory access demand of tagk isolation
Ti Minimum inter-arrival time of task;

Di Relative deadline of task

R Worst-case response time of task

MDY Residual memory access demand of tgsh isolation

MDi(n;) | The maximum number of bus accesses generatewjops of task; while execut-
ing in isolation

hp(i) The set of tasks with higher priority than

heq(i) The set of tasks with higher priority thapincludingt;, i.e., hegi) = hp(i)[t;.
aff(i; j) | The set of intermediate tasks (includinythat may preemgt; but may themselve
be preempted by some higher priority tagk

*2)

dia L1 cache miss penalty

d2 L2 cache miss penalty

Omem Total time needed to reload one block from the main memory to cache(s), i.e.,
Omem= di1+ dyo.

g:j:x Additional bus accesses resulting from the CRPD suffered byt fakle to preemp-

tions by a higher priority task; 2 hp(i) executing on the same copg
Continued on next pag

[1%]

9.2 CRPD-aware Memory Bus Contention Analysis 179

Table 9.1 — continued from previous page
Symbol Description
BAS(t) | Upper bound on the total number of bus accesses that can occur due tpaask
all higher priority tasks in hf)) executing on corgy during a time interval of length

t
BAOK(t) Upper bound on the total number of bus accesses by all tasks having pkiorit

higher executing on cong, during a time interval of length
BAT/(t) | The total number of bus accesses that may delay the executignoof corepy

during a time interval of length
sl Slot size for Round-Robin (RR) and TDMA bus arbitration policy

M iiix Additional bus accesses due to CPRO suffered by one job of a higher priority task
t; 2 hp(i) executing during the response time of a lower priority a3k a corey
Fiix(n) | Additional bus accesses due to CPRO suffereankjpbs of a higher priority task
tj 2 hp(i) executing during the response time of a lower priority g3k a coregy
Ei(t) The maximum number of jobs any taskcan release in a time interval of lendth

ECB The set of evicting cache blocks (ECBs) of tagk
UCB; The set of useful cache blocks (UCBSs) of task
PCH The set of persistence cache blocks (PCBs) of task

<

9.2 CRPD-aware Memory Bus Contention Analysis

The maximum number of main memory accesses that can be generated byt aitasklation

is upper bounded by the worst-case memory access demand of,task MD;. However, when

taskt; executes concurrently with other tasks, it may generate additional main memory requests
due to the CRPD it may suffer due to preemptions by higher priority tasks(if. iys we have
mentioned previously, there exist approaches in literature that account for CRPDs when bounding
the memory bus contention in multicore systems. One such approach is presented in (Altmeyer
et al., 2015; Davis et al., 2018b). The analysis presented in (Altmeyer et al., 2015; Davis et al.,
2018b) bounds the memory bus contention that can be suffered by & @scuting on cor@y

of a multicore processor in a time window of lengthy rst computing two values; (iBAS(t),

which is an upper bound on the total number of bus accesses that can occur dud t@mtaisall

higher priority tasks in hfd) executing on cor@y duringt and (ii) BAQ(t) , which is an upper on

the total number of bus accesses generated by all tasks running on other comgsdbteng the

same time interval of length Under the bus contention analysis presented in (Davis et al., 2018b;
Altmeyer et al., 2015BAS(t) is upper bounded such that

BAS(t) MDi+ & ~ (MDj+ g 9.1)

8t;2G\ hp(i) Tj

Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore
180 Systems

whereMD; andMD; are the worst-case memory access demands oftfeekd taskt; 2 hp(i)
respectively, ang:j.x accounts for the additional memory accesses due the CRPD suffered by task
tj due to preemptions by a higher priority task2 hp(i) executing on the same copg. Note that

when using Equation (9.1Y;j.x can be computed using any of the CRPD analysis discussed in
Section 3.2.

When bounding the total number of bus accesses generated by all tasks running on cores other
thanpy, no assumption can be made about the synchronization of tasks w.r.t the rel¢asa of
corepy. Therefore, for a task; executing on some coi, 6 py, the worst-case number of bus
accesses generatedtyyn a time interval of length are obtained by assuming that the rst job of
t| executes as late as possible, i.e., just before its WCRT, while all subsequent jplexetute
as early as possible. LérAq‘{(t) be an upper bound on the total number of bus accesses due to
all tasks having priorityk or higher executing on corgy. It is proven in (Davis et al., 2018b;
Altmeyer et al., 2015) thBAOK(t) can be upper bounded using the following equation:

BAQ(t) a WY () + WY o) (9.2)
112G\ hef(k)

whereWQf| (t) is an upper bound on the total number of bus accesses loathein andbodyjobs

of taskt| that execute during a time interval of lengthThe carry-in job of a task; w.r.t a time
interval of lengtht is a job that is released sometime before the starbot has its deadline in
Whereas, all jobs of tasty with both release times and deadlines in the time intdreaie body
jobs oft;. Let Nli’;l(t) be an upper bound on the maximum number of job ahat may fully
execute in an interval of lengthon corepy and considering that the maximum number of bus
accesses each of those jobs can generate is upper bounttoj byg. .y, we have

WY (1) = NG (1) (MDy + gary) (9.3)
whereNy, (t) is given by

t+ R (MD;+ gyy) dmem

Nﬁ(’;l(t) = T

(9.4)

In Equation (9.2)Wk’f,;cout denote the maximum number of bus accesses bgdlny-outjob
of taskt; that may execute during the time intervalThe carry-out job of a task w.r.t a time
interval of lengtht is a job that is released during the time interivéut has a deadline aftér
The maximum number of bus accesses that can be generated by the carry-out jobt phtask
computed as follows:

!

& ‘
t+ MD; + gc() d N () T
R (I 9<,I,y) mem k,|() I :MD, + Ocly (9.5)

dmem

y _ .
Wk;l;cout_ min

The bus contention analysis presented in (Altmeyer et al., 2015; Davis et al., 2018b) uses Equa-
tion (9.1) and (9.2), to compute the total number of bus acc&&ESthat may delay the execution

9.2 CRPD-aware Memory Bus Contention Analysis 181

of t; on corepy under different bus arbitration policies. For example, if the bus arbitration policy
is Fixed-priority (FP) based, i.e., bus accesses inherit the priority of the task that generate them,
thenBATX(t) is given by

BATX(t) = BAS(t)+ & BAQ/(t)+ 1+ min BAS(t); § BAQ,,(1) (9.6)
8py8 px 8py8 px

WhereBAS(t) and BAO{V(t) are calculated using Equation. (9.1) and (9.2) respectively. The sum
égpyg D BAqy (t) represents the worst-case bus delay of tasike., when all bus accesses from all
tasks in hefi) executing on other cores are served before the last bus acdes$ygically, mem-

ory bus requests are non-preemptive therefore if the main memory receives a request from a lower
priority task before the request from the higher priority task arrives, the memory request from the
higher priority task may be served after the completion of the request from the lower priority task.
However, in this scenario the maximum delay the higher priority task can suffer can only be of
one memory access. Consequently, in Equation. (9.6) accounts for that one bus access from
any lower task in Ipi) executing on the same coretagnd can only occur at the start of busy pe-

riod w.r.t. tj. Finally, the term min BAS{(t);é’lSM D BAO,‘/;low(t) in Equation. (9.6) upper bounds

the bus interference due to accesses by taskgipépecuting on cores other thap. Note that
BAO,‘/;low(t) is calculated in a similar mannerBAQ’(t) (i.e., Equation. (9.2)), but considering bus
accesses from tasks having a lower priority thane.,BAQY, (1) = > 26 1pgy W () + W coue

Similarly, it is shown in (Altmeyer et al., 2015; Davis et al., 2018b) that if the bus arbitration
policy is Round-Robin (RR) theBATX(t) can be computed as follows:

BAT(t) = BAS(t)+ é min BAQ/(t);sl BAS(t) +1 (9.7)
8py6 px

wheresl denote the number of memory access slots per core. Under a RR bus, the worst-case
delay is suffered by task when each accessesBAS(t) is delayed by all cores other thag for

sl slots. However, since represents the lowest priority in the systeBAQY(t) also upper bounds

the bus accesses due to all tasks executing onmor&herefore, the maximum number of bus
access by all tasks executing on cpyehat may delay the execution tf2 py are upper bounded

by min BAO4(t);sl BAS(t) .

If the bus arbitration policy is non-work conserving, i.e., TDMA, thBAT/(t) is upper
bounded by
BAT (t) = BAS(t)+((L 1) sl) BAS(t)+1 (9.8)

where the length of one TDMA cycle Is sl. Since TDMA is non-work conserving, it assumes

that each bus accessBAS(t) will always be delayed byL. 1) sl bus accesses by other cores
irrespective of whether these slots are used or not (in contrast to Round-Robin). For more details
on the formulation of Equation (9.1) -(9.8) readers are referred to (Altmeyer et al., 2015; Davis
et al., 2018b).

Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore
182 Systems

Figure 9.1: Execution of task andt, on corepyx and taskt3 on corepy. Task parameters of
interest arePD1=PDs3 = 4, PD,= 32, MD1=MD3 = 6, MD, = 8, MD}=MD} = 1, ECB;=ECB; =
f5;6;7;8;9;109, ECB, =f1;2;3;4;5;69, PCB;=PCB; = 5;6;7;8;10g andUCB; = f 5; 6g.

9.3 Cache Persistence-aware Memory Bus Contention Analysis

The memory bus contention analysis presented in (Altmeyer et al., 2015; Davis et al., 2018b)
(i.e., Equation (9.1) and (9.2)) provides a safe upper bound on the memory bus delay suffered by
tasks executing on a multicore platform. However, since the analysis in (Altmeyer et al., 2015;
Davis et al., 2018b) does not consider the variation in the memory access demand of tasks due
to cache persistence, it may overestimate the actual number of accesses that compete for the bus
during the response time of the task under analysis. Recall that cache persistence refers to the
re-use of PCBs between different job executions of the same task. If all PCBs of ta tesie

loaded in the cache by a previous jobtgfthe memory access demand of all subsequent jobs of

t; can be much lower than the worst-case memory access deméanih édolation. This type of
memory demand is called the residual memory access demanauod is denoted biD] (see

De nition 4.3). According to De nition 4.3, a PCB is loaded only once from the main memory
when a task; executes in isolation. Therefore, the total number of bus accesses generated by
n; jobs oft; executing in isolation can be computed by de ning Equation (4.4) as a function of
number of jobsy, i.e.,

MD;i(n)) = min(n; MD;;n; MD! + jPCBj) (9.9)

We now consider the schedule and task parameters shown in Figure 9.1 to show how Equa-
tion (9.9) can be used to reduce the pessimism of (Altmeyer et al., 2015; Davis et al., 2018b). We
have three taskis, t; andtz with t; andt, executing on cor@y andts executing on corgy.

We assume 1 has the highest priority ant the lowest. The worst-case main memory access
demandMD;, MD, andMD3 are 6, 8 and 6 respectively. Memory blocks in Figure 9.1 that are
pattern lled are those that are loaded/reloaded from the main memory during the task executions.
We focus ort ; and useBAT}(R;) to denote the total number of bus accesses that may be generated
during its response time. Assuming that the memory bus arbitration policy is Round-Robin (RR)

9.3 Cache Persistence-aware Memory Bus Contention Analysis 183

with a slot sizesl equal to 1BAT;(Ry) can be bounded using Equation (9.7) such that

BAT5(Ry) = BAS(Rz) + min BAGY(R:); BAS(Rz) (9.10)

where
BAS(Ry) = MD2+ 3 (MD1+ g1x)= 8+ 3 (6+ 2)= 8+ 18+ 6= 32 (9.11)
BACQ/(Ry) = NJ5(R;) MDz=4 (6)= 24 (9.12)

Note that in Equation (9.11.1.« is derived using Equation (3.4) however, any other CRPD anal-
ysis can also be used to compugga.x. Moreover, sincé is the lowest priority task on cong,
Equation (9.11) does not have a trailing +1 as in Equation (9.7).

Now, if we compare the result of Equation (9.11) with the cache contents opg@iown in
Figure 9.1 we can see that Equation (9.11) overestimates the vaBA({R,). Figure 9.1 shows
that only the rst job oft; needs to load all its ECBs from the main memory and hence has a
worst-case memory access dematid; = 6. Moreover, since all PCBs of were loaded in the
cache by the rstjob of 1, the memory access demand of the next two jolig ohly corresponds
to the reloading of memory blodi9g, i.e.,MD} = 1. Consequently, the actual number of memory
accesses made by the three jobd péxecuting during the response timetgfare respectively
MD; + MD} + MDj = 6+ 1+ 1= 8, which is much lower than 3 MD; = 18 accounted for in
Equation (9.11).

Figure 9.1 also shows an overlap between PCRB$§g of t 1 and ECBS 5;6g of t, in cache.
This overlap may lead to additional bus accesses due to CPRO, i.e., to reload B6gfom
the main memory between two subsequent executios. of he additional bus accesses due to
CPRO suffered by jobs of a higher priority task; 2 hp(i) executing during the response time
of a lower priority task; on a coregy is given byr jix(nj), i.e.,

Ciix(N) =(Nj 1) riix (9.13)

wherer j;ix denote the additional bus accesses due to CPRO suffered by on job of thaling
the response time of taskand it can be computed using any of the CPRO analysis presented in
Chapter 4, 5 or Chapter 7. For example, if we use the CPRO-union approach (see Section 4.3) to
compute the additional bus accesses due to CPRO suffered bty tdsking the response of,
for the schedule shown in Figure 9.1 we will gat>«(3) = 2 2= 4. Therefore, due to cache
persistence, the actual number of bus accesses during the response timedasiorepy are
given by

MD2+ MD;+ 2 MDj+ F124(3)+ 3 @ix= 26 (9.14)

which is much lower than the value BAS(R;) = 32 calculated using Equation (9.11). This leads
to the following lemma.

Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore
184 Systems

Lemma 9.1. The total number of bus accesses by a single job ofttasks, and all higher priority
tasks inG(\ hp(i) executing in a time interval of length t are upper boundechAﬁ(t), where

BAS(t)= MDi+ & min Ej(t) MDj;MDj(Ej(1)+ Fiin(Ej(t)) +
8tj2G\ hp(i)

o . t
8t;2G\ hp(i) J

Proof. We prove that in a time interval of IengthBA§(t) is an upper bound on the total number
of bus accesses generated by tgsk G, and all higher priority tasks i\ hp(i).

1. By assumption, only one job &f must be considered. Hence, the total number of bus accesses
generated by; are upper bounded by its worst-case mgmgry access delhiand

2. Any taskt; 2 G\ hp(i) can release at mo#&;(t) = % jobs in a time window of length

t. Therefore, it follows from Equation (9.1) th&j(t) MD;j is an upper bound on the total
number of bus accesses generated by tagkG,\ hp(i) in isolation. Moreover, the additional
bus accesses due to preemptions of tasBy taskt; in a time interval of lengtht are upper
bounded byE;(t) g;jx (see Equation 9.1). Hence, the si; + Ej(t) MD;+ Ej(t) q;jix

is an upper bound on the total number of bus accesses generated byzaskand any higher
priority taskt j in G\ hp(i) in a time interval of length.

3. Recall from Equation (9.9) and (9.13) tMDj(Ej(t)) is an upper bound on the total number
of bus accesses due Ej(t) jobs oft; executing in isolation andj;;.x(E;j(t)) is an upper bound
on the additional bus accesses due to CPRO suffered by all those jopsTdferefore, the sum
MD; + I\/TDj(Ej () + Fix(Ej(t))+ Ej(t) a:jxis alsoan upper bound on the total number of bus
accesses generated by tasR G, and any higher priority task; in G\ hp(i) in a time window of
lengtht considering both CRPD and CPRO. Thus, the minimum betwéen+ E;j(t) MDj+
Ej(t) g:jx andMD;+ MDj(Ej(t)) + Fjix(Ej())+ Ej(t) g:jx is also an upper bound. The
lemma follows. O

Continuing the example depicted in Figure 9.1, we can see that Equation (9.12) also overesti-
mates the value cBA@(Rz). In fact, due to cache persistence, the actual number of bus accesses
generated by tasks 2 G, that may contend for the bus during the response time ofttagkG,
are: MD3+ 3 MD5 = 6+ 3 1= 9, which is much lower than the value BNX(RZ) =24
calculated using Equation (9.12). This observation leads to the following lemma.

Lemma 9.2. The total number of bus accesses by all tésKg, with priority k or higher that may
contend for bus access with tagk? G, during a time window of length t is upper bounded by

o

BAQ((t) = a WO+ Wou (9.16)
8t12G)\ hep(k)

where

VAV|Z|(t): min N|)(/;|(t) MDI;MADI(N|¥;|('[))+ rAk;l;y(l\l|¥;|(t)) + N|¥;|(t) Gty (9.17)

9.4 Bus Contention-Aware Worst-case Response Time (WCRT) Analyses 185

and W, ...and N/, (t) are given by Equatio(9.5) and (9.4) respectively.

Proof. Since Equation (9.5) (i.e\Nﬁfl;cout) is proved in (Altmeyer et al., 2015; Davis et al., 2018b),
we only need to prove thésﬁ/lzl (t) is an upper bound on the total number of bus accesses by jobs
oft; 2 G\ heqk) that fully execute in a time interval of length

1. It follows from Equation (9.4) that\lli’;l(t) is an upper bound on the number of jobs that may be
fully executed in a time interval of lengthby any task | 2 G,\ hegk). ThereforeNli';I(t) MD,
upper bounds the total number of bus accesses generated kty task time interval of length

t in isolation. Moreover,Nli’;l(t) Oy Is an upper bound on the additional bus accesses due
to CRPD suffered by task 2 G\ hepk) in a time window of lengtht. Therefore, the sum
N|¥;|(t) MD, + N|¥;|(t) Oy is an upper bound on the total number of bus accesses by jobs of
t; 2 G\ hegk) that fully execute in a time interval of length

2. Using N|¥;|(t) in Equation (9.9) and (9.13) we gMAD|(N|i’;|(t)) which is an upper bound on
the total number of bus accesses due\I{Q(t) successive jobs dfj executing in isolation and
rAk;“y(Nli’;l (t)) which is an upper bound on the additional bus accesses due to CPRO suffered by all
those jobs. Hence, the suvD; (ND () + Friy(NZ (1) + NY (1) geryy is also an upper bound on
the total number of bus accesses by jobs & G,\ hegk) that fully execute in a time interval of
lengtht considering both CRPD and CPRO. Consequently, the minimum beNdeh) MD, +

NY () Gery andMDy (N, (D) + iy (N2, (1) + N, (1) ey is also an upper bound. The lemma
follows. O

Note that having bounded the valueﬂif§(t) (i.e.,Lemma9.1) anBAOK(t) (i.e.,Lemma9.2)
these value can be directly used in Equation (9.6), (9.7) or (9.8) to bound the v&8a&gf) due
to cache persistence for any given bus arbitration policy.

9.4 Bus Contention-Aware Worst-case Response Time (WCRT) Anal-
yses

If the memory bus contention that can be suffered by attaBlG, during its execution is explicitly
considered then the worst-case response fnef a taskt; is given by the smallest possible
solution of the following expression

R=PD+ @& 5 PD;+ BAT{(R) dmem (9.18)

8t;2G\ hp(i) ')
wherePD; andPDP; ate the worst-case processing demands of taskdt ; respectively. The
term&st; 26, hp %’ PD; upper bounds the total core interference suffered by tadke to
preemptions by higher priority tasks executing on the same core, whereas the total memory bus
interference that; may suffer duringR; is upper bounded bBAT(R) dmem Depending on

the bus arbitration polic\BATY(R) can be calculated using Equation. (9.6), (9.7) or (9.8). When
considering the bus contention analysis that only accounts for CRPDs the valBAS'() and

Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore
186 Systems

(a) FP-Bus with/without considering cache peristence(b) RR Bus with/without considering cache peristence

(c) TDMA Bus with/without considering cache peristence

Figure 9.2: Schedulability ratio of different bus arbitration policies by varying total core utiliza-
tions

BAOK(t) are computed using Equation (9.1) and (9.2) respectively. For cache persistence-aware
bus contention analysis the valuesBAS(t) and Bqu(t) are computed using Lemma 9.1 and
Lemma 9.2, respectively. Note that the response time of each task may depend on the response
times of other tasks. This circular dependency is solved using a xed point iteration over all
response times, rst initiating the response time of each tagkDo+ MD; dmemand stopping

as soon as all response times remain constant or there is one task with;, in which case the

task is deemed unschedulable.

9.5 Experimental Evaluation

In this section, we evaluate the impact of inter-task cache interference on memory bus contention
in multicore platforms. As we have mentioned previously, we analyze multicore architectures
with two types of cache con gurations, i.e., (i) with only one cache level and (ii) with multiple
cache levels. When analyzing architectures with single-level caches, we compare the performance
of different bus arbitration policies with/without considering cache persistence. For architectures

9.5 Experimental Evaluation 187

that support multiple cache levels, we evaluate how our proposed CRPD analysis for multilevel
caches (presented in Chapter 8) can impact memory bus contention in comparison to the state-
of-the-art CRPD analysis for multilevel caches presented in (Chattopadhyay and Roychoudhury,
2014).

Figure 9.3: Wighted schedulability measure by varying the total number of cores

9.5.1 Multicore Platforms with Single-level Caches

To evaluate how a tighter bound on the inter-task cache interference can impact memory bus
contention in multicore platforms with single-level caches, we compare the performance of FP,
RR and TDMA bus arbitration policies under two approaches; (i) that only accounts for CRPDs
and (ii) that accounts for both CRPDs and cache persistence. For bus contention analysis that only
accounts for CRPDs we compute the CRPDs using the Resilience analysis (Altmeyer et al., 2010)
(see Section 3.2.2). Cache persistence-aware bus contention analysis computes the CRPDs using
the Resilience analysis and CPROs using the Multi-path ResilienceP analysis (see Section 7.4).
We model a multicore platform with 4 cores each having a private L1 instruction cache with 4-
ways, 64 cache sets and a block size of 32 Bytes. The default vadliggis 5rms. All experiments
were performed using the Méalardalen benchmark suite (Gustafsson et al., 2010) with the values
of PD;, MD;, MD{, UCB;, ECB andPCB taken from Table 5.2. The default task set size was
24 with 6 tasks per core. Each task within the task set is randomly assigned parameters from one
of the benchmarks of the Malardalen benchmark suite. Task utilizations were generated using
UUnifast (Bini and Buttazzo, 2005) assuming an equal utilization for each core. Task periods

Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore
188 Systems

and deadlines were set such thiat D; = (PD;+ MD; dmem)=U;. Task priorities were assigned
according to deadline monotonic.

We randomly generated task sets and determined their schedulability using Equation (9.18)
for FP, RR, and TDMA buses with and without considering cache persistence under different
settings, i.e., by varying core utilizations, number of cores, memory reloaddjigi¢ cache size
and RR/TDMA slot sizesl that has a default value of 2.

1. Core Utilizations: In this experiment, we varied the per core utilization between 0.05 to 1 in
steps of 0.05. For every value of core utilization, 1000 task sets were generated. Figure 9.2 shows
the number of task sets that were deemed schedulable by FP, RR and TDMA bus arbitration
policies with and without considering cache persistence. Figure 9.2 also shows a line marked
as “perfect bus" which assumes that there is no interference on the memory bus when the bus
utilization 1. That line provides an upper bound on the actual number of schedulable task
sets at a particular core utilization. We can see in Figure 9.2 that bus arbitration policies that
account for cache persistence dominate their counterparts that do not consider cache persistence.
This improved performance mainly results from a tighter bound on the number of bus request
generated by tasks executing on different cores. We can see in Figure 9.2a that for a FP bus, up
to 80% more task sets were schedulable when considering cache persistence. Similarly, we can
also see huge improvements for both RR (up to 50% more schedulable task sets) and TDMA (up
to 23% more schedulable task sets). Note that the FP bus outperforms the RR and TDMA buses
since it provides a tightly bounded bus latency for single accesses which is not the case with RR
and TDMA.

Figure 9.4: Wighted schedulability measure by varying the value of memory reloadtigne

9.5 Experimental Evaluation 189

Figure 9.5: Wighted schedulability measure by increasing cache size between 2kB to 32kB

2. Number of Cores:In this experiment, we varied the number of cores between 2 and 10 in steps

of 2 with all other parameters set to the default values. We have used the weighted schedulability
measure de ned in (Bastoni et al., 2010) (i.e., Equation (4.20)) to plot the results in Figure 9.3.
We can see in Figure 9.3 that by increasing the number of cores the total number of schedulable
task sets decreases. This is mainly because by increasing the number of cores the number of tasks
also increases. This leads to an increases in the interference on the memory bus. However, we can
see that analyses that account for cache persistence always dominate their counterparts that do not
account for cache persistence.

3. Memory Reload Time dyem; For this experiment, we varied the value of memory reload

time dmem from 2ms to 10ms in step of 2rs and evaluated its impact on the performance of all

bus arbitration policies. The results are presented in Figure 9.4. We can see in Figure 9.4 that
for lower values ofinhemthe difference between the weighted schedulability of cache persistence-
aware analyses and their respective counterparts is higher. However, for higher vilig tbfe

time spent by tasks in performing memory operations increases and hence the schedulability of all
approaches decreases.

4. Cache SizeTo evaluate the impact of cache size on the performance of the analyses, we varied
the size of the L1 cache of each core between 2kB to 32kB by increasing the number of sets in the
cache from 16 to 256. Default values were used for all other parameters. The results are shown in
Figure 9.5. We can see in Figure 9.5 that by increasing the cache size, the number of schedulable
task sets under bus arbitration policies that account for cache persistence also increases. This is

Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore
190 Systems

Figure 9.6: Wighted schedulability measure by varying the RR/TDMA slot siZe (

mainly because by increasing the cache size the number of PCBs of each task also increases, which
results in gradually improving the performance of the analyses that account for cache persistence.
Note that the increase in cache size also reduce CRPD and thus increase the task set schedulability
for analyses that do not account for cache persistence, but at a slower rate than for persistence
aware analyses.

5. RR/TDMA slot size sl: For RR/TDMA buses the number of memory access slots per core,
i.e.,sl, can greatly affect the memory bus contention suffered by tasks. To evaluate this, we varied
the value of slot sizel between 1 to 6 and plotted the results in Figure 9.6. The results show that
for smaller values o§l, the difference between the weighted schedulability of cache persistence
aware analyses and their respective counterparts is much higher. However, by increasing the value
of sl the task set schedulability of all approaches decrease, which is intuitive, considering the
formulation of Equation (9.7) and (9.8).

9.5.2 Multicore Platforms with Multilevel Caches

To evaluate the impact of inter-task cache interference on memory bus contention in multicore

platforms that support multilevel caches, we compared the performance of different bus arbitration

policies considering two approaches; (i) that computes the inter-task cache interference using our
proposed CRPD analysis for multilevel caches presented in Chapter 8 (i.e., Equation (8.19)) and
(ii) that computes the inter-task cache interference using the CRPD analysis of (Chattopadhyay
and Roychoudhury, 2014) (i.e., Equation (8.10)). Effectively, the goal is to conclude if a tighter

9.5 Experimental Evaluation 191

(a) FP-Bus (b) RR-Bus

(c) TDMA-Bus

Figure 9.7: Schedulability ratio of different bus arbitration policies by varying total core utiliza-
tions for multicore architectures with two-level caches.

bound on the CRPD can improve schedulability of tasks executing on a multicore platform that
support multilevel caches.

We model a multicore platform having 4 cores each supporting private two-level instructions
caches, i.e., L1 and L2. L1 cache is 2-way set-associative with 32 sets and line size of 32-bytes.
L2 cache is 4-way set-associative with 64 sets and line size of 64-bytes. The L1 cache miss
penalty was 10 processor cycles, ide4 = 10, and the L2 cache miss penalty was 100 processor
cycles. Consequently, the total time to reload one memory block from the main memory to both
cache levels is computed such thitem= di 1+ di» = 110. All experiments were performed
using the Malardalen benchmark suite (Gustafsson et al., 2010) with the valGgd.@fECBs,
L2-ECBs, L1-UCBs and L2-UCBs taken from Table 8.2. The values of worst-case processing
demandPD; and worst-case memory access demlglii were chosen randomly such thdD; =
rand(0:1;0:6) C andPD; = C; MD;. The default task set size was 32 with 8 tasks per core.
Each task within the task set is randomly assigned parameters from one of the benchmarks of the
Malardalen benchmark suite. Task utilizations were generated using UUnifast (Bini and Buttazzo,
2005) assuming an equal utilization for each core. Task periods and deadlines were set such that

Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore
192 Systems

Figure 9.8: Wighted schedulability measure by varying the total number of cores in multicore
platforms with two-level caches

Ti= Dj=(PD;j+ MD; dmem=U;. Task priorities were assigned according to deadline monotonic.

We randomly generated a large number of task sets and determined their schedulability using
Equation (9.18) for FP, RR, and TDMA buses. Depending on the chosen bus arbitration policy,
upper bound on the memory bus contention, BAT'(R;) in Equation (9.18), can be computed
using Equation (9.6), (9.7) or (9.8). For every bus arbitration policy the CRPD is either computed
using our proposed CRPD analysis for multilevel caches, i.e., Equation (8.19)), or by using the
state-of-the-art CRPD analysis for multilevel caches presented in (Chattopadhyay and Roychoud-
hury, 2014) (i.e., Equation (8.10)). The schedulability analysis is then performed under different
settings. Note that for RR/TDMA bus, the default value of slot siagas 2.

1. Core Utilizations: For this experiment, we varied the per core utilization between 0.05to 1 in
steps of 0.05 and generated 1000 task sets at each step. Figure 9.7 shows the number of task sets
that were deemed schedulable at each step by FP, RR and TDMA bus arbitration policies that use
our proposed CRPD analysis for multilevel caches, i.e., Equation (8.19)), and the state-of-the-art
CRPD analysis for multilevel caches presented in (Chattopadhyay and Roychoudhury, 2014) (i.e.,
Equation (8.10)). In Figure 9.7, we can see that the performance of all bus arbitration policies

is similar to what was observed in Figure 9.2. However by comparison, the total number of task
sets that were deemed schedulable by each approach is lower. This is mainly because the analysis
results plotted in Figure 9.7 only considers CRPDs when computing the memory bus contention
of tasks and does not account for cache persistence which is considered by the analysis results
shown in Figure 9.2. Overall, we can see that the bus arbitration policies that consider a tighter

9.5 Experimental Evaluation 193

CRPD bound (i.e., given by the CRPD analysis presented in Chapter 8) in the computation of
memory bus contention, dominate their counterparts that use the state-of-the-art CRPD analysis
presented in (Chattopadhyay and Roychoudhury, 2014). This shows inter-task cache interference
can also have a signi cant impact on the schedulability of tasks executing on a multicore platform
that support multilevel caches.

Figure 9.9: Wighted schedulability measure by varying the RR/TDMA slot sizédr multicore
platforms with two-level caches.

2. Number of Cores: In this experiment, we increased the number of cores in the platform be-
tween 2 to 10 in steps of 2 and plotted the resulting weighted schedulability measure in Figure 9.8.
We can see a similar trend in Figure 9.8 which was observed for the results plotted in Figure 9.3,
i.e., by increasing the number of cores (which also increases the total number of tasks) the total
number of task sets deemed schedulable by all approaches decreases. This is due to an increase
in the inter-task cache interference due to CRPDs and since the analyses considered in Figure 9.8
does not account for cache persistence we can see a much faster decrease in schedulability in
comparison to Figure 9.3. However, we can see that our proposed CRPD analysis for multilevel
caches still dominates the state-of-the-art analysis.

3. RR/TDMA slot size sl: In another experiment, we varied the value of RR/TDMA slot size

from 1 to 6 and plotted the resulting weighted schedulability in Figure 9.9. Again, we can see that
the plot shown in Figure 9.9 is similar to the plot shown in Figure 9.6 but, the overall weighted
schedulability of all approaches is lower. We can also see that for smaller valgea tifjhter

CRPD bound improves task set schedulability. However, for higher valusktbé inter-task

Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore
194 Systems

cache interference from tasks executing on other cores also increases. This results in decreasing
the number of task sets deemed schedulable by all approaches.

From the results presented in Section 8.6.2, we know that our proposed CRPD analysis for
multilevel caches mainly bene ts from a tighter bound on the CRPD due to L2 cache. Therefore,
we also performed experiments by varying L2 cache miss penalty and L2 cache size and observed
a similar trend which is shown in Figure 9.4 and 9.5 respectively.

9.6 Chapter Summary

In this chapter, we evaluate the impact of inter-task cache interference on task set schedulability
in multicore platforms. We show that the memory bus contention suffered by tasks executing on
a multicore platform heavily depends on the inter-task cache interference suffered by the tasks.
We perform different experiments by considering multicore platforms with single- and multi-level
caches. The experimental results show that the analyses that provides a tighter bound on the inter-
task cache interference signi cantly reduce the memory bus contention suffered by tasks executing
on multicore platforms, thereby improving schedulability.

Chapter 10

Thesis Summary, Limitations and
Future Directions

For hard real-time systems that allow task preemptions, a sound estimate of inter-task cache inter-
ference is a prerequisite for an accurate schedulability analysis. However, bounds on the inter-task
cache interference must also be as precise as possible such that system resources are not underuti-
lized. Inthis thesis, we have identi ed the sources of pessimism in the state-of-the-art computation

of inter-task cache interference and proposed solutions that improve the accuracy of the schedula-
bility analysis by providing tighter bounds on the inter-task cache interference. We also provide

a holistic insight into the relationship between inter-task cache interference and memory bus con-
tention and show how a tighter bound on inter-task cache interference can impact the memory bus
contention suffered by tasks executing on a multicore platform.

10.1 Summary of Contributions

The work done in this dissertation is divided into three parts. In the rst part, i.e., Chapter 4-6, we
focus on systems with single-level direct-mapped caches. In Chapter 4, we show that the existing
analysis in literature that only focus arache-related preemption delaysay overestimate the
inter-task cache interference suffered by the tasks. To remove this overestimation, we introduce
the notion ofcache persistencthat enables the reuse of cache content between different task
instances, thus, providing a tighter bound on the inter-task cache interference. However, we also
identify that persistent cache content of tasks can also be evicted due to inter-task cache con icts
which may lead to additional memory reload overhead calbshe persistence reload overhead
(CPRO). We present different approaches to compute CPRO and show how to correctly account
for both CRPD and cache persistence in the schedulability analysisefpriority preemptive
systems In Chapter 5, we identify that separatecomputation of CRPD and CPRO may lead

to an overestimation in the total inter-task cache interference suffered by the tasks. We present
an integratedanalysis that considers cache evictions that are already counted for in the CRPD
analysis, when computing CPRO. The integrated analysis provides a tighter bound on the total

195

196 Thesis Summary, Limitations and Future Directions

inter-task cache interference compared to the separate treatment of CRPD and CPRO. In Chapter 6,
we evaluate the impact of memory layout of tasks on schedulability. We show that the intra- and
inter-task cache interference can be interrelated and balancing their respective contribution to tasks
WCRT may result in improving task set schedulability. We present an approach to optimize task
layout in memory such that the trade-off between intra- and inter-task cache interference can be
balanced and the task set's schedulability is achieved. Evaluation has shown that the new methods
strongly improve upon former approaches.

In the second part of this thesis, i.e., Chapter 7 and 8, we focus on the analysis of inter-task
cache interference considering single-level and multilevel set-associative caches. In Chapter 7,
we provide solutions that analyze the impact of cache persistence on the schedulability analysis
consideringset-associativé RU-caches. We show howpersistent cache blocK®CBs) of tasks
can be determined when considering set-associative caches and present three different approaches
to calculate CPRO for set-associative caches. In Chapter 8, we present a CRPD analysis for
multilevel non-inclusiveaches. We identify challenges in the computation of CRPD for multilevel
caches and propose solutions that provide a tighter CRPD bound than an existing analysis in
the state-of-the-art. Evaluations show that our proposed analysis signi cantly improve upon the
existing approaches.

Finally, in the last part of thesis, i.e., Chapter 9, we evaluate how a sound estimate on the inter-
task cache interference may impact the contention due to sharing of memory bus in multicore
systems. We show that the number of bus/memory requests generated by a task executing on a
multicore platform strongly depends on the number of cache misses suffered by that task which in
turn depends on the inter-task cache interference experienced by the task during its execution. We
built on the work done in Chapter 4, Chapter 7 and Chapter 8 to analyze memory bus contention in
multicore architecture with single- and multi-level caches. Evaluations show that a tighter bound
on the inter-task cache interference can signi cantly reduce memory bus contention suffered by
tasks executing on multicore platforms and results in improving schedulability.

10.2 Limitations of Current Work and Future Directions

10.2.1 Cache Persistence Analysis for Multilevel Caches

In this thesis, we have shown that the notion of cache persistence between task instances can
signi cantly improve schedulability for xed-priority preemptive systems. However, the current
cache persistence-aware analysis only support single-level, i.e., L1, caches. Considering that mod-
ern processors are equipped with multiple cache levels, it will be interesting to extend the notion of
cache persistence to cache hierarchies. For example, in a processor architecture that support two-
level caches, i.e., L1 and L2 caches, L2 cache is considerably larger than the L1 cache. Which
means that L2 can hold more content than the L1 cache and tasks may have fewer con icts in the
L2 cache in comparison to the L1 cache. Consequently, in a two-level cache hierarchy more con-
tent can be “persistent” and re-used from the L2 cache which may lead to a signi cant reduction

10.2 Limitations of Current Work and Future Directions 197

in task's WCRT estimates. For example, consider the scenario shown in Figure 10.1, where task
t, has more memory blocks persistent in the cache when the cache has two levels, i.e., L1 and L2,
in comparison to the case where there is only a single cache level, i.e., L1.

Figure 10.1. Cache persistence-aware analysis of multiple cache levels may lead more tighter
WCRT bounds.

10.2.2 Inter-task Cache Interference Analysis for Last-level Shared Caches

The current analysis focus on inter-task cache interference, i.e., cache interference between tasks
executing on the same processor/core, and assume that the cache(s) is/are private to the cores.
However, in many modern processors last-level cache is usually shared among cores which may
lead tointer-core cache interferencee., tasks running on different cores may concurrently access

the last level cache and if two lines in the two addressing spaces of the running tasks map to the
same cache line, said tasks can repeatedly evict each other in cache. Inter-core cache interference
can occur between tasks that can run in parallel on different cores, therefore the exact interference
analysis requires analyzing all the possible interleaving of task executions. This makes the analysis
of inter-core cache interference much harder in comparison to the analysis of intra-core or inter-
task cache interference. There exist few approaches in the state-of-the-art (Xiao et al., 2017,
2020) that focus on the computation of inter-core cache interference. However, these approaches
focus on non-preemptive task systems and assume that the intra-core cache interference is already
considered in the task's WCETs. Therefore, an interesting problem to solve is to bound inter-
core cache interference for systems that allow preemptions. This requires to analyze intra- and
inter-core cache interference simultaneously which is a challenging endeavor.

198 Thesis Summary, Limitations and Future Directions

Figure 10.2: Under preemptive scheduling, simultaneous analysis of intra- and inter-core cache
interference is a challenge.

10.2.3 Holistic Memory Contention Analysis for Preemptive Systems

Main memory is one of the hardware resources that is shared by different tasks executing on a mul-
ticore platform and the time needed to access a block from the main memory mainly depends on
the number of requests generated by the executing tasks and the behavior of the memory controller.
Several works have been proposed in literature that focus on bounding main memory contention
by using techniques such as the DRAM bank partitioning (Reineke et al., 2011; Wu et al., 2013;
Kim et al., 2014) and memory bandwidth reservation (Yun et al., 2012, 2013, 2014). However,
these approaches may still result in pessimistic/optimistic estimates on the memory interference
delay considering that these approaches usually do not consider the relationship between main
memory and other resources, i.s., the bus and caches. As we have shown in Chapter 9, the number
of main memory requests generated by a task during its execution strongly depends on the con-
tention it may suffer on the cache or at the bus. Therefore, an interesting prospective is to provide
a holistic memory contention analysis that considers the relationship between caches, bus and the
main memory.

10.2.4 Cache Persistence-aware Inter-task Cache Interference Analysis consider-
ing Dynamic Priority Scheduling

In the current work, we focus on systems where tasks are scheduled under a xed-priority assign-
ment scheme, e.g., Rate or Deadline Monotonic (Liu and Layland, 1973), and show that a cache
persistence-aware inter-task cache interference analysis can greatly improve system's schedulabil-
ity. However, considering the bene ts dynamic priority scheduling schemes such Estiiest

10.3 Conclusions 199

Deadline First(EDF) can offer in comparison to xed-priority schemes, it would be very interest-

ing to adapt the proposed analysis to EDF. The work of Lunniss et al. (Lunniss et al., 2013, 2014)
can be very helpful in this regard. It focus on integrating CRPDs into schedulability tests for EDF
and compare the performance of FP and EDF scheduling algorithms in the presence of CRPD.
Knowing that an inter-task cache interference analysis that accounts for both cache persistence
and CRPDs dominates the analysis that only consider CRPDs, we expect EDF to offer signi cant
performance gains over FP when cache persistence is considered.

10.3 Conclusions

The work done in this dissertation shows that inter-task interference due to contention for shared
resources such as caches and memory bus can greatly affect the temporal behavior of tasks. A
correct and sound computation of shared resource contention is therefore essential to improve
the accuracy of schedulability analyses. The proposed analysis framework provides a holistic
solution that considers the inter-dependency between the behavior of different shared resources
thus providing deterministic bounds on the WCRT of tasks.

Bibliography

“Aramis project,” https://www.projekt-aramis.de/.
“Frescor fp7 project,” ftp://ftp.cordis.europa.eu/publ/ist/docs/dir_c/ems/frescor-v1l_en.pdf.

“Multiprocessor execution platforms,” http://download.tuxfamily.org/erika/webdownload/nios2/
1422/FRESCOR_WP4 _D-EP7v2.pdf.

“Single core equivalence,” http://rtsl-edge.cs.illinois.edu/SCE/.

“Deadline scheduling for linux,” https://en.wikipedia.org/wiki/'SCHED_DEADLINE.

“ait wcet analyser,” http://www.absint.com/ait.

“Front-side bus,” May 2017. [Online]. Available: https://en.wikipedia.org/wiki/Front-side_bus

“Bus (computing),” May 2017. [Online]. Available: https://en.wikipedia.org/wiki/Bus_
(computing)

“Rapitime,” http://www.rapitasystems.com.

D. Adams, The Hitchhiker's Guide to the Galaxy San Val, 1995. [Online]. Available:
http://books.google.com/books?id=W-xMPgAACAAJ

B. Akesson and K. Goossens, “Architectures and modeling of predictable memory controllers for
improved system integration,” Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2011 IEEE, 2011, pp. 1-6.

B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable sdram memory controller,”
in Proceedings of the 5th IEEE/ACM international conference on Hardware/software codesign
and system synthesisACM, 2007, pp. 251-256.

S. Altmeyer,Analysis of preemptively scheduled hard real-time systempubli GmbH, 2013.

S. Altmeyer and C. M. Burguiére, “Cache-related preemption delay via useful cache blocks: Sur-
vey and rede nition,”Journal of Systems Architectyreol. 57, no. 7, pp. 707—-719, 2011.

S. Altmeyer and G. Gebhard, “Optimal task placement to improve cache performande,” in
EMSOFT Citeseer, 2007.

S. Altmeyer, C. Maiza, and J. Reineke, “Resilience analysis: tightening the crpd bound for set-
associative caches,” CM Sigplan Noticesvol. 45, no. 4. ACM, 2010, pp. 153-162.

S. Altmeyer, R. Davis, C. Maizat al,, “Cache related pre-emption delay aware response time
analysis for xed priority pre-emptive systems,” RTSS'11 |EEE, 2011, pp. 261-271.

200

https://www.projekt-aramis.de/
ftp://ftp.cordis.europa.eu/pub/ist/docs/dir_c/ems/frescor-v1_en.pdf
http://download.tuxfamily.org/erika/webdownload/nios2/1422/FRESCOR_WP4_D-EP7v2.pdf
http://download.tuxfamily.org/erika/webdownload/nios2/1422/FRESCOR_WP4_D-EP7v2.pdf
http://rtsl-edge.cs.illinois.edu/SCE/
https://en.wikipedia.org/wiki/SCHED_DEADLINE
http://www.absint.com/ait.
https://en.wikipedia.org/wiki/Front-side_bus
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Bus_(computing)
http://www.rapitasystems.com
http://books.google.com/books?id=W-xMPgAACAAJ

BIBLIOGRAPHY 201

S. Altmeyer, R. |. Davis, and C. Maiza, “Improved cache related pre-emption delay aware response
time analysis for xed priority pre-emptive systemd$eal-Time Systemsol. 48, no. 5, pp.
499-526, 2012.

S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis, “Outstanding paper: Evaluation of cache
partitioning for hard real-time systems,” 2914 26th Euromicro Conference on Real-Time Sys-
tems |IEEE, 2014, pp. 15-26.

S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke, “A generic and com-
positional framework for multicore response time analysis,RIiNS'15. ACM, 2015, pp.
129-138.

S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis, “On the effectiveness of cache partitioning
in hard real-time systemsReal-Time Systemeol. 52, no. 5, pp. 598—-643, 2016.

R. Alur and D. L. Dill, “A theory of timed automata,Theoretical computer scienceol. 126,
no. 2, pp. 183-235, 1994.

B. Andersson and E. Tovar, “Multiprocessor scheduling with few preemptiongfribhedded and
Real-Time Computing Systems and Applications, 2006. Proceedings. 12th IEEE International
Conference on IEEE, 2006, pp. 322—334.

B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on multiprocessRisgl-in
Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd IEEE, 2001, pp. 193—
202.

L. C. Aparicio, J. Segarra, C. Rodriguez, and V. Vifials, “Improving the wcet computation in the
presence of a lockable instruction cache in multitasking real-time syst@msyial of Systems
Architecture vol. 57, no. 7, pp. 695706, 2011.

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings, “Applying new scheduling
theory to static priority pre-emptive scheduling@bdftware Engineering Journabol. 8, no. 5,
pp. 284-292, 1993.

F. A. Authority, ““cast-32-a: Multi-core processors,” 2016. [Online]. Available: https:
Ilwww.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf

T. P. Baker, “An analysis of edf schedulability on a multiproces$&EE transactions on parallel
and distributed systemsol. 16, no. 8, pp. 760-768, 2005.

A. Banerjee, S. Chattopadhyay, and A. Roychoudhury, “Precise micro-architectural modeling for
wcet analysis via ai+ sat,” iReal-Time and Embedded Technology and Applications Symposium
(RTAS), 2013 IEEE 19th IEEE, 2013, pp. 87-96.

S. Baruah, “The limited-preemption uniprocessor scheduling of sporadic task systeBEGSRIFS
2005. IEEE, 2005, pp. 137-144.

S. Baruah and J. Goossens, “Scheduling real-time tasks: Algorithms and compléaitgbook
of scheduling: Algorithms, models, and performance analysis 3, 2004.

S. Baruah, M. Bertogna, and G. Buttaz2dultiprocessor Scheduling for Real-Time Systems
Springer, 2015.

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf

202 BIBLIOGRAPHY

S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportionate progress: A notion of
fairness in resource allocatior&lgorithmica vol. 15, no. 6, pp. 600-625, 1996.

A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemption and migration delays:
Empirical approximation and impact on schedulabilitf§foceedings of OSPERPp. 3344,
2010.

S. Basumallick and K. Nilsen, “Cache issues in real-time system#Cikl SIGPLAN Workshop
on Language, Compiler, and Tool Support for Real-Time Systesh®. Citeseer, 1994.

P. Baufreton, V. Bregeon, K. Didier, G. looss, D. Potop-Butucaru, and J. Souyris, “Ef cient
ne-grain parallelism in shared memory for real-time avionics,BRTS 2020-10th European
Congress Embedded Real Time Syst@20.

F. Bellosa, “Process cruise control: Throttling memory access in a soft real-time environment,”
University of Erlangen, Tech. Rep997.

M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo, “Optimal selection of pre-
emption points to minimize preemption overhead EBRTS'11 IEEE, 2011, pp. 217-227.

E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability té&gi-Time Sys-
tems vol. 30, no. 1-2, pp. 129-154, 2005.

T. Bla3, S. Hahn, and J. Reineke, “Write-back caches in wcet analysidPlos-Leibniz Interna-
tional Proceedings in Informati¢sol. 76. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

R. J. Bril, S. Altmeyer, M. M. van den Heuvel, R. |. Davis, and M. Behnam, “Integrating cache-
related pre-emption delays into analysis of xed priority scheduling with pre-emption thresh-
olds,” in 2014 IEEE Real-Time Systems SymposiutREE, 2014, pp. 161-172.

B. D. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact of cache partitioning on multi-tasking
real time embedded systems,”2008 14th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applicatiorl&EE, 2008, pp. 101-110.

A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, “New strategies for assigning real-time tasks
to multiprocessor systemdEEE transactions on computergol. 44, no. 12, pp. 1429-1442,
1995.

P. Burgio, A. Marongiu, P. Valente, and M. Bertogna, “A memory-centric approach to enable
timing-predictability within embedded many-core acceleratorsRé@al-Time and Embedded
Systems and Technologies (RTEST), 2015 CSI Symposj@ataiz015, pp. 1-8.

C. Burguiére, J. Reineke, and S. Altmeyer, “Cache-related preemption delay computation for set-
associative caches-pitfalls and solutions,OASIcs-OpenAccess Series in Informatics. 10.
Schloss Dagstuhl-Leibniz-Zentrum fir Informatik, 2009.

A. Burns,Preemptive priority based scheduling: An appropriate engineering approdiiteseer,
1993.

A. Burns and R. I. Davis, “Adaptive mixed criticality scheduling with deferred preemption,” in
2014 IEEE Real-Time Systems SymposiulgEE, 2014, pp. 21-30.

BIBLIOGRAPHY 203

A. Burns, R. I. Davis, P. Wang, and F. Zhang, “Partitioned edf scheduling for multiprocessors
using a c= d task splitting schem®&eal-Time Systemsol. 48, no. 1, pp. 3—-33, 2012.

J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings, “Adding instruction cache
effect to schedulability analysis of preemptive real-time systemdRTAS'96. |IEEE, 1996,
pp. 204-212.

J. V. Busquets-Mataix, J. J. Serrano, and A. Wellings, “Hybrid instruction cache partitioning for
preemptive real-time systems,”Real-Time Systems, Proceedings., Ninth Euromicro Workshop
on. |EEE, 1997, pp. 56—63.

J. V. Busquets-Mataix, D. Gil, P. Gil, and A. Wellings, “Techniques to increase the schedulable uti-
lization of cache-based preemptive real-time systedmjtnal of systems architectyreol. 46,
no. 4, pp. 357-378, 2000.

G. ButtazzoHard real-time computing systems: predictable scheduling algorithms and applica-
tions Springer Science & Business Media, 2011, vol. 24.

G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive scheduling for real-time systems.
a survey,’Industrial Informatics, IEEE Transactions pwol. 9, no. 1, pp. 3-15, 2013.

M. Campoy, A. P. Ivars, and J. Busquets-Mataix, “Static use of locking caches in multitask pre-
emptive real-time systems,” iAroceedings of IEEE/IEE Real-Time Embedded Systems Work-
shop (Satellite of the IEEE Real-Time Systems SympasiuBifeseer, 2001, pp. 1-6.

J. Cavicchio, C. Tessler, and N. Fisher, “Minimizing cache overhead via loaded cache blocks and
preemption placement,” i8015 27th Euromicro Conference on Real-Time SystemEEE,
2015, pp. 163-173.

N. Cecere, M. Tipaldi, R. Wenker, and U. Villano, “Measurement and analysis of schedulability
of spacecraft on-board software,” #0016 IEEE Metrology for Aerospace (MetroAeroSpace)
IEEE, 2016, pp. 545-550.

F. Certi cation Authorities Software Team (CAST) Position Paper CAST-32, “Multi-core proces-
sors,” 2014.

S. Chattopadhyay and A. Roychoudhury, “Scalable and precise re nement of cache timing anal-
ysis via model checking,” iReal-Time Systems Symposium (RTSS), 2011 IEEE 326HE,
2011, pp. 193-203.

S. Chattopadhyay and A. Roychoudhury, “Cache-related preemption delay analysis for multilevel
noninclusive cachesACM Transactions on Embedded Computing Systems (TEGISIL3,
no. 5s, pp. 1-29, 2014.

S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Modeling shared cache and bus in multi-cores
for timing analysis,” inProceedings of the 13th international workshop on software & compilers
for embedded systemsACM, 2010, p. 6.

S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Marwedel, and H. Falk, “A uni ed
wecet analysis framework for multicore platform&CM Transactions on Embedded Computing
Systems (TECSYol. 13, no. 4s, p. 124, 2014.

204 BIBLIOGRAPHY

H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time scheduling algorithm for multipro-
cessors,” inRkeal-Time Systems Symposium, 2006. RTSS'06. 27th IEEE InternatidB&E,
2006, pp. 101-110.

A. Chousein and R. N. Mahapatra, “Fully associative cache partitioning with don't care bits for
real-time applications ACM SIGBED Revieywol. 2, no. 2, pp. 35-38, 2005.

E. M. Clarke, O. Grumberg, and D. Pelddodel checking MIT press, 1999.

A. Colin and I. Puaut, “A modular and retargetable framework for tree-based wcet analysis,” in
Real-Time Systems, 13th Euromicro Conference on, 20[EEE, 2001, pp. 37-44.

P. Cousot and R. Cousot, “Abstract interpretation: a uni ed lattice model for static analysis of pro-
grams by construction or approximation of xpoints,” Rroceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languag@&M, 1977, pp. 238—-252.

C. Cullmann, “Cache persistence analysis: Theory and prac8GM Transactions on Embedded
Computing Systems (TECS)l. 12, no. 1s, p. 40, 2013.

A. E. Dalsgaard, M. C. Olesen, M. Toft, R. R. Hansen, and K. G. Larsen, “Metamoc: Modular
execution time analysis using model checking, QASIcs-OpenAccess Series in Informatics
vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and J. Lee, “Response time analysis
of cots-based multicores considering the contention on the shared memory RGIUHEEE
10th International Conference on Trust, Security and Privacy in Computing and Communica-
tions |IEEE, 2011, pp. 1068-1075.

D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and J. Lee, “Response time analysis
of cots-based multicores considering the contention on the shared memory RGJ1ilEEE
10th International Conference on Trust, Security and Privacy in Computing and Communica-
tions |IEEE, 2011, pp. 1068-1075.

D. Dasari, B. Akesson, V. Nelis, M. A. Awan, and S. M. Petters, “ldentifying the sources of
unpredictability in cots-based multicore systems,2013 8th IEEE International Symposium
on Industrial Embedded Systems (SIESEEE, 2013, pp. 39-48.

D. Dasari, V. Nelis, and B. Akesson, “A framework for memory contention analysis in multi-core
platforms,”Real-Time Systemeol. 52, no. 3, pp. 272-322, 2016.

R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor systems,”
ACM Computing Surveys (CSURDI. 43, no. 4, p. 35, 2011.

R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor systems,”
ACM computing surveys (CSURpI. 43, no. 4, p. 35, 2011.

R. I. Davis, S. Altmeyer, and J. Reineke, “Analysis of write-back caches under xed-priority pre-
emptive and non-preemptive scheduling,Rroceedings of the 24th International Conference
on Real-Time Networks and System&CM, 2016, pp. 309-318.

R. I. Davis, S. Altmeyer, L. S. Indrusiak, C. Maiza, V. Nelis, and J. Reineke, “An extensible
framework for multicore response time analysRgal-Time Systemsol. 54, no. 3, pp. 607—
661, 2018.

BIBLIOGRAPHY 205

R. I. Davis, |. Bate, G. Bernat, |. Broster, A. Burns, A. Colin, S. Hutchesson, and N. Tracey,
“Transferring real-time systems research into industrial practice: Four impact case studies,” in
30th Euromicro Conference on Real-Time Systems (ECRTS.2088)loss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

M. Deck, “Software reliability and the" cleanroom" approach: a position papeRe&imability and
Maintainability Symposium, 1998. Proceedings., AnnudEEE, 1998, pp. 218-223.

S. K. Dhall and C. L. Liu, “On a real-time scheduling problerperations researchvol. 26,
no. 1, pp. 127-140, 1978.

M. Di Natale and A. L. Sangiovanni-Vincentelli, “Moving from federated to integrated archi-
tectures in automotive: The role of standards, methods and tdtis¢eedings of the IEEE
vol. 98, no. 4, pp. 603-620, 2010.

H. Ding, Y. Liang, and T. Mitra, “Wcet-centric dynamic instruction cache locking,Diesign,
Automation and Test in Europe Conference and Exhibition (DATE), .201BEE, 2014, pp.
1-6.

A. Ermedahl, “A modular tool architecture for worst-case execution time analysis,” Ph.D. disser-
tation, Acta Universitatis Upsaliensis, 2003.

M. S. Espinoza, J. Goncalves, P. Leitao, J. L. G. Sanchez, and A. Herreros, “Inverse kinematics of
a 10 dof modular hyper-redundant robot resorting to exhaustive and error-optimization methods:
A comparative study,” irRobotics Symposium and Latin American Robotics Symposium (SBR-
LARS), 2012 Brazilian IEEE, 2012, pp. 125-130.

M. S. Espinoza, A. I. Pereira, and J. Goncalves, “Optimization methods for hyper-redundant
robots' inverse kinematics in biomedical applications,”AlP Conference Proceedingsol.
1479, 2012, p. 818.

H. Falk and H. Kotthaus, “Wcet-driven cache-aware code positioningZ0itl Proceedings of
the 14th International Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES) IEEE, 2011, pp. 145-154.

H. Falk, S. Plazar, and H. Theiling, “Compile-time decided instruction cache locking using worst-
case execution paths,” Proceedings of the 5th IEEE/ACM international conference on Hard-
ware/software codesign and system synthesiCM, 2007, pp. 143-148.

C. Ferdinand and R. Wilhelm, “Ef cient and precise cache behavior prediction for real-time sys-
tems,”Real-time systemsol. 17, no. 2, pp. 131-181, 1999.

C. Ferdinand, R. Heckmann, and B. Franzen, “Static memory and timing analysis of embedded
systems code,” iProceedings of VVSS2007-3rd European Symposium on Veri cation and Val-
idation of Software Systems, 23rd of Mar2007, pp. 07-04.

G. Fernandez, J. Jalle, J. Abella, E. Quifiones, T. Vardanega, and F. J. Cazorla, “Resource usage
templates and signatures for cots multicore processorraceedings of the 52nd Annual
Design Automation Conference ACM, 2015, p. 155.

M. Ferndndez, R. Gioiosa, E. Quifiones, L. Fossati, M. Zulianello, and F. J. Cazorla, “Assessing
the suitability of the ngmp multi-core processor in the space domairPraceedings of the
tenth ACM international conference on Embedded softwafCM, 2012, pp. 175-184.

206 BIBLIOGRAPHY

S. Funk, “Lre-tl: an optimal multiprocessor algorithm for sporadic task sets with unconstrained
deadlines,Real-Time Systemeol. 46, no. 3, pp. 332-359, 2010.

J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling of periodic task systems on
multiprocessors,Real-time systemsol. 25, no. 2-3, pp. 187-205, 2003.

G. Gracioli, A. Alhammad, R. Mancuso, A. A. Frohlich, and R. Pellizzoni, “A survey on cache
management mechanisms for real-time embedded syst&@b]"Computing Surveys (CSUR)
vol. 48, no. 2, p. 32, 2015.

N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling and analysis for multicores,”
in Proceedings of the seventh ACM international conference on Embedded softweta/,
2009, pp. 245-254.

N. Guan, X. Yang, M. Lv, and W. Yi, “Fifo cache analysis for wcet estimation: a quantitative
approach,” irProceedings of the Conference on Design, Automation and Test in Eurgp&\
Consortium, 2013, pp. 296-301.

N. Guan, M. Lv, W. Yi, and G. Yu, “Wcet analysis with mru cache: challenging Iru for predictabil-
ity,” ACM Transactions on Embedded Computing Systems (TEQIS)3, no. 4s, p. 123, 2014.

J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Méalardalen WCET benchmarks: Past,
present and future,” iIDASIcs-OpenAccess Series in Informatiecs. 15. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2010.

A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson, “Towards wcet analysis of multicore
architectures using uppaal,” @ASIcs-OpenAccess Series in Informatiad. 15. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in execution time analysis—
de nition and challenges,” IlfCRTS 2013.

S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in execution time analysis: de -
nition and challengesACM SIGBED Reviewol. 12, no. 1, pp. 28-36, 2015.

D. Hardy and I. Puaut, “Wcet analysis of multi-level non-inclusive set-associative instruction
caches,” in2008 Real-Time Systems SymposiuhiEEE, 2008, pp. 456-466.

D. Hardy and I. Puaut, “Wcet analysis of instruction cache hierarchlesfhal of Systems Archi-
tecture vol. 57, no. 7, pp. 677-694, 2011.

D. Hardy, T. Piquet, and I. Puaut, “Using bypass to tighten wcet estimates for multi-core proces-
sors with shared instruction caches, Real-Time Systems Symposium, 2009, RTSS 2009. 30th
|[EEE. IEEE, 2009, pp. 68-77.

D. Hardy, B. Rouxel, and I. Puaut, “The heptane static worst-case execution time estimation tool,”
in 17th International Workshop on Worst-Case Execution Time Analysis (WCET. 28t#)oss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

R. Hegde, “Optimizing application performance on intel core microarchitecture using hardware-
implemented prefetcherdyitel Software Network2008.

F. e. a. Heiko, “TACLeBench: A benchmark collection to support worst-case execution time re-
search,” INWCET 2016 ser. OpenAccess Series in Informatics, M. Schoeberl, Ed., vol. 55.
Schloss Dagstuhl-Leibniz-Zentrum fir Informatik, 2016, pp. 2:1-2:10.

BIBLIOGRAPHY 207

H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Le our, J.-L. Maté,
K. Nishikawa, and T. Scharnhorst, “Automotive open system architecture-an industry-wide ini-
tiative to manage the complexity of emerging automotive e/e-architect@esyergencepp.
325-332, 2004.

N. Holsti and S. Saarinen, “Status of the bound-t wcet td&®bace Systems Finland L.2D02.

W.-H. Huang, J.-J. Chen, and J. Reineke, “Mirror: symmetric timing analysis for real-time tasks
on multicore platforms with shared resources,DAC. ACM, 2016, p. 158.

B. K. Huynh, L. Ju, and A. Roychoudhury, “Scope-aware data cache analysis for wcet estimation,”
in Real-Time and Embedded Technology and Applications Symposium (RTAS), 2011 17th IEEE
IEEE, 2011, pp. 203-212.

B. Jacob, S. Ng, and D. Wanglemory systems: cache, DRAM, distMorgan Kaufmann, 2010.

K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive scheduling of period and sporadic
tasks,” iInRTSS'91 IEEE, 1991, pp. 129-139.

M. Joseph and P. Pandya, “Finding response times in a real-time sy3teenComputer Journal
vol. 29, no. 5, pp. 390-395, 1986.

R. Kamal,Embedded systems: architecture, programming and desidata McGraw-Hill Edu-
cation, 2011.

S. Kato and N. Yamasaki, “Portioned edf-based scheduling on multiprocessoPsgidaedings
of the 8th ACM international conference on Embedded softwa#&CM, 2008, pp. 139-148.

S. Kato and N. Yamasaki, “Semi-partitioned xed-priority scheduling on multiprocessors,” in
Real-Time and Embedded Technology and Applications Symposium, 2009. RTAS 2009. 15th
IEEE. IEEE, 2009, pp. 23-32.

T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury, “Bus-aware multicore
wecet analysis through tdma offset bounds, 211 23rd Euromicro Conference on Real-Time
Systems IEEE, 2011, pp. 3-12.

H. Kim, A. Kandhalu, and R. Rajkumar, “A coordinated approach for practical os-level cache man-
agement in multi-core real-time systems,Real-Time Systems (ECRTS), 2013 25th Euromicro
Conference on IEEE, 2013, pp. 80-89.

H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, “Bounding memory inter-
ference delay in cots-based multi-core systems20t4 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTASEEE, 2014, pp. 145-154.

H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, “Bounding and reducing
memory interference in cots-based multi-core systeRedl-Time Systemsol. 52, no. 3, pp.
356-395, 2016.

D. B. Kirk and J. K. Strosnider, “Smart (strategic memory allocation for real-time) cache design
using the mips r3000,” ifReal-Time Systems Symposium, 1990. Proceedings., 11HEE,
1990, pp. 322-330.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealisgjénce
vol. 220, no. 4598, pp. 671-680, 1983.

208 BIBLIOGRAPHY

R. Kirner, P. Puschner, I. Wenzet al, Measurement-based worst-case execution time analysis
using automatic test-data generationna, 2004.

C. H. Koo and H. Kim, “Measurement of cache-related preemption delay for spacecraft com-
puters,” in2018 IEEE 24th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA)EEE, 2018, pp. 234-235.

H. Kopetz, “An integrated architecture for dependable embedded systerReliable Distributed
Systems, 2004. Proceedings of the 23rd IEEE International SymposiumBEE, 2004, pp.
160-161.

M. Kowarschik and C. Weil3, “An overview of cache optimization techniques and cache-aware
numerical algorithms,” ilAlgorithms for memory hierarchies Springer, 2003, pp. 213-232.

K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned xed-priority preemptive scheduling
for multi-core processors,” iReal-Time Systems, 2009. ECRTS'09. 21st Euromicro Conference
on. IEEE, 2009, pp. 239-248.

C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S. Kim,
“Analysis of cache-related preemption delay in xed-priority preemptive schedul@grhput-
ers, IEEE Transactions gwol. 47, no. 6, pp. 700-713, 1998.

J. Y.-T. Leung and J. Whitehead, “On the complexity of xed-priority scheduling of periodic,
real-time tasks,Performance evaluatigrvol. 2, no. 4, pp. 237-250, 1982.

X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A timing analyzer for embedded
software,”Science of Computer Programmingl. 69, no. 1, pp. 56—67, 2007.

Y.-T. S. Li and S. Malik, “Performance analysis of embedded software using implicit path enu-
meration,” inLCTES '95: Proceedings of the ACM SIGPLAN 1995 workshop on Languages,
compilers, & tools for real-time systemR. Gerber and T. Marlowe, Eds., vol. 30, no. 11, New
York, NY, USA, Nov. 1995, pp. 88-98.

Y.-T. Li and S. Malik, “Performance analysis of embedded software using implicit path enu-
meration,”|EEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
vol. 16, no. 12, pp. 1477-1487, 1997.

Y.-T. Li, S. Malik, and A. Wolfe, “Cache modeling for real-time software: Beyond direct mapped
instruction caches,” ilReal-Time Systems Symposium, 1996., 17th IEEEEEE, 1996, pp.
254-263.

Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury, “Timing analysis of concurrent
programs running on shared cache multi-coresR&al-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE IEEE, 2009, pp. 57-67.

Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury, “Timing analysis of concurrent
programs running on shared cache multi-coresR&al-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE IEEE, 2009, pp. 57-67.

J. Liedtke, H. Hartig, and M. Hohmuth, “Os-controlled cache predictability for real-time systems,”
in Real-Time Technology and Applications Symposium, 1997. Proceedings., Third IEEE,
1997, pp. 213-224.

BIBLIOGRAPHY 209

J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, “Gaining insights into multicore
cache partitioning: Bridging the gap between simulation and real systemdPG@A IEEE,
2008, pp. 367-378.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time
environment,"JACM, vol. 20, no. 1, pp. 46-61, 1973.

F. Liu, A. Narayanan, and Q. Bai, “Real-time systems,” 2000.

F. Liu and Y. Solihin, “Understanding the behavior and implications of context switch misses,”
ACM Transactions on Architecture and Code Optimization (TA®QI) 7, no. 4, p. 21, 2010.

J. W. Liu, “Real-time systems. 2000.”

T. Liu, M. Li, and C. J. Xue, “Instruction cache locking for real-time embedded systems
with multi-tasks,” inEmbedded and Real-Time Computing Systems and Applications, 2009.
RTCSA'09. 15th IEEE International Conference odEEE, 2009, pp. 494—-499.

T. Liu, M. Li, and C. J. Xue, “Minimizing wcet for real-time embedded systems via static instruc-
tion cache locking,” inReal-Time and Embedded Technology and Applications Symposium,
2009. RTAS 2009. 15th IEEEIEEE, 2009, pp. 35-44.

T. Liu, Y. Zhao, M. Li, and C. J. Xue, “Task assignment with cache partitioning and locking for
wcet minimization on mpsoc,” iRarallel Processing (ICPP), 2010 39th International Confer-
ence on IEEE, 2010, pp. 573-582.

P. Lokuciejewski, H. Falk, and P. Marwedel, “Wcet-driven cache-based procedure positioning
optimizations,” in2008 Euromicro Conference on Real-Time SystemiEEE, 2008, pp. 321—
330.

T. Lundqvist, A WCET analysis method for pipelined microprocessors with cache mem@its
seer, 2002.

W. Lunniss, S. Altmeyer, and R. |. Davis, “Optimising task layout to increase schedulability via
reduced cache related pre-emption delaysPrimceedings of the 20th International Conference
on Real-Time and Network Syster?812, pp. 161-170.

W. Lunniss, S. Altmeyer, C. Maiza, and R. |. Davis, “Integrating cache related pre-emption de-
lay analysis into edf scheduling,” iReal-Time and Embedded Technology and Applications
Symposium (RTAS), 2013 IEEE 19tHEEE, 2013, pp. 75-84.

W. Lunniss, S. Altmeyer, and R. I. Davis, “A comparison between xed priority and edf scheduling
accounting for cache related pre-emption delalsjbniz Transactions on Embedded Systems
vol. 1, no. 1, pp. 01-1, 2014.

M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract interpretation with model checking for
timing analysis of multicore software,” iReal-Time Systems Symposium (RTSS), 2010 IEEE
31st |IEEE, 2010, pp. 339-349.

M. Lv, N. Guan, Q. Deng, G. Yu, and W. Yi, “Mcait-a timing analyzer for multicore real-time
software,” inInternational Symposium on Automated Technology for Veri cation and Analysis
Springer, 2011, pp. 414-417.

210 BIBLIOGRAPHY

M. Lv, N. GUAN, W. YI, J. REINEKE, and R. WILHELM, “A survey on cache analysis for
real-time systems ACM Computing Surveyp. 45, 2015.

C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I. Davis, “A survey of timing
veri cation techniques for multi-core real-time systemaCM Computing Surveys (CSUR)
vol. 52, no. 3, pp. 1-38, 2019.

R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni, “Real-time cache
management framework for multi-core architecturesRaal-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19tEEE, 2013, pp. 45-54.

R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun, “Wcet (m) estimation in multi-core
systems using single core equivalence,Real-Time Systems (ECRTS), 2015 27th Euromicro
Conference on IEEE, 2015, pp. 174-183.

J. M. Marinho, V. Nélis, S. M. Petters, and |. Puaut, “An improved preemption delay upper bound
for oating non-preemptive region,” irrth IEEE International Symposium on Industrial Em-
bedded Systems (SIES'12)EEE, 2012, pp. 57-66.

J. M. Marinho, V. Nélis, S. M. Petters, and |. Puaut, “Preemption delay analysis for oating non-
preemptive region scheduling,” DATE'12 IEEE, 2012, pp. 497-502.

F. Markovic, “Preemption-delay aware schedulability analysis of real-time systems,” Ph.D. disser-
tation, Malardalen University, 2020.

F. Markovic, J. Carlson, and R. Dobrin, “Tightening the bounds on cache-related preemption delay
in xed preemption point scheduling,” ii7th International Workshop on Worst-Case Execution
Time Analysis (WCET 2017) Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

F. Markovi, J. Carlson, and R. Dobrin, “Improved cache-related” preemption delay estimation
for xed preemption point scheduling,” il\da-Europe International Conference on Reliable
Software Technologies Springer, 2018, pp. 87-101.

F. Markovi, J. Carlson, S. Altmeyer, and R. Dobrin, “Improving the accuracy of cache-aware
response time analysis using preemption partitioning32nd Euromicro Conference on Real-
Time Systems (ECRTS 20205chloss Dagstuhl-Leibniz-Zentrum fir Informatik, 2020.

F. Markovic, J. Carlson, and R. Dobrin, “Cache-aware response time analysis for real-time tasks
with xed preemption points,” irR020 IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS)IEEE, 2020, pp. 30—42.

M. A. Marsan, G. Balbo, G. Conte, and F. Gregoretti, “Modeling bus contention and memory
interference in a multiprocessor systenEEE Transactions on Computenso. 1, pp. 60-72,
1983.

F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand, “Analysis of loops,’limternational Conference
on Compiler Construction Springer, 1998, pp. 80-94.

E. Mezzetti and T. Vardanega, “A rapid cache-aware procedure positioning optimization to fa-
vor incremental development,” i2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS)IEEE, 2013, pp. 107-116.

A. K. Mok, “Fundamental design problems of distributed systems for the hard-real-time environ-
ment,” 1983.

BIBLIOGRAPHY 211

T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial of memory service in multi-
core systems,” ifProceedings of 16th USENIX Security Symposium on USENIX Security Sym-
posium USENIX Association, 2007, p. 18.

F. Mueller, “Compiler support for software-based cache partitioningAGM Sigplan Notices
vol. 30, no. 11. ACM, 1995, pp. 125-133.

F. Mueller, “Timing predictions for multi-level caches,” mMCM SIGPLAN Workshop on Lan-
guage, Compiler, and Tool Support for Real-Time Syster@steseer, 1997, pp. 29-36.

F. Mueller, “Timing analysis for instruction cache&eal-time systemsol. 18, no. 2, pp. 217—
247, 2000.

D. Muench, M. Paulitsch, and A. Herkersdorf, “lompu: Spatial separation for hardware-based i/o
virtualization for mixed-criticality embedded real-time systems using non-transparent bridges,”
in High Performance Computing and Communications (HPCC), 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International Conferen
on Embedded Software and Systems (ICESS), 2015 IEEE 17th International Conference on
IEEE, 2015, pp. 1037-1044.

K. Mdller, G. Sigl, B. Triquet, and M. Paulitsch, “On mils i/o sharing targeting avionic systems,” in
Dependable Computing Conference (EDCC), 2014 Tenth Europ&aBE, 2014, pp. 182-193.

S. P. Muralidhara, M. Kandemir, and P. Raghavan, “Intra-application cache partitionifgfat
lel & Distributed Processing (IPDPS), 2010 IEEE International Symposium dBEE, 2010,
pp. 1-12.

H. S. Negi, T. Mitra, and A. Roychoudhury, “Accurate estimation of cache-related preemption de-
lay,” in Proceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthe&803, pp. 201-206.

V. Nélis, P. M. Yomsi, L. M. Pinho, J. Fonseca, M. Bertogna, E. Quifiones, R. Vargas, and
A. Marongiu, “The challenge of time-predictability in modern many-core architecture$4ti
International Workshop on Worst-Case Execution Time Anal26i&4.

F. Nemer, H. Casse, P. Sainrat, and J. Bahsoun, “Inter-task WCET computation for a-way instruc-
tion caches,” inndustrial Embedded Systems, 2008. SIES 2008. International Symposium on
June 2008, pp. 169-176.

F. Nemer, H. Cassé, P. Sainrat, and A. Awada, “Improving the worst-case execution time accu-
racy by inter-task instruction cache analysis,Imdustrial Embedded Systems, 2007. SIES'07.
International Symposium on IEEE, 2007, pp. 25-32.

J. Nowotsch and M. Paulitsch, “Quality of service capabilities for hard real-time applications
on multi-core processors,” iRroceedings of the 21st International Conference on Real-Time
Networks and SystemsACM, 2013, pp. 151-160.

J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing architectures in avionics,” in
Dependable Computing Conference (EDCC), 2012 Ninth EurapedBEE, 2012, pp. 132—-
143.

J. Nowotsch, M. Paulitsch, A. Henrichsen, W. Pongratz, and A. Schacht, “Monitoring and wcet
analysis in cots multi-core-soc-based mixed-criticality systems20ib4 Design, Automation
& Test in Europe Conference & Exhibition (DATE)IEEE, 2014, pp. 1-5.

212 BIBLIOGRAPHY

I. NXP, Freescale Semiconductor, “Data sheet: "p4080/p4081 qoriq inte-

grated processor hardware specications";” March 2017. [Online]. Available:

http://mww.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/
gorig-platforms/p-series/qorig-p4080-p4040-p4081-multicore-communications-processors:

P40807&tab=Documentation_Tab&linkline=Data-Sheets

Y. Oh and S. H. Son, “Allocating xed-priority periodic tasks on multiprocessor systeRwsdl-
Time Systemwol. 9, no. 3, pp. 207-239, 1995.

M. Paolieri, E. Quifiones, F. J. Cazorla, G. Bernat, and M. Valero, “Hardware support for wcet
analysis of hard real-time multicore system&8CM SIGARCH Computer Architecture News
vol. 37, no. 3, pp. 57-68, 2009.

M. Paolieri, E. Quinones, F. J. Cazorla, and M. Valero, “An analyzable memory controller for hard
real-time cmps,|IEEE Embedded Systems Lettessl. 1, no. 4, pp. 86—90, 2009.

M. Paulitsch, J. Nowotsch, D. Minch, and L. Girbinger, “Transparent software replication and
hardware monitoring leveraging modern system-on-chip feature2013 IEEE 19th Interna-
tional Conference on Embedded and Real-Time Computing Systems and ApplicalieiBeg,
2013, pp. 157-164.

M. Paulitsch, O. M. Duarte, H. Karray, K. Mueller, D. Muench, and J. Nowotsch, “Mixed-
criticality embedded systems—a balance ensuring partitioning and performargjital Sys-
tem Design (DSD), 2015 Euromicro Conference ofEEE, 2015, pp. 453—-461.

R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley, “A predictable
execution model for COTS-based embedded systemBRgai-Time and Embedded Technology
and Applications Symposium (RTAS), 2011 17th |E&#il 2011, pp. 269-279.

R. Pellizzoni and M. Caccamo, “Toward the predictable integration of real-time cots based sys-
tems,” InRTSS'07. IEEE, 2007, pp. 73-82.

R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele, “Worst case delay analysis
for memory interference in multicore systems,”Rmoceedings of the Conference on Design,
Automation and Test in Europe European Design and Automation Association, 2010, pp.
741-746.

B. Peng, N. Fisher, and M. Bertogna, “Explicit preemption placement for real-time conditional
code,” in2014 26th Euromicro Conference on Real-Time Systert=EE, 2014, pp. 177-188.

G. Phavorin and P. Richard, “Cacherelated preemption delays and real-time scheduling: A survey
for uniprocessor systems,” Technical report, Laboratoire dinformatique et dAutomatique pour
les Systemes, 2015. URL: http://www. lias-lab. fr/publications/19296/survey. pdf, Tech. Rep.

S. Plazar, P. Lokuciejewski, and P. Marwedel, “Wcet-aware software based cache partitioning for
multi-task real-time systems,” ifith International Workshop on Worst-Case Execution Time
Analysis (WCET'09) Schloss Dagstuhl-Leibniz-Zentrum fir Informatik, 2009.

P. J. Prisaznuk, “Integrated modular avionics,”Aarospace and Electronics Conference, 1992.
NAECON 1992., Proceedings of the IEEE 1992 NationdEEE, 1992, pp. 39-45.

P. J. Prisaznuk, “"Arinc 653 role in integrated modular avionics (ima)20Q8 IEEE/AIAA 27th
Digital Avionics Systems Conference EEE, 2008, pp. 1-E.

BIBLIOGRAPHY 213

I. Puaut and A. Arnaud, “Dynamic instruction cache locking in hard real-time system3fom
of the 14th Int. Conference on Real-Time and Network Sysg200§.

I. Puaut and D. Decotigny, “Low-complexity algorithms for static cache locking in multitask-
ing hard real-time systems,” iReal-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE
IEEE, 2002, pp. 114-123.

P. Puschner and A. Schedl, “Computing maximum task execution times with linear programming
techniques,Technische Universitat Wien, Institut flr Technische Informatik, Tech. F&5.

H. Ramaprasad and F. Mueller, “Tightening the bounds on feasible preemption poirg806n
27th IEEE International Real-Time Systems Symposium (RTSSIEBE, 2006, pp. 212—-224.

H. Ramaprasad and F. Mueller, “Bounding worst-case response time for tasks with non-preemptive
regions,” in2008 IEEE Real-Time and Embedded Technology and Applications Symposium
|IEEE, 2008, pp. 58-67.

W. RapiTime, “tool homepage, 2006.”

S. A. Rashid, G. Nelissen, and E. Tovar, “Cache persistence aware response time analysis for
xed priority preemptive systems,” i2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS)IEEE, 2016, p. 33.

J. Reineke, “The semantic foundations and a landscape of cache-persistence anadjiseg,”
Transactions on Embedded Systewad. 5, no. 1, pp. 03-1, 2018.

J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and B. Becker, “A de nition
and classi cation of timing anomalies,” iIOASIcs-OpenAccess Series in Informaticd. 4.
Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, 2006.

J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “Pret dram controller: Bank privatization
for predictability and temporal isolation,” iHardware/Software Codesign and System Synthesis
(CODES+ ISSS), 2011 Proceedings of the 9th International Conferencel&ikE, 2011, pp.
99-108.

S. Resch, A. Steininger, and C. Scherrer, “A composable real-time architecture for replicated rail-
way applications,Journal of Systems Architectuml. 61, no. 9, pp. 472-485, 2015.

J. Rosen, A. Andrei, P. Eles, and Z. Peng, “Bus access optimization for predictable implementation
of real-time applications on multiprocessor systems-on-chigdal-Time Systems Symposium,
2007. RTSS 2007. 28th IEEE InternatianalEEE, 2007, pp. 49-60.

J. Rosen, A. Andrei, P. Eles, and Z. Peng, “Bus access optimization for predictable implementation
of real-time applications on multiprocessor systems-on-chigdal-Time Systems Symposium,
2007. RTSS 2007. 28th IEEE InternationalEEE, 2007, pp. 49-60.

K. Rosvall and I. Sander, “A constraint-based design space exploration framework for real-time
applications on mpsocs,” iRroceedings of the conference on Design, Automation & Test in
Europe European Design and Automation Association, 2014, p. 326.

S. Schliecker and R. Ernst, “Real-time performance analysis of multiprocessor systems with
shared memory, ACM Transactions on Embedded Computing Systems (TEGIS10, no. 2,
p. 22, 2010.

214 BIBLIOGRAPHY

S. Schliecker and R. Ernst, “Real-time performance analysis of multiprocessor systems with
shared memory, ACM Transactions on Embedded Computing Systems (TEGIS10, no. 2,
pp. 1-27, 2011.

S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst, “System level performance
analysis for real-time automotive multicore and network architectulEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systewis 28, no. 7, pp. 979-992, 2009.

S. Schliecker, M. Negrean, and R. Ernst, “Bounding the shared resource load for the performance
analysis of multiprocessor systems,” Bmoceedings of the conference on design, automation
and test in Europe European Design and Automation Association, 2010, pp. 759-764.

J. Schneider, “Cache and pipeline sensitive xed priority scheduling for preemptive real-time sys-
tems,” inReal-Time Systems Symposium, 2000. Proceedings. The 21st IEEHE, 2000, pp.
195-204.

A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing analysis for tdma arbitration in resource shar-
ing systems,” inReal-Time and Embedded Technology and Applications Symposium (RTAS),
2010 16th IEEE IEEE, 2010, pp. 215-224.

A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo, “Timing analysis for
resource access interference on adaptive resource arbiteRgalrTime and Embedded Tech-
nology and Applications Symposium (RTAS), 2011 17th IEEEEE, 2011, pp. 213-222.

J. Simonson and J. H. Patel, “Use of preferred preemption points in cache-based real-time sys-
tems,” inCPDS'95. IEEE, 1995, pp. 316-325.

T. Sondag and H. Rajan, “A more precise abstract domain for multi-level caches for tighter wcet
analysis,” in2010 31st IEEE Real-Time Systems SympasiuiBEE, 2010, pp. 395-404.

D. S. Speci cation, “Jesd79,” 2010.

A. Srinivasan and S. Baruah, “Deadline-based scheduling of periodic task systems on multipro-
cessors,Information Processing Lettersol. 84, no. 2, pp. 93-98, 2002.

J. A. Stankovic, “Misconceptions about real-time computing: A serious problem for next-
generation systemsComputeyvol. 21, no. 10, pp. 10-19, 1988.

J. Starner and L. Asplund, “Measuring the cache interference cost in preemptive real-time sys-
tems,” inProceedings of the 2004 ACM SIGPLAN/SIGBED conference on Languages, compil-
ers, and tools for embedded syste2304, pp. 146-154.

J. Staschulat and R. Ernst, “Scalable precision cache analysis for real-time sof&@iveTrans-
actions on Embedded Computing Systems (TE@§)6, no. 4, pp. 25—-es, 2007.

J. Staschulat, S. Schliecker, and R. Ernst, “Scheduling analysis of real-time systems with precise
modeling of cache related preemption delay, EGRTS'05. IEEE, 2005, pp. 41-48.

G. Stock, S. Hahn, and J. Reineke, “Cache persistence analysis: Finally excé@®I9nEEE
Real-Time Systems Symposium (RTSEEE, 2019, pp. 481-494.

V. Suhendra and T. Mitra, “Exploring locking & partitioning for predictable shared caches on
multi-cores,” inProceedings of the 45th annual Design Automation Conferend€M, 2008,
pp. 300-303.

BIBLIOGRAPHY 215

Y. Tan and V. Mooney, “Timing analysis for preemptive multitasking real-time systems with
caches,ACM (TECS)vol. 6, no. 1, p. 7, 2007.

C. Tessler, “Bundle: Taming the cache and improving schedulability of multi-threaded hard real-
time systems,” Ph.D. dissertation, Wayne State University, 2019.

C. Tessler and N. Fisher, “Bundle: real-time multi-threaded scheduling to reduce cache con-
tention,” in2016 IEEE Real-Time Systems Symposium (RTSBIEE, 2016, pp. 279-290.

C. Tessler and N. Fisher, “Bundlep: Prioritizing con ict free regions in multi-threaded programs
to improve cache reuse,” iP018 IEEE Real-Time Systems Symposium (RTI&EE, 2018,
pp. 325-337.

C. Tessler and N. Fisher, “Npm-bundle: Non-preemptive multitask scheduling for jobs with
bundle-based thread-level scheduling,”3hst Euromicro Conference on Real-Time Systems
(ECRTS 2019) Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

M. Tham, “Writing research theses or dissertations,” May 2001, university of Newcastle Upon
Tyne. [Online]. Available: http://lorien.ncl.ac.uk/ming/dept/Tips/writing/thesis/thesis-intro.htm

H. Theiling, “Control ow graphs for real-time systems analysislhiversitat des Saarlandes,
Diss, 2002.

H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and precise WCET prediction by separated
cache and path analyseRgal-Time Systemsol. 18, no. 2-3, pp. 157-179, 2000.

S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R. Wilhelm, and
C. Ferdinand, “An abstract interpretation-based timing validation of hard real-time avionics
software,” in2003 International Conference on Dependable Systems and Networks, 2003. Pro-
ceedings. IEEE, 2003, pp. 625-632.

H. Tomiyama and N. D. Dutt, “Program path analysis to bound cache-related preemption delay in
preemptive real-time systems,” Proceedings of the eighth international workshop on Hard-
ware/software codesign ACM, 2000, pp. 67—-71.

H. Tomiyama and H. Yasuura, “Code placement techniques for cache miss rate redécTibh,”
Transactions on Design Automation of Electronic Systems (TODABER, no. 4, pp. 410-
429, 1997.

T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E. Quinones, M. Gerdes,
M. Paolieri, J. Wolfet al., “Merasa: Multicore execution of hard real-time applications support-
ing analyzability,”|IEEE Micro, vol. 30, no. 5, pp. 66-75, 2010.

X. Vera, B. Lisper, and J. Xue, “Data cache locking for higher program predictabilityXQiv
SIGMETRICS Performance Evaluation Reyigal. 31, no. 1. ACM, 2003, pp. 272—-282.

Y. Wang and M. Saksena, “Scheduling xed-priority tasks with preemption threshold?rdn
ceedings Sixth International Conference on Real-Time Computing Systems and Applications.
RTCSA'99 (Cat. No. PR00306) IEEE, 1999, pp. 328-335.

B. C. Ward, A. Thekkilakattil, and J. H. Anderson, “Optimizing preemption-overhead accounting
in multiprocessor real-time systems,” ftoceedings of the 22nd International Conference on
Real-Time Networks and System&CM, 2014, p. 235.

216 BIBLIOGRAPHY

C. B. Watkins and R. Walter, “Transitioning from federated avionics architectures to integrated
modular avionics,” irDigital Avionics Systems Conference, 2007. DASC'07. IEEE/AIAA 26th
IEEE, 2007, pp. 2-A.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitraet al,, “The worst-case execution-time problem—overview of methods
and survey of tools, ACM Transactions on Embedded Computing Systems (TEGQISF, no. 3,

p. 36, 2008.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitraet al,, “The worst-case execution-time problem—overview of methods
and survey of tools, ACM Transactions on Embedded Computing Systems (TEGQISF, no. 3,

p. 36, 2008.

A. Wolfe, “Software-based cache patrtitioning for real-time applicationsThird International
Workshop on Responsive Computer Systé8@3.

L. Wu and W. Zhang, “A model checking based approach to bounding worst-case execution
time for multicore processorsACM Transactions on Embedded Computing Systems (TECS)
vol. 11, no. S2, p. 56, 2012.

Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst case analysis of dram latency in multi-requestor
systems,” inReal-Time Systems Symposium (RTSS), 2013 IEEE 3#&E, 2013, pp. 372—
383.

J. Xiao, S. Altmeyer, and A. Pimentel, “Schedulability analysis of non-preemptive real-time
scheduling for multicore processors with shared cache@Q1Y IEEE Real-Time Systems Sym-
posium (RTSS) IEEE, 2017, pp. 199-208.

J. Xiao, S. Altmeyer, and A. D. Pimentel, “Schedulability analysis of global scheduling for multi-
core systems with shared cachdEEE Transactions on Computef2020.

J. Yan and W. Zhang, “Wcet analysis for multi-core processors with shared 12 instruction caches,”
in Real-Time and Embedded Technology and Applications Symposium, 2008. RTAS'08. IEEE
IEEE, 2008, pp. 80-89.

J. Yan and W. Zhang, “Wcet analysis for multi-core processors with shared |2 instruction caches,”
in Real-Time and Embedded Technology and Applications Symposium, 2008. RTAS'Q8. IEEE
|IEEE, 2008, pp. 80—-89.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory access control in multipro-
cessor for real-time systems with mixed criticality,”"Real-Time Systems (ECRTS), 2012 24th
Euromicro Conference on IEEE, 2012, pp. 299-308.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard: Memory bandwidth reser-
vation system for ef cient performance isolation in multi-core platforms,’Raal-Time and
Embedded Technology and Applications Symposium (RTAS), 2013 IEEE 1BfEE, 2013,
pp. 55-64.

H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “Palloc: Dram bank-aware memory allocator
for performance isolation on multicore platforms, Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2014 IEEE 20tfEEE, 2014, pp. 155-166.

BIBLIOGRAPHY 217

X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page coloring-based multicore cache
management,” irProceedings of the 4th ACM European conference on Computer systems
ACM, 2009, pp. 89-102.

Z. Zhang and X. Koutsoukos, “Cache-related preemption delay analysis for multi-level inclusive
caches,” irProceedings of the 13th International Conference on Embedded Sof@@dre, pp.
1-10.

S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, “Survey of scheduling
techniques for addressing shared resources in multicore procegsoM, Computing Surveys
(CSUR)vol. 45, no. 1, p. 4, 2012.

	Front Page
	Table of Contents

