

Towards Timing Analysis of Multi -core
Platf orms for Hard Real -Time Systems

PhD Thesis

CISTER-TR-210403

2021/04/09

Syed Aftab Rashid

PhD Thesis CISTER-TR-210403 Towards Timing Analysis of Multi-core Platforms for Hard ...

© 2021 CISTER Research Center
www.cister-labs.pt

1

Towards Timing Analysis of Multi-core Platforms for Hard Real-Time Systems

Syed Aftab Rashid

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: syara@isep.ipp.pt

https://www.cister-labs.pt

Abstract
Modern processors provide enhanced performance with reduced power, size and cost in average case
and are becoming mainstream in almost all application domains including real-time embedded
systems. However, the use of modern computing platforms in hard real-time systems, i.e., systems with
stringent timing requirements, is still under scrutiny of the real-time systems community due to their
unpredictable nature. This is mainly due to resources such as, caches and the memory bus that are
shared among several tasks executing on the processor. As tasks can run concurrently on the
processor, consequently, simultaneous use of any of these shared resources can result in inter-task
resource contention which can significantly affect the timing behavior of the executing tasks. To safely
conclude that any task executing on the platform may or may not fulfill its timing requirements, it is
essential to first compute accurate bounds on the shared resource contention that may be experienced
by that task.
The main objective of this dissertation is to provide software-based solutions that can be used to
accurately quantify the shared resource contention between tasks due to two main resources, i.e.,
caches and the memory bus.
We start by identifying the pessimism in the existing analysis that focus on bounding intertask cache
contention for direct-mapped caches. We show that this pessimism mainly comes from a unidirectional
focus on the negative perspective of caches, i.e., derived from a preempting task invalidating cache
�O�L�Q�H�V���X�V�H�I�X�O���W�R���W�K�H���S�U�H�H�P�S�W�H�G���W�D�V�N�����W�K�H�U�H�E�\���H�[�W�H�Q�G�L�Q�J���D���S�U�H�H�P�S�W�H�G���W�D�V�N�·�V execution time. In contrast,
we identify a different positive perspective of caches, i.e., cache persistence, which refers to the re-use
of cache content between different job executions of a task, leading to a tighter bound on the total
memory access demand of the task. We propose a new preciser analysis that accounts for both the
negative and the positive perspective of caches when computing inter-task cache contention, and
�U�H�V�X�O�W�V���L�Q���V�L�J�Q�L�I�L�F�D�Q�W�O�\���L�P�S�U�R�Y�L�Q�J���W�D�V�N�·�V���V�F�K�H�G�X�O�D�E�L�O�L�W�\��
We then extend our analysis to set-associative caches and show that the previously developed analysis
for direct-mapped caches cannot be used as is for set-associative. We present several different
approaches to bound inter-task contention considering set-associative caches. Our analysis accurately
determines cache blocks that may suffer additional cache reloads due to inter-task cache conflicts even
in the presence of cache persistence and eliminates substantial pessimism with respect to former
analyses.
We highlight additional challenges that stem from analyzing inter-task cache conflicts in the presence of
a cache hierarchy and propose an analysis to bound inter-task cache contention considering multilevel
caches. We identify the sources of overestimation in a preceding analysis that focus on bounding inter-
task contention for multilevel caches and propose solutions to minimize that overestimation.
Finally, we present a holistic analysis that considers the interdependence between cache contention
and memory bus contention and evaluate their cumulative impact on the timing requirements of tasks.
We show that the analysis that tightly bounds the inter-task cache contention may also result in
significantly reducing the memory bus contention suffered by the tasks, thereby, improving
schedulability.

Towards Timing Analysis of Multi-core

Platforms for Hard Real-Time Systems

Syed Aftab Rashid

Supervisor: Prof. Eduardo Manuel Medicis Tovar

Co-Supervisor: Prof. Geoffrey Nelissen

Co-Supervisor: Prof. Luis Miguel Pinho de Almeida

Programa Doutoral em Engenharia Electrotécnica e de Computadores

April, 2021

© Syed Aftab Rashid: April, 2021

Faculdade de Engenharia da Universidade do Porto

Towards Timing Analysis of Multi-core Platforms for
Hard Real-Time Systems

Syed Aftab Rashid

Dissertation submitted to Faculdade de Engenharia da Universidade do Porto

to obtain the degree of

Doctor Philosophiae in Electrical & Computer Engineering

President: Dr. José Alfredo Ribeiro da Silva Matos
External Referee: Dr. Sebastian Altmeyer

External Referee: Dr. Claire Maiza
Internal Referee: Dr. João Paulo de Castro Canas Ferreira
Internal Referee: Dr. Mário Jorge Rodrigues de Sousa

Supervisor: Dr. Eduardo Manuel Medicis Tovar

April, 2021

To my mother,
And for whom do we achieve extraordinary feats in our lives if not for our mothers?

Abstract

Modern processors provide enhanced performance with reduced power, size and cost in average
case and are becoming mainstream in almost all application domains including real-time embed-
ded systems. However, the use of modern computing platforms in hard real-time systems, i.e.,
systems with stringent timing requirements, is still under scrutiny of the real-time systems com-
munity due to their unpredictable nature. This is mainly due to resources such as, caches and the
memory bus that are shared among several tasks executing on the processor. As tasks can run con-
currently on the processor, consequently, simultaneous use of any of these shared resources can
result ininter-task resource contentionwhich can signi�cantly affect the timing behavior of the
executing tasks. To safely conclude that any task executing on the platform may or may not ful�ll
its timing requirements, it is essential to �rst compute accurate bounds on the shared resource
contention that may be experienced by that task.

The main objective of this dissertation is to provide software based solutions that can be used
to accurately quantify the shared resource contention between tasks due to two main resources,
i.e., caches and the memory bus.

We start by identifying the pessimism in the existing analysis that focus on bounding inter-
task cache contention fordirect-mappedcaches. We show that this pessimism mainly comes
from a unidirectional focus on thenegativeperspective of caches, i.e., derived from a preempting
task invalidating cache lines useful to the preempted task, thereby extending a preempted task's
execution time. In contrast, we identify a differentpositiveperspective of caches, i.e.,cache
persistence, which refers to the re-use of cache content between different job executions of a task,
leading to a tighter bound on the total memory access demand of the task. We propose a new
preciser analysis that accounts for both the negative and the positive perspective of caches when
computing inter-task cache contention, and results in signi�cantly improving task's schedulability.

We then extend our analysis toset-associativecaches and show that the previously developed
analysis for direct-mapped caches can not be used as is for set-associative. We present several
different approaches to bound inter-task contention considering set-associative caches. Our anal-
ysis accurately determines cache blocks that may suffer additional cache reloads due to inter-task
cache con�icts even in the presence of cache persistence and eliminates substantial pessimism
with respect to former analyses.

We highlight additional challenges that stem from analyzing inter-task cache con�icts in the
presence of a cache hierarchy and propose an analysis to bound inter-task cache contention con-
sideringmultilevelcaches. We identify the sources of overestimation in a preceding analysis that
focus on bounding inter-task contention for multilevel caches and propose solutions to minimize
that overestimation.

Finally, we present a holistic analysis that considers theinterdependencebetweencache con-
tentionand memorybus contentionand evaluate their cumulative impact on the timing require-

ii

ments of tasks. We show that the analysis that tightly bounds the inter-task cache contention may
also result in signi�cantly reducing the memory bus contention suffered by the tasks, thereby,
improving schedulability.

Keywords: Hard real-time systems, Shared resources, Cache Contention, Bus contention,
Timing analysis.

Resumo

Processadores modernos, em geral, fornecem desempenho aprimorado com energia, tamanho, e
custo reduzidos, e estão a se tornar comuns em quase todos os domínios de aplicação, incluindo
sistemas embarcados em tempo real. No entanto, o uso de plataformas de computação modernas
em sistemas de tempo real rígidos, ou seja, sistemas com requisitos temporais rigorosos, ainda
está sob escrutínio da comunidade de sistemas de tempo real devido à sua natureza imprevisível.
Isso se deve principalmente a recursos como memórias caches e o barramento de memória que
são compartilhados entre várias tarefas em execução no processador. Como as tarefas podem
ser executadas simultaneamente no processador, consequentemente, o uso simultâneo de qualquer
um desses recursos compartilhados pode resultar emcontenção de recursos entre tarefas, o que
pode afetar signi�cativamente o comportamento de temporização das tarefas em execução. Para
concluir com segurança que qualquer tarefa em execução na plataforma pode ou não cumprir
seus requisitos de tempo, é essencial primeiro calcular limites precisos na contenção de recursos
compartilhados que pode ser experimentada por essa tarefa.

O principal objetivo desta dissertação é fornecer soluções baseadas em programas que pos-
sam ser usadas para quanti�car com precisão a contenção de recursos compartilhados entre
tarefas devido a dois recursos principais, caches e o barramento de memória.

Começamos por identi�car o pessimismo nas análises existente que se concentram na lim-
itação da contenção de cache entre tarefas paracaches mapeados diretamente. Mostramos que
esse pessimismo vem principalmente de um foco unidirecional na perspectiva negativa de caches,
ou seja, derivado de uma tarefa preemptiva invalidando linhas de cache úteis para a tarefa in-
terrompida, estendendo assim o tempo de execução de uma tarefa interrompida. Em contraste,
identi�camos uma outra perspectiva positiva de caches, chamada de persistência de cache, que se
refere à reutilização do conteúdo do cache entre diferentes execuções de trabalho de uma tarefa,
levando a um limite mais rígido na demanda total de acesso à memória da tarefa. Propomos uma
nova análise mais precisa que leva em conta as perspectivas negativa e positiva dos caches ao cal-
cular a contenção de cache entre as tarefas e resulta em uma melhora signi�cativa na capacidade
de escalonamento da tarefa.

Em seguida, estendemos nossa análise paramemórias-caches de conjuntos associativose
mostramos que a análise desenvolvida anteriormente para memórias cache diretamente mapeadas
não pode ser usada da mesma maneira para conjuntos associativos. Apresentamos várias aborda-
gens diferentes para limitar a contenção entre tarefas, considerando memórias cache de conjunto
associativo. Nossa análise determina, com precisão, os blocos de cache que podem sofrer recar-
regamentos de cache adicionais devido a con�itos de cache entre tarefas, mesmo na presença de
persistência de cache, e elimina o pessimismo substancial em relação às análises anteriores.

Destacamos desa�os adicionais que resultam da análise de con�itos de cache entre tarefas na
presença de umahierarquia de cachee propomos uma análise para limitar a contenção de cache

iv

v

entre tarefas considerando caches multinível. Identi�camos as fontes de superestimação em uma
análise anterior que enfoca a contenção de limites entre tarefas para caches multinível e propomos
soluções para minimizar essa superestimação.

Finalmente, apresentamos uma análise holística que considera ainterdependênciaentre acon-
tenção do cachee acontenção do barramento de memóriae avaliamos seu impacto cumulativo nos
requisitos de temporização das tarefas. Mostramos que a análise que limita fortemente a contenção
do cache entre tarefas também pode resultar na redução signi�cativa da contenção do barramento
de memória sofrida pelas tarefas, resultando assim em uma melhora na escalonabilidade.

Acknowledgments

PhD is a roller coaster ride and no worthwhile roller coaster provides a smooth ride. But this does
not mean it cannot be enjoyed, especially, when you are surrounded by a bunch of exceptional
people to help, motivate and encourage you. I would start by offering my heartfelt gratitude to
my supervisors, Prof. Eduardo Tovar and Dr. Geoffrey Nelissen, for their guidance and support at
every step during my PhD. Prof. Eduardo is the person who selected me for the PhD position at
CISTER and although it took me almost six months to join CISTER and start my PhD, he persisted
with me and allowed me to join. Without his understanding, things might have been very different.
He has been an amazingly supportive supervisor during the course of my PhD.

Dr. Geoffrey Nelissen my co-supervisor, is the main force in the transformation of my PhD
progress into a growth function. His dedication, sharp insights, attention to detail, and compre-
hensive assistance has really helped me throughout my research journey. He always strives for
perfection and expects the same from his students, which is very inspiring. I have learned a lot
from him. I would also like to thank Prof. Luis Almeida for helping with FEUP's Administration.

I would also like to acknowledge the help of Damien Hardy, Benny Akesson, Isabelle Puaut,
Sebastian Altmeyer and Robert I. Davis, with whom I have had the privilege of collaborating at
the early phase of my PhD.

My fellow students, researchers and administrative staff at CISTER have been supportive in
many ways. I would like to thank Giann Nandi for translating the abstract of the thesis in Por-
tuguese. I would also like to mention Harrison Kurunathan, my best lab mate and a very good
friend. His company is never boring and we always have great discussions on academic and non-
academic issues. During all these years, we have shared some very memorable moments. I would
also like to thank Muhammad Ali Awan for his valuable advices on professional and personal mat-
ters. I would like to add that I feel fortunate to have known Hazem Ismail Ali, Patrick Meumeu
Yomsi, Claudio Maia, Humberto Carvalho, João Loureiro, Shashank Gaur, Mubarak Ojewale and
Ishfaq Hussain during these years. I would also like to extend my sincere gratitude to all the
administrative staff at CISTER.

I would also like to thank Niaz, Mushtaq, Zahid, Ajmal, Asif, Saad, Alam, and Saqlain for
creating an excellent social environment with great parties and delicious food.

Last and the most important, none of this would have been possible without the love, support
and patience of my family. My parents have always been an invariable support during my entire
educational career. Especially, my mother, Munazza Parveen, she is the motivation behind all my
achievements and I owe her what I am right now. I would also like to express my heartfelt gratitude
to my sisters for their continuous encouragement during my long research journey. I would also
like to thank my uncle Syed Asim Hussain and my aunt Nighat Firdous, who always supported
and encouraged me. Finally, I would like to thank my wife and my daughter, who bare with me
during the ups and downs of my PhD.

vi

This work was partially supported by FCT (Fundação para a Ciência e Tecnologia) under the
individual doctoral grant SFRH/BD/119150/2016.

Syed Aftab Rashid

List of Author's Publications

The following list of publications re�ects the results achieved during the development of this
dissertation. A signi�cant part of this thesis is compiled from these publications.

Conference Publications

• Syed Aftab Rashid, Geoffrey Nelissen, Damien Hardy, Benny Akesson, Isabelle Puaut,
and Eduardo Tovar, “Cache-persistence-aware response-time analysis for �xed-priority
preemptive systems” (Outstanding Paper Award) in ECRTS, 2016, pp. 262–272.
https://ieeexplore.ieee.org/document/7557886

• Syed Aftab Rashid, Geoffrey Nelissen, Sebastian Altmeyer, Robert I. Davis, and Eduardo
Tovar, “Integrated analysis of cache related preemption delays and cache persistence
reload overheads” in RTSS, 2017, pp. 188–198.
https://ieeexplore.ieee.org/document/8277292

• Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Trading Between Intra- and
Inter-Task Cache Interference to Improve Schedulability” in RTNS, 2018, pp. 125–136.
https://doi.org/10.1145/3273905.3273924

• Syed Aftab Rashid“Server Based Task Allocation to Reduce Inter-Task Memory
Interference in Multicore Systems” in FIT , 2019, pp. 322–327.
https://doi.org/10.1109/FIT47737.2019.00067

• Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Cache Persistence-Aware
Memory Bus Contention Analysis for Multicore Systems” in DATE, 2020, pp. 442–447.
https://ieeexplore.ieee.org/document/9116265

• Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Bounding Cache Persistence
Reload Overheads for Set-Associative Caches” (Outstanding Paper Award) in RTCSA,
2020, pp. 1–10. https://ieeexplore.ieee.org/document/9203583

• Jatin Arora, Cláudio Maia,Syed Aftab Rashid, Geoffrey Nelissen and Eduardo Tovar,
“Bus-Contention Aware Schedulability Analysis for the 3-Phase Task Model with
Partitioned Scheduling”in RTNS, 2021. https://easychair.org/publications/preprint/gdNJ

Journal Publications

• Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Tightening the CRPD Bound
for Multilevel non-Inclusive Caches” in IEEE Access(Under Submission).

viii

https://ieeexplore.ieee.org/document/7557886
https://ieeexplore.ieee.org/document/8277292
https://doi.org/10.1145/3273905.3273924
https://doi.org/10.1109/FIT47737.2019.00067
https://ieeexplore.ieee.org/document/9116265
https://ieeexplore.ieee.org/document/9203583
https://easychair.org/publications/preprint/gdNJ

ix

• Syed Aftab Rashid, Zeeshan Haider, S.M. Chapal Hossain, Kashan Memon, Fazil
Panhwar, Momoh Karmah Mbogba, Peng Hud, Gang Zhao, “Retro�tting low-cost heating
ventilation and air-conditioning systems for energy management in buildings” in Applied
Energy, 2019, volume. 236, pp. 648-661.

Work-in-Progress and Posters

• Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Poster Abstract: Cache
Persistence Aware Response Time Analysis for Fixed Priority Preemptive Systems” in
RTAS, 2016. https://ieeexplore.ieee.org/document/7461347

• Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Integrating the calculation of
preemption and persistence related cache overhead” in RTSS, 2016.
https://ieeexplore.ieee.org/document/7809873

• Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “ResilienceP Analysis:
Bounding Cache Persistence Reload Overhead for Set-Associative Caches” in DCE, 2019.
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_
overhead_for_set_associative_caches/1528/view.pdf

• Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “Towards Timing Analysis of
Multi-core Platforms for Hard Real-Time Systems” in CPS Week, 2018.
https://cister.isep.ipp.pt/docs/towards_timing_analysis_of_multi_core_platforms_for_
hard_real_time_systems/1362/view.pdf

• Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar, “ResilienceP Analysis:
Bounding Cache Persistence Reload Overhead for Set-Associative Caches” in ECRTS,
2019. https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_
reload_overhead_for_set_associative_caches/1520/view.pdf

• Jatin Arora, Cláudio Maia,Syed Aftab Rashid, Geoffrey Nelissen and Eduardo Tovar,
“Work-In-Progress: WCRT Analysis for the 3-Phase Task Model in Partitioned
Scheduling” in RTSS, 2016. https://ieeexplore.ieee.org/document/9355505

https://ieeexplore.ieee.org/document/7461347
https://ieeexplore.ieee.org/document/7809873
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1528/view.pdf
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1528/view.pdf
https://cister.isep.ipp.pt/docs/towards_timing_analysis_of_multi_core_platforms_for_hard_real_time_systems/1362/view.pdf
https://cister.isep.ipp.pt/docs/towards_timing_analysis_of_multi_core_platforms_for_hard_real_time_systems/1362/view.pdf
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1520/view.pdf
https://cister.isep.ipp.pt/docs/resiliencep_analysis__bounding_cache_persistence_reload_overhead_for_set_associative_caches/1520/view.pdf
https://ieeexplore.ieee.org/document/9355505

Contents

List of Figures xvi

List of Tables xvii

List of Algorithms xviii

List of Abbreviations xx

1 Introduction 1
1.1 Contributions of this Thesis . 3
1.2 Thesis Structure . 4

2 Theoretical Background 6
2.1 Real-Time Systems . 6
2.2 Basic Organization of a Real-Time System . 7

2.2.1 Applications . 7
2.2.2 Real-Time Operating System (RTOS) 9
2.2.3 Hardware Platform . 10

2.3 Ensuring Temporal Correctness of a RTS . 18
2.3.1 Timing Analysis . 18
2.3.2 Schedulability Analysis . 20
2.3.3 Caches and Timing Analysis . 21
2.3.4 System Bus and Timing Analysis . 22

2.4 Chapter Summary . 23

3 Related Work 24
3.1 Intra-task Cache Interference Analysis . 24

3.1.1 Must Analysis . 26
3.1.2 May Analysis . 27
3.1.3 Persistence Analysis . 28
3.1.4 Intra-task Cache Analysis for Multilevel Caches 28

3.2 Inter-task Cache Interference Analysis . 30
3.2.1 CRPD Computation for Single-level Direct-mapped Caches 32
3.2.2 CRPD Computation for Single-level Set-associative LRU Caches 35
3.2.3 CRPD Computation for Multi-level Caches 36
3.2.4 From CRPD to Timing Analysis . 39

3.3 Other Approaches to Handle Intra- and Inter-task Cache Interference 40
3.3.1 Cache Partitioning and Locking . 40
3.3.2 Task Layout Optimization . 42

x

CONTENTS xi

3.3.3 Enhanced Scheduling Models . 43
3.4 Memory Bus Contention Analysis . 44
3.5 Different Perspective of Caches . 46

I Analysis of Single-level Direct-mapped Caches 48

4 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference 50
4.1 Assumptions on the System Model . 51
4.2 Problem De�nition . 53

4.2.1 Motivational Example . 53
4.2.2 Problem Formalization . 55

4.3 CPRO-union Approach . 57
4.3.1 Computation of Cache Persistence Reload Overhead 57
4.3.2 WCRT Analysis . 58

4.4 CPRO Multi-Set Approach . 60
4.4.1 Computation ofr mul

j;i (t) . 60
4.4.2 Improving the Accuracy ofMecb

j;i . 63
4.4.3 WCRT Analysis . 63

4.5 Static Analysis . 64
4.6 Experimental Evaluation . 64

4.6.1 Total Utilization . 66
4.6.2 Number of Tasks . 67
4.6.3 Cache Size . 68

4.7 Chapter Summary . 70

5 Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload
Overheads 71
5.1 Problem Formalization . 73
5.2 Integrated CRPD-CPRO Analysis . 76
5.3 Multi-set Approach to Integrated CRPD-CPRO analysis 79
5.4 Experimental Evaluation . 83

5.4.1 Core Utilization. 84
5.4.2 Cache size . 87
5.4.3 Block Reload Time (dmem) . 87
5.4.4 Task Priority and Memory footprint . 89

5.5 Chapter Summary . 90

6 Evaluating the Impact of Memory Layout of Tasks on Schedulability 92
6.1 Cache Coloring . 93
6.2 Assumptions on the System Model . 94
6.3 Cache Interference Aware WCRT Analysis . 97
6.4 Bounding Intra-Task Cache Interference . 98
6.5 Bounding Inter-task Cache Interference . 99

6.5.1 Inter-Task Cache Interference due to CRPDs 100
6.5.2 Inter-Task Cache Interference due to CPROs 104

6.6 Optimizing Cache Color Assignment . 107
6.6.1 Working Example . 110

6.7 Experimental Evaluation . 112

xii CONTENTS

6.8 Chapter Summary . 116

II Analysis of Single- and Multi-level Set-associative Caches 117

7 CPRO Analysis for Set-associative Caches 119
7.1 Assumptions on the System Model . 120
7.2 Finding PCBs for set-associative caches . 122
7.3 CPRO Analysis for Set-Associative Caches . 124

7.3.1 PCB-ECB Approach . 124
7.3.2 ResilienceP Analysis . 126

7.4 Multi-path ResilienceP Analysis . 127
7.4.1 Building the CPRO-table . 129
7.4.2 Bounding the CPRO . 131

7.5 WCRT Analysis . 133
7.6 Experimental Evaluation . 133
7.7 Chapter Summary . 137

8 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches 138
8.1 Assumptions on the System Model . 139
8.2 State-of-the-Art CRPD Analysis for Multilevel Caches (Chattopadhyay and Roy-

choudhury, 2014) . 143
8.2.1 Calculating the Indirect Effect of Preemption 145
8.2.2 CRPD Computation . 147

8.3 Multilevel Useful Cache Blocks . 148
8.3.1 Finding L1/L2-UCBs . 149

8.4 Tightening the Bound on the Indirect Effect of Preemption 150
8.4.1 Handling Nested/Multiple Preemptions 153

8.5 Improved CRPD Analysis for Multilevel caches 156
8.5.1 CRPD due to Eviction of L1-UCBs . 156
8.5.2 CRPD due to Eviction of L2-UCBs . 157
8.5.3 Computation of total CRPD and WCRT Analysis 163

8.6 Experimental Evaluation . 164
8.6.1 Deriving Parameters for the Analyses 164
8.6.2 Experiments . 165

8.7 Chapter Summary . 173

III Extension to Multicore Platforms 174

9 Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention
in Multicore Systems 176
9.1 Assumptions on the System Model . 177
9.2 CRPD-aware Memory Bus Contention Analysis 179
9.3 Cache Persistence-aware Memory Bus Contention Analysis 182
9.4 Bus Contention-Aware Worst-case Response Time (WCRT) Analyses 185
9.5 Experimental Evaluation . 186

9.5.1 Multicore Platforms with Single-level Caches 187
9.5.2 Multicore Platforms with Multilevel Caches 190

CONTENTS xiii

9.6 Chapter Summary . 194

10 Thesis Summary, Limitations and Future Directions 195
10.1 Summary of Contributions . 195
10.2 Limitations of Current Work and Future Directions 196

10.2.1 Cache Persistence Analysis for Multilevel Caches 196
10.2.2 Inter-task Cache Interference Analysis for Last-level Shared Caches . . . 197
10.2.3 Holistic Memory Contention Analysis for Preemptive Systems 198
10.2.4 Cache Persistence-aware Inter-task Cache Interference Analysis consider-

ing Dynamic Priority Scheduling . 198
10.3 Conclusions . 199

Bibliography 200

List of Figures

2.1 Different components of a Real-time system . 7
2.2 Common Memory Architecture . 12
2.3 Different types of cache associativity . 13
2.4 Example access sequence of memory blocks in a 4-way set-associative cache using

a LRU replacement policy . 14
2.5 Basic abstraction of the system Bus . 15
2.6 Work �ow between different components of a timing-analysis tool (Wilhelm et al.,

2008a) . 19
2.7 Basic interface between timing and schedulability analysis 21

3.1 Intra-task ache analysis is one of the main components in the timing analysis (Pha-
vorin and Richard) . 25

3.2 Join and Update functions for the Must, May and Persistence analysis 27
3.3 Update function to handle U accesses for multilevel caches (Hardy and Puaut, 2008) 30
3.4 Visual representation of cache related preemption delay (CRPD) 31
3.5 Illustration of the maximum LRU-age of a UCBmi . The dashes (from left to right)

denote the sequence of memory accesses during the execution of taskt i 36
3.6 Illustration of the indirect effect of preemption suffered by a memory blockmdue

to eviction of another memory blockA by preemption. Both L1 and L2 caches are
assumed to be two-way set-associative having only one cache set and the cache
replacement policy is LRU. 38

3.7 Example schedule to highlight re-usable cache blocks between different jobs of
taskt i . 46

4.1 Schedule and cache contents for a tasksetf t 1; t 2g with C1 = 100, C2 = 400,
MD1 = 60,MD2 = 80,ECB1 = f 5;6;7;8;9;10g, ECB2 = f 1;2;3;4;5;6g, UCB1 =
f 6;7g, UCB2 = f 5;6g, PCB1 = f 5;6;7;8;10g andPCB2 = f 1;2g. The schedule
assumes thatt 1 releases its �rst job with an offset of 100 time units. 54

4.2 Illustration of the pessimism associated with Equation (4.6) using the task set
f t 1; t 2 t 3g whent 1 andt 2 releasing their �rst jobs with an offset. 60

4.3 Illustration of the maximum number of times the tasks in aff(i; j) and hep(j) n
t j can execute between two successive jobs oft j . When calculatingr 2;3, t 1 2
hep(2) nt 2 can release maximally 3 jobs (with each job loading all its ECBs in
the worst case). In contrast, the one job released byt 3 2 aff(3;2) can execute and
load its ECBs maximum 4 times. 61

4.4 Number of tasksets that are deemed schedulable for a for a varying total utilizations. 67
4.5 Weighted schedulability measure by varying the number of tasks from 5 to 25. . . 68
4.6 Weighted schedulability measure by varying the number of cache sets 69

xiv

LIST OF FIGURES xv

5.1 Schedules maximizingt 3's response time whenC1 = 1, C2 = 2, C3 = 9, T1 = 6,
T2 = 6, T3 = 25,ECB1 = f 7;8;9;10g, ECB2 = f 7;8;9;10g, ECB3 = f 1;2;3;4;5g,
UCB2 = f 7;8;9;10g, PCB2 = f 7;8;9;10g andUCB1 = UCB3 = PCB1 = PCB3 =
/0 . 75

5.2 Illustrating the pessimism associated with the separate UCB-union multi-set and
CPRO multi-set analysis using the task setf t 1; t 2; t 3g with C1 = 1,C2 = 2,C3 = 5,
T1 = 3, T2 = 5 andT3 = 20. 80

5.3 Schedulability ratio with respect to total core utilization 86
5.4 Weighted schedulability measure by varying cache utilization, block reload time

dmemand cache size . 88

6.1 A visual representation of cache coloring (Kim et al., 2013) 94
6.2 Increase in execution demand and memory access demand of taskt i due to reduc-

tion in number of cache colors assigned tot i . 98
6.3 Worst-case memory access demandMDi [ki] of taskt i w.r.t the number of cache

colors assigned tot i . 102
6.4 Variation in the worst-case and residual memory access demand of taskt j w.r.t the

number of cache colors assigned. 106
6.5 Different cache color assignments of task set in Table 6.2. 112
6.6 Schedulability w.r.t core utilization and cache size 114
6.7 Schedulability w.r.t number of cache sets per color and number of tasks 115

7.1 Example execution of a taskt i (from left to right) considering (a) a direct-mapped
cache with 4 cache sets, i.e.,f S0;S1;S2;S3g and (b) a 4-way set-associative cache
having one cache setS0 using a Least-Recently-Used (LRU) cache replacement
policy. The LRU age of a blockb refers to how many accesses were performed to
the cache set in whichb is saved since the last access tob. 120

7.2 Maximum LRU-age of memory blocks of taskt i (a) over the execution of two jobs
of t i , and (b) under the assumption thatt i is cyclic 124

7.3 Example scenario to highlight the pessimism in the PCB-ECB approach 126
7.4 Highlighting the pessimism in the ResilienceP analysis 128
7.5 Task sets schedulability by varying (a) total task set utilization and (b) the total

number of tasks in a task set . 132
7.6 Weighted schedulability results by varying (a) number of cache waysW and (b)

memory reload timedmem . 134
7.7 Performance of ResilienceP and multi-path ResilienceP analysis w.r.t the number

of execution paths . 136

8.1 Highlighting the pessimism in the calculation of indirect effect of preemption
by (Chattopadhyay and Roychoudhury, 2014). 150

8.2 Multiple preemption scenarios with collaborating and isolated preemptions. The
indirect effect of preemption suffered by memory blockmdue to consecutive pre-
emptions, i.e., atP1 andP2, is higher than the indirect effect caused by individual
preemptions. 155

8.3 Example scenario to demonstrate the pessimism of (Chattopadhyay and Roychoud-
hury, 2014) when calculating the CRPD due to L2 cache misses resulting from
preemption. 158

8.4 Number of task set deemed schedulable by varying total task set utilization . . . 167
8.5 Wighted schedulability measure by varying the total number of tasks in a task set 168

xvi LIST OF FIGURES

8.6 Weighted schedulability measure by varying number of ways in the L1 cache. The
number of ways in the L2 cache were set to 32, i.e.,W2 = 32 169

8.7 Weighted schedulability measure by varying number of ways in the L2 cache . . 170
8.8 Weighted schedulability measure by varying number of sets in the L1 cache. The

number of sets in the L2 cache were �xed to 512, i.e.,jS2j = 512 171
8.9 Weighted Schedulability measure by varying number of sets in the L2 cache. The

number of sets in the L1 cache were set to their default value, i.e.,jS1j = 32 . . . 171
8.10 Weighted schedulability results by varyingdL1 anddL2 172

9.1 Execution of taskt 1 andt 2 on corepx and taskt 3 on corepy. Task parameters
of interest are:PD1=PD3 = 4,PD2= 32,MD1=MD3 = 6,MD2 = 8,MDr

1=MDr
3 = 1,

ECB1=ECB3 = f 5;6;7;8;9;10g, ECB2 = f 1;2;3;4;5;6g, PCB1=PCB3 = f 5;6;7;8;10g
andUCB2 = f 5;6g. 182

9.2 Schedulability ratio of different bus arbitration policies by varying total core uti-
lizations . 186

9.3 Wighted schedulability measure by varying the total number of cores 187
9.4 Wighted schedulability measure by varying the value of memory reload timedmem 188
9.5 Wighted schedulability measure by increasing cache size between 2kB to 32kB . 189
9.6 Wighted schedulability measure by varying the RR/TDMA slot size (sl) 190
9.7 Schedulability ratio of different bus arbitration policies by varying total core uti-

lizations for multicore architectures with two-level caches. 191
9.8 Wighted schedulability measure by varying the total number of cores in multicore

platforms with two-level caches . 192
9.9 Wighted schedulability measure by varying the RR/TDMA slot size (sl) for mul-

ticore platforms with two-level caches. 193

10.1 Cache persistence-aware analysis of multiple cache levels may lead more tighter
WCRT bounds. 197

10.2 Under preemptive scheduling, simultaneous analysis of intra- and inter-core cache
interference is a challenge. 198

List of Tables

3.1 Categorization of memory references . 26
3.2 Computation of CAC of a memory referencer at cache levelL (Hardy and Puaut,

2008) . 29

4.1 List of important symbols used in Chapter 4 . 52
4.2 Task parameters for a selection of benchmarks from the Mälardalen Benchmark

Suite (Gustafsson et al., 2010) . 66

5.1 List of important symbols used in Chapter 5 . 72
5.2 Task parameters for the benchmarks used during the experiments 85
5.3 Relative gainmgain

4 for the CRPD-CPRO union and multi-set approaches by in-
creasing the number of ECBs oft 1 . 90

6.1 List of important symbols used in Chapter 6 . 95
6.2 Task set parameters used in the working example 110

7.1 List of important symbols used in Chapter 7 . 121
7.2 CPRO-table for every PCBmj of taskt j . 129

8.1 List of important symbols used in Chapter 8 . 140
8.2 Benchmarks parameters from the Mälardalen Benchmark Suite (Gustafsson et al.,

2010) used during the experimental evaluation 166

9.1 List of important symbols used in Chapter 9 . 178

xvii

List of Algorithms

6.1 Simulated annealing based algorithm to optimize cache color assignment of tasks 108
7.1 Building the CPRO-table for PCBmj of taskt j 130
7.2 Computing the total CPRO of taskt j in a time interval of lengtht 131
8.1 Calculating the indirect effect of preemption caused due to preemption of taskt i

by t j at a program point P . 151
8.2 Calculating the indirect effect of preemption that can be suffered by all memory

blocks used by taskt i when considering multiple preemptions by higher priority
tasks in2 hp(i) w.r.t preemption point P . 156

8.3 Algorithm to calculate the total CRPD cost due to eviction of L2-UCBs of taskt i

w.r.t a preemption point P . 163

List of Abbreviations

AI Abstract Interpretation

ACS Abstract Cache State

ACU Air-bag Control Unit

AH Always-Hit

AM Always-Miss

CAST Certi�cations Authorities Software Team

CAC Cache Access Classi�cation

CFG Control Flow Graph

CHCM Cache Hit/Miss Classi�cation

COTS Commercially available Off-The-Shelf

CPRO Cache Persistence Reload Overhead

CPU Central Processing Unit

CRPD Cache Related Preemption Delay

CSTG Cache State Transition Graph

DC-UCB De�nitely-Cache Useful Cache Block

DJP Dynamic Job Priority

DM Deadline Monotonic

DRAM Dynamic Random Access Memory

ECB Evicting Cache Block

EDDP Earliest Deadline Deferrable Portion

EDF Earliest Deadline First

FCFS First-Come First-Serve

FEUP Faculdade de Engenharia da Universidade do Porto

FIFO First-In First-Out

FJP Fixed Job Priority

FM First-Miss

FP Fixed Priority

FPPS Fixed Priority Preemptive System

FSB Front-side Bus

FTP Fixed Task Priority

HRTS Hard Real-Time System

HVAC Hard Ventilation and Air-conditioning

xix

ILP Integer Linear Programming

IMA Integrated Modular Avionics

IPET Implicit Path Enumeration Technique

LLF Least Laxity First

LLC Last Level Cache

LRU Least Recently Used

MCP Multi-Core Processor

MIPS Microprocessor without Interlocked Pipelined Stages

MMU Memory Management Unit

MRTA Multicore Response Time Analysis

NC Not-Classi�ed

nPCB non-Persistent Cache Block

OS Operating System

PCB Persistent Cache Block

PLRU Pseudo Least Recently Used

PS Persistent

RAM Random Access Memory

RM Rate Monotonic

ROM Read Only Memory

RR Round Robin

RT Real Time

RTES Real-Time Embedded System

RTOS Real-Time Operating System

RTS Real-Time System

SA Simulated Annealing

SMART Strategic Memory Allocation for Real-Time

SRTS Soft Real-Time System

TDMA Time Division Multiple Access

UCB Useful Cache block

WCET Worst-Case Execution Time

WCRT Worst-Case Response Time

WSS Working Set Size

Chapter 1

Introduction

In recent years, embedded systems have become an integral part of our everyday lives. These

systems interact with the environment and perform a set of dedicated operations. An embedded

system can be formally de�ned as a system composed of hardware, software and/or mechanical

components to perform a dedicated function or a range of functions (Kamal, 2011). These dedi-

cated functions vary from a simple task of toasting a slice of bread to an air traf�c control system

that involves numerous workstations, networks and radar sites. Nowadays, the use of embedded

systems span across several domains including consumer electronics, medical equipment, avion-

ics, automotive industry, banking, and defense industry etc.

An embedded system is different from a general purpose computer system that is designed

to satisfy a variety of end-user requirements. A general purpose computer is usually designed to

make the average case faster and is end-user con�gurable, whereas, the set of operations to be

performed by an embedded system are usually known a priori at design time. In this sense, an

embedded system is custom-made for a speci�c application and is subjected to concerns regarding

functional and non-functional requirements of that application.

The primary requirement of an embedded system is to correctly perform a desired function-

ality. However, there are embedded systems that have an additional constraint oftemporalcor-

rectness to be met on top of the functional requirements of the system. In the scienti�c literature,

this kind of systems are refereed to asReal-Time Embedded Systems(RTES) or simplyReal-Time

Systems(RTS). Real-time systems are de�ned as systems in which the correctness of the system

behavior depends not only on the logical result of the computation, but also on thetimeat which

the results are produced (Stankovic, 1988). Applications of RTS can be found in many indus-

trial domains where timeliness is important. For example, an airbag controller system in a car

is not only responsible to decide whether or not to in�ate the airbags, but also to ensure that the

airbags will be in�ated in a timely manner, i.e., before causing an injury to the driver. Similarly, in

airplanes the �ight control system is responsible for a timely compensation of all external distur-

bances that may affect a stable �ight operation (Davis et al., 2018a; Baufreton et al., 2020). Many

other examples of RTS can be found in space, transportation and control industry (Cecere et al.,

2016; Koo and Kim, 2018).

1

2 Introduction

Functionalities of a RTS are managed by a set of entities called processes ortasks. Each task

has a timing constraint associated to it which represents the time before which that task must

perform its assigned operations. As timing behavior is one of the most important property of a

RTS, ensuring timing correctness for every task in the system is of utmost importance in order to

prove the timing correctness of the complete system. However, due to the massive technological

advancements, tasks are often executed on complex performance oriented software and hardware

architectures. These modern software/hardware platforms often produce signi�cant performance

improvements but at the cost of an increased complexity of tracing and analyzing the system. For

example, the use of cache memories signi�cantly improve the performance of modern processors

however, in systems with cache memories, the completion time of tasks may vary depending on the

availability of content in the cache. Therefore, to ensure that a task satis�es its speci�ed timing

requirements it is important to analyze the behavior of all software/hardware components, e.g.,

caches, pipelines, interconnects, main memory and I/O devices, that can impact the execution of

that task.

Indeed, analyzing the temporal behavior of all these performance oriented software/hardware

components is every challenging due to very brief design documentation provided by the hard-

ware vendors. The analysis complexity is even more ampli�ed in multi-tasking systems where

different tasks executing on the platform may share resources such as cache, main memory, I/O

devices and interconnects. As a result, the temporal behavior of tasks is signi�cantly affected due

to contentionin accessing the shared resources. It has been identi�ed in (Authority, 2016) that

sharing of resources, such as caches and interconnect (i.e., usually a bus) among tasks executing

on a modern processing unit makes the temporal and functional behavior of the system highly

complex and interdependent. This highlights the need of an analysis framework that provides a

holistic solution by considering the impact of shared resource contention on the timing behavior

of applications comprising a RTS. The analysis should also provide both safe and precise bounds

on the shared resource contention that may be experienced by all tasks in the system in order to

accurately conclude that the overall system may or may not ful�ll its timing requirements.

A safe bound on the shared resource contention means that the values returned by the analysis

will always be larger than or equal to the shared resource contention that may occur at run-time

under any possible scenario. While a precise bound is the one whose values are as close as possible

to the actual shared resource contention that may be experienced at run-time. Unfortunately, most

of the existing works in literature that focus on bounding the shared resource contention prioritize

the safety aspect and often lead to the situation where the conclusion of the analysis is that the

system does not comply with its timing requirements, while in reality it indeed does. For exam-

ple, in systems where tasks are scheduledpreemptively, i.e., task's execution can be temporarily

interrupted, shared resources such as cache memory is viewed from an exclusivelynegativeper-

spective, i.e., derived from a preempting task invalidating cache lines useful to the preempted task,

thereby extending a preempted task's execution time. This increase in the execution time of the

preempted task is due to theinter-task cache interferencesuffered by the preempted task due to

cache con�icts with the preempting task and is often referred to ascache related preemption delay

1.1 Contributions of this Thesis 3

(CPRD). Several works have been proposed in literature (Lv et al., 2015; Maiza et al., 2019) that

account for CRPDs when analyzing systems that use preemptive task scheduling. However, a dif-

ferentpositiveperspective of cache memory is often overlooked in the existing literature, which

refers to the cache re-use between different job executions of a task. For example, considering

multiple jobs of a particular task; the next job of the task can bene�t from the presence in cache of

memory blocks that were loaded by a previous job of the same task and that have remained in the

cache until the next job executes and can make use of those blocks. Analysis of cache re-use can

be used to signi�cantly reduce pessimism in the computation of inter-task cache interference from

multiple jobs of a preempting task that can execute during the response time of the preempted task.

Another important problem that has not been fully addressed in the existing analysis on shared

resource contention is to consider the dependency between the behavior of different shared re-

sources. For example, most of the existing works in the state-of-the-art that focus on bounding

contention due to shared interconnects (or memory bus) are based on the assumption of non-shared

caches (Dasari et al., 2011a, 2016) or consider a �x number of memory bus requests (Schliecker

and Ernst, 2011; Kim et al., 2014, 2016) that can be generated by a task during its execution.

Both these approaches can lead to pessimistic/optimistic bounds considering the fact that the ac-

tual number of main memory (or bus) requests of tasks depend on the cache misses suffered by

the tasks which, in turn, depends on the inter-task cache interference experienced by tasks during

their executions. Therefore, to effectively bound memory bus contention, it is important to de-

velop holistic timing analysis techniques that consider the interference caused by both caches and

memory bus and evaluate their cumulative impact on the timing properties of tasks.

Building on the above observations, the high-level goal of this thesis is to provide solutions

that can be used to accurately quantify the shared resource contention between tasks due to two

main resources, i.e., caches and the memory bus.

1.1 Contributions of this Thesis

In support of this thesis, the following contributions are made.

• Accurately quantify inter-task cache interference for direct-mapped caches

We identify substantial pessimism in the existing analysis that focus on bounding inter-task

cache interference for direct-mapped caches. This pessimism mainly comes from a unidi-

rectional focus on the negative perspective of caches, i.e., CRPD. We propose a new preciser

model that accounts for both the negative perspective, i.e., CRPDs, and the positive perspec-

tive of caches, i.e.,cache persistence, when computing the inter-task cache interference of

tasks. Cache persistence refers to the re-use of cache content between different jobs of the

same task. This allows to capture re-usable cache blocks between different job executions

and neutralizes the negative impact of CRPDs in systems that allow preemptive task exe-

cutions. We prove the correctness of this new model and propose a static program analysis

to derive the parameters required by the analysis. Furthermore, we also show how to in-

4 Introduction

corporate bounds on the total inter-task cache interference in the schedulability analysis for

�xed-priority preemptive systems (FPPS).

• Accurately quantify inter-task cache interference considering set-associative caches

We improve the bounds on inter-task cache interference for set-associative caches by adapt-

ing the notion of cache persistence to set-associative caches. First, we show that the previ-

ously developed analysis for direct-mapped caches can not be used as is for set-associative

caches and may lead to optimistic results. We then present a new analysis that accurately

determines cache blocks that may suffer additional cache reloads due to preemptions even

in the presence of cache persistence. We also provide an overview of the static program

analysis techniques that are used to derive the parameters needed to adapt persistence-aware

cache contention analysis to set-associative caches.

• Bounding inter-task cache interference for multilevel caches

We show that the literature on the computation of inter-task cache contention for multilevel

caches is relatively scarce due to the additional challenges that stem from analyzing inter-

task cache con�icts at different cache levels. Few existing analysis that focus on bounding

inter-task contention for multilevel caches are very pessimistic as they overestimate the

number of times cache blocks can be evicted from a particular cache level and therefore

needed to be reloaded from the main memory. We improve on the existing analysis by

accurately determining which cache blocks can be impacted due to inter-task con�icts at a

particular cache level and how many times these cache blocks can be evicted and reloaded

from the main memory. We also prove the correctness of the new analysis and provide a

static analysis approach to obtain parameters needed by the analysis.

• Cache interference-aware memory bus contention analysis

We present a holistic overview of the relationship between inter-task cache contention and

the memory bus contention suffered by the tasks. We show that the memory bus contention

that can be suffered by a task during its execution strongly depends on the number of cache

misses suffered by that task, which, in turn, depends on the inter-task cache interference

experienced by the task. Evaluations show that the analysis that tightly bound the inter-

task cache contention also results in a more accurate bound on the memory bus contention

suffered by tasks, which results in improving schedulability.

1.2 Thesis Structure

The thesis is organized as follows: Chapter 2 provides the necessary background needed for the

understanding of this thesis. The related work presented in Chapter 3 brie�y explains the existing

approaches in the state-of-the-art that are in-line with the problems addressed in this dissertation.

The main contribution of the thesis are then divided into three parts.

Part I focus on the analysis of inter-task cache contention for single-level direct-mapped caches

and comprises Chapter 4, 5 and 6. In Chapter 4, we formally introduce the notion of cache per-

1.2 Thesis Structure 5

sistence and use it to compute a tighter bound on the inter-task cache interference for single-level

direct mapped caches. The key focus of Chapter 5 is to integrate the computation of CRPD with

the computation of persistence related cache overheads. The integrated analysis provides a tighter

bound on the total inter-task cache interference in comparison to the analysis in Chapter 4. In

Chapter 6, we evaluate the impact of memory layout of tasks on inter-task cache interference and

on schedulability.

Part II comprises Chapter 7 and 8 and focus on the analysis of inter-task cache interference

considering single-level and multilevel set-associative caches. Chapter 7 provides solutions that

analyze the impact of cache persistence on the schedulability of tasks considering set-associative

caches and presents different approaches to compute persistence related cache overheads for set-

associative caches. In Chapter 8, we present the CRPD analysis for multilevel caches that provides

a tighter bound than the existing analysis in the state-of-the-art.

In Part III we present a holistic overview of the shared resource contention in modern com-

puting platforms by focusing on the relationship between cache contention and memory bus con-

tention. It comprises Chapter 9 that evaluates how inter-task cache interference can impact the

contention due to sharing of memory bus in modern processors and what is their cumulative affect

on schedulability. Finally, Chapter 10 concludes this thesis by providing some future research

directions.

Chapter 2

Theoretical Background

2.1 Real-Time Systems

Real-time systems fall into the category of embedded systems in which ensuring timing correct-

ness of the system is of utter importance. A real-time system runs several real-time processes that

are triggered in a sporadic/aperiodic fashion. A real-timeprocessis a software entity that is exe-

cuted by the processing unit in a parallel/sequential fashion and has a timing constraint associated

to it (Buttazzo, 2011). This constraint on the timing is commonly known as thedeadline, which

represents the time before which a process should complete its execution to not cause any damage

to the system (Buttazzo, 2011). It is important to note that in this thesis, the termtaskis used as

synonym of process.

Depending on the consequences of a missed deadline, real-time systems are broadly catego-

rized in the following two categories:

• Hard Real-Time systems (HRTS) :Hard Real-Time systems are the class of RTS in which

missing the deadline may cause catastrophic consequences on the system under control,

surrounding environment or people. In HRT systems, the results obtained after a given time

interval (or deadline) are considered useless. One such example can be the air-bag control

unit (ACU) in modern cars. In case of an accident, the ACU must be able to in�ate the air

bags within 60-80 milliseconds, otherwise the persons inside the car are at a risk of an injury

which can be severe.

• Soft Real-Time systems (SRTS) :In contrast to HRT systems, in soft real-time system,

missing a deadline might still have some utility for the system, although causing a perfor-

mance degradation. In SRT systems, missing a deadline does not have dire consequences.

For example, a degradation in the quality of the on-line audio/video streaming applications

is annoying but not life threatening.

This work focuses on HRT systems.

6

2.2 Basic Organization of a Real-Time System 7

2.2 Basic Organization of a Real-Time System

A basic RTS is composed of three main components, i.e., applications, software module to run the

applications (i.e., a real-time operating system (RTOS)) and the underlying hardware platform.

In the context of this work, we brie�y discuss the basic functionality of the components involved

in the design of RTSs.

Figure 2.1: Different components of a Real-time system

2.2.1 Applications

Real-Time applications are an abstract representation of the workload used while analyzing a

real-time system. The functionality of a RT application is usually modeled as a collections of

�nite, simple and repetitive abstract entities called real-time tasks (Baruah and Goossens, 2004).

These real-time tasks are recurrent in nature where each instance of the task is called ajob. All

jobs related to a particular task are semantically related and represents a basic unit of work that

executes on the physical hardware platform (Liu). In the context of this thesis, the functionality

of a RT application is represented as a setGof n tasks called atask set, i.e., G= f t 1; t 2; :::; t ng.

Depending on the frequency with which a task releases its jobs, it can be categorized into the

following three types:

• Periodic Task: A task isperiodic if it releases its jobs periodically, i.e., the time interval

between different jobs of the task is constant. The �xed time between two consecutive job

releases of the task is called theperiodof the task.

• Sporadic Task: A task that releases its jobs at some arbitrary time instant however, con-

secutive jobs of the task are separated by a minimum inter-arrival time is called a sporadic

task.

• Aperiodic Task: An aperiodic task can release its jobs at any arbitrary time instant and their

activations are not regularly interleaved.

8 Theoretical Background

In this work, we focus on sporadic tasks.

Any real-time taskt i 2 Gcan be formally de�ned by several parameters that can bestatic, i.e., set

before executing the task and do not change during run-time of the system, ordynamic, i.e., task

parameters that may change during the execution of the task. In the context of this work, general

parameters used to de�ne a taskt i are:

• Ci : Worst-case execution time (WCET)– The maximum amount of time required by any

instance or job of taskt i to complete its execution without any interruptions.

• Ti : Minimum inter-arrival time or period– The minimum inter-arrival time between two

consecutive instances or jobs of taskt i .

• Di : Deadline– The time before which taskt i should be completed in order to avoid any

damage to the system.

• Ui : Utilization – Utilization of a task is de�ned as the fraction of the processor time required

by the task. UtilizationUi of a taskt i is given byUi = Ci=Ti .

• Ri : Worst-case response time (WCRT)– The maximum value of the difference between the

arrival time and completion time amongst all instances or jobs released by taskt i .

It is important to note that deadlines are relative to the nature of the application. For example, the

air-bag control application installed in a car might have a relative deadline of 60-80 milliseconds

to in�ate the air-bags, whereas a room temperature monitoring application can have a relative

deadline of a few seconds to change the temperature on the HVAC thermostat. Depending on the

relation between the deadlineDi and period of a taskt i , t i can be categorized into following three

classes:

• Implicit deadline task: The deadline of a taskt i is equal to the minimum inter-arrival time

between two jobs oft i , i.e.,Di = Ti .

• Constrained deadline task:The deadline of a taskt i is less than or equal to the minimum

inter-arrival time between two jobs oft i , i.e.,Di � Ti .

• Arbitrary deadline task: The deadline of a taskt i can be less than, equal to, or greater

than the minimum inter-arrival time between two jobs of taskt i .

In this work, we focus on tasks with constrained deadlines.

A RT application usually consists of one or more RT tasks working together to achieve a certain

functionality. However, these tasks can have precedence constraints and data dependencies be-

tween them. For example, in the air-bag control application, asensor data acquisitiontask must

always be executed before thein�ate air bags task in order to have the most recent value of the

intensity of the impact in case of an accident. Similarly, depending on the nature of the application

2.2 Basic Organization of a Real-Time System 9

different tasks can have different precedence constraints or data dependencies. However, in this

work, we only focus onindependenttasks, i.e., tasks that can be executed without ensuring any

precedent constraints. Also, these tasks do not depend on the outcome of any other task in order

to initiate their execution.

In this work, we only focus on independent tasks.

2.2.2 Real-Time Operating System (RTOS)

In general, an operating system (OS) performs basic operations such as memory management,

process scheduling, inter-process communication and Input/Output management and a RT oper-

ating system (RTOS) is no different. However, the most important functionality of a RTOS is to

provide reliability and predictability in the system. Reliability refers to the ability of the system to

perform its required functions under stated conditions for a speci�ed period of time (Deck, 1998).

Whereas, predictability means the ability of the system to guarantee the timing properties at design

time. Few examples of RTOS include RTEMS, VxWorks and PikeOS.

As discussed earlier a RTOS can perform many functionalities, however, in this section we

limit our discussion to task management or scheduling function of the RTOS.

Every RT task needs to use the hardware platform at some point in time to achieve its de-

sired functionality, which is mainly performed by requesting some execution resources from the

processing element (i.e., processor) present at the hardware level. When a single processor has

to execute a set of tasks that can overlap in time, the RTOS has to allocate the processor to each

task based on a prede�ned criteria. This functionality is achieved by a specialized service of the

operating system kernel called thescheduler. Scheduler is responsible for deciding which task (or

job of the task) should be executing at any particular time and the set of rules that determine the

order in which tasks are executed on the processor is called ascheduling algorithm. Scheduling

algorithms can be categorized into many classes based on different factors, i.e., off-line or on-line,

preemptive or non-preemptive, static or dynamics etc. However, in this thesis we primarily focus

on thepriority driven scheduling algorithms.

When using priority driven scheduling algorithms tasks/jobs are executed based on their priori-

ties. These priorities can be assigned to tasks or jobs based on different criterion such as deadlines,

arrival rate, execution time and laxity etc. Priority driven scheduling algorithms can be further di-

vided into following categories:

• Fixed Task Priority (FTP): As the name suggests, in �xed task priority scheduling algo-

rithms, priorities are assigned to tasks and the priority of all instances of a task (i.e., all its

jobs) is the same and remains �xed throughout the execution of the task. Prominent exam-

ples of FTP based scheduling algorithms are Rate-Monotonic (RR) (Liu and Layland, 1973)

and Deadline-Monotonic(DM) (Leung and Whitehead, 1982) algorithms.

• Fixed Job Priority (FJP): In this category, priorities are assigned to jobs rather than tasks,

meaning that different jobs of the same task may execute on the processor with different

10 Theoretical Background

priorities. However, the priority of a job does not change between its release time and dead-

line. Examples of such algorithms include Earliest-Deadline First (EDF) (Liu and Layland,

1973), Earliest Deadline Deferrable Portion (EDDP) (Kato and Yamasaki, 2008) and EDF

with C = D (Burns et al., 2012).

• Dynamic Job Priority (DJP): In dynamic job priority based scheduling algorithms, prior-

ity of a job can change dynamically at any instant during its execution. Least-laxity �rst

(LLF) (Mok, 1983) is an example of DJP based scheduling algorithms. In LLF, priority of

a job depends on the job's laxity (its deadline minus its remaining execution time). A job

with the minimum laxity is allocated the highest priority and vice versa.

This work focuses on priority based scheduling algorithms and in particular

use �xed task priority based algorithms such as RM and DM.

Independent of the priority assignment used, a scheduler can either be preemptive or non-preemptive.

In preemptive schedulers, a preemption occurs when the execution of a job on a processor is sus-

pended in order to execute another higher priority job. Whereas, non-preemptive schedulers allow

a job to complete its execution once started without any interruption. In preemptive scheduling,

the process of preempting the job of one task and activating the other involves a switch of the

job execution context potentially inducing an extra overhead as the preempted job has to save its

status to resume its execution later in time. In literature, this overhead is usually referred to as the

preemption overhead. Several techniques have been introduced in literature to effectively bound

preemption overheads and consider their affect when analyzing the system. Some prominent ap-

proaches presented in this context will be discussed later in Chapter 3.

This work focuses only on preemptive schedulers.

2.2.3 Hardware Platform

A hardware platform is a set of physical components on which a RT application executes to achieve

its desired functionality. In RTS, a basic hardware platform typically consists of a processing

unit or processor (to perform computations), memories (main memory and caches to load/store

instructions/data), I/O devices (to perform input/output operations) and an interconnect or system

bus (to transfer instructions/data between processor and the main memory). Below we brie�y

explain the functionality of hardware components that are most relevant in the context of this

thesis.

2.2.3.1 Processors

The Central Processing Unit (CPU) or processor is the main electronic circuitry within a system

that executes instructions that make up a RT task. It performs basic arithmetic, logic, controlling,

and input/output (I/O) operations speci�ed by tasks executing on the processor. Asingle-core

processor has only one on-chip CPU or processing core and is capable of executing only a single

2.2 Basic Organization of a Real-Time System 11

task at a time. Amulti-coreprocessor (MCP) is an integrated circuit with a set of independent

processors (or cores) fabricated on a single chip. Typically, a MCP can have two to eight cores on

a chip and is capable of executing multiple tasks in parallel.

On a MCP, the scheduler can schedule tasks on any of the available processors. Ef�ciently

scheduling tasks on a MCP is complex in comparison to scheduling them on a single processor

since different jobs of a task can be scheduled to execute on any one of the available processors.

This phenomenon of suspending the execution of a job from one processor and later resuming it

on another processor is calledmigration. Based on whether migration is allowed or not multi-

processor scheduling algorithms can be broadly categorized into three main classes.

• Global Scheduling Algorithms: In global scheduling, tasks/jobs are allowed to migrate

from one processor to another. All tasks within the system are maintained in a single global

ready queue andm high priority tasks in the ready queue are allocated to them available

processors. Task assignment to processors is not static and hence, a task may start its ex-

ecution on one processor but as a result of preemptions may later resume its execution on

another processor.

• Partitioned Scheduling Algorithms: In partitioned scheduling migrations are not allowed.

A given task-set is distributed among the processors based on some criterion, e.g., �rst-

�t, best-�t, next-�t etc. This task to processor assignment is static and tasks/jobs can only

execute on the assigned processors. In partition scheduling, the most important phase is task

to processor mapping and once the mapping is done any uniprocessor scheduling algorithm

can be used to schedule tasks on individual processors.

• Semi-partitioned Scheduling Algorithms: Semi-partitioned scheduling algorithms are a

combination of global and partitioned scheduling approaches. At �rst, some tasks from a

given task-set are assigned to speci�c processors and are not allowed to migrate. Remaining

tasks (those that can not be mapped to a speci�c processor) are split between processors

effectively allowing them to migrate from one processor to another. Detailed survey on

multi-processor scheduling algorithms can be found in (Davis and Burns, 2011a).

In the context of this work, we use partitioned task-level �xed priority

scheduling algorithms to schedule tasks on a MCP.

2.2.3.2 Cache Memory

Memories are an essential components of an embedded RTS. Where processors are used to make

the computations fast and ef�cient, memories, e.g., off-chip Random Access Memories (RAM) or

non-volatile Read Only Memory (ROM), are required to effectively manipulate instructions and

data. However, the techniques in designing memory systems did not catch up with the processor

speeds and hence, memory access latencies were non-negligibly high leading to large processor

stalls. To bridge this gap between processor and main memory operating speeds, hardware plat-

forms used in modern RT embedded systems employ on-chip cache memories or caches.

12 Theoretical Background

Caches are high speed memories that reside between the processor and the main memory and

hold data/instructions that can be used by the processor in a speedy manner. Depending on the

kind of resources they store, caches can be categorized as, e.g.,instructioncaches,data caches

or uni�ed caches. As the name suggests, instruction caches are used only to hold instructions,

similarly, data caches are used for data only. A uni�ed cache can hold both data and instructions.

The rationale behind the need for caches is that frequently accessed data/instructions must be kept

closer to the processing source or in other words can be “cached", to reduce processor stall cycles.

Assuming an empty cache, the �rst access to a particular address results in acache miss(when the

required data/instruction is not in the cache). Therefore, the required data or instruction is fetched

from the off-chip main memory and a copy is also stored on the local caches. On subsequent

accesses to the same address, the cache is checked and if the required data/instruction is found

(called acache hit), it is retrieved from the cache itself without incurring the (high) latency to

fetch that data/instruction all the way from the main memory.

Cache Organization

In a basic RTS architecture, cache are organized in a stacked hierarchy. Figure 2.2 shows a basic

memory architecture that depicts a trade-off between size and speed. The processor is at the top

of the hierarchy with very high operating speeds followed by two layers of caches and then the

main memory. The cache that is closest to the processor is the fastest and it is called level one or

L1 cache. L1 caches can be further divided intoindependentinstruction and data caches as shown

in Figure 2.2. L1 caches can have a typical capacity of upto 32 KB with an access latency of 1-2

cycles. Level two or L2 cache is only queried if the required data/instructions are not available

in L1 caches. L2 caches are usuallyuni�ed caches, i.e., capable of holding both instructions and

data, with a storage capacity ranging from hundreds of KB to several MB. Access latency of an L2

cache is typically around 10 cycles. Some modern high performance processors may also have a

�3�U�R�F�H�V�V�R�U

�/��
�'�D�W�D���F�D�F�K�H

�/�� �/��
�,�Q�V�W�U�����F�D�F�K�H

�/��

�&�D�F�K�H
�/��

�0�D�L�Q���P�H�P�R�U�\

�6
�S

�H
�H

�G

�6
�L

�]
�H

�6�O�R�Z

�)�D�V�W

�%�L�J

�6�P�D�O�O

�%�X�V

Figure 2.2: Common Memory Architecture

level three, i.e., L3 cache, to further increase the storage capacity. If the required data/instructions

2.2 Basic Organization of a Real-Time System 13

are not available in the last level cache, it results in accesses to the main memory using the off-

chip bus as shown in Figure 2.2. These accesses to main memory can cause a delay in the order of

hundreds of cycles.

In most processors, the unit for cache access is called acache line, i.e., the smallest unit of

data/instructions that can be transferred to or from a cache. Cache line size signify the minimum

amount of data the cache must read or write from the main memory or from the cache-level below

it. Accessing one element within a cache line causes the whole cache line to be loaded into the

cache. As a result, a following access to another element of the same cache line might also results

in a cache hit.

Caches are usually partitioned into different sets of equal sizes, i.e.,cache sets, where each

cache set may contain one or more cache lines. Amemory block, i.e., the smallest amount in

bytes which can be loaded at a time from the main memory, is �rst mapped onto a cache set and

then placed into one of the cache lines within that set. The number of memory blocks that can be

stored in each cache set is referred to as the number of cachewaysor theassociativityof the cache

and such a cache is called aset-associativecache. There are two special cases of set-associative

caches:

Figure 2.3: Different types of cache associativity

• Direct-mapped caches:In direct-mapped caches, the number of cache ways or associativ-

ity is 1, i.e., each cache set consists of a single cache line, this means that a memory block

can reside in exactly one cache line.

• fully-associative caches:In fully-associative caches, the number of cache ways or associa-

tivity is equal to the number of sets in the cache, i.e., the cache consist of a single set, this

means that a memory block can reside in any cache line.

Figure 2.3 shows the different type of caches based on the mapping of cache lines to main memory

blocks.

Contents in the cache should be consistent with the main memory. This is usually done based

on the write policy used by the cache. Write policy determines at what time the modi�ed cache line

will be written back into the main memory. Based on the write policy, caches can be categorized

aswrite-throughor write-back. For a cache using the write-through policy, main memory is made

consistent with the cache immediately after a cache line is modi�ed. Alternatively, in a write-back

cache the process of updating the main memory is differed to a later time, until the given cache

line is evicted.

14 Theoretical Background

Note that in this work we only focus on instruction references therefore, we do

not make any assumption on the write policy used by the caches.

Cache Replacement Policy

When loading a memory block from the main memory to cache, processor �rst determines the

cache set the block maps to. A lookup is performed to �nd the target cache set. If all the cache

ways of the targeted cache set are occupied, then thecache replacement policydetermines which

old block can be evicted from that cache set to make room for the new block. Common examples

of cache replacement policies used in modern processors are Least-Recently-Used (LRU), First-

In-First-Out (FIFO) and Pseudo-Least Recently Used (PLRU). Note that direct-mapped caches do

not need any replacement policy as each cache set has only one way so each memory block maps

to a speci�c position in the cache. In the context of this thesis, we will only explain the working

of a LRU cache replacement policy.

• LRU replacement policy: LRU policy maintains a queue of memory blocks sorted in an

ascending order based on theirage. Age of a memory block refers to its position in the

cache and is given by the number of accesses to different memory blocks from the last

use of that memory block. The most-recently used memory block is assigned an age 0

whereas the least-recently used memory block has an age given bycacheassociativity� 1.

In case of a cache miss, new element is added at the front of the queue (and assigned an age

0). However, if the cache is full, the last element of the queue, i.e., the element with age

cacheassociativity� 1, is removed to accommodate the new memory block. Similarly, at

a cache hit, the corresponding element is moved from its position in the queue to the front

and all younger elements are aged by one. Figure 2.4 shows a sequence of references in

a 4-way set-associative cache using a LRU replacement policy. Majority of the state-of-

the-art on cache analysis has focused on caches with LRU replacement strategy. This is

mainly because LRU replacement policy is predictable and easier to analyze in comparison

to non-LRU policies such as FIFO and PLRU (Guan et al., 2013, 2014).

Figure 2.4: Example access sequence of memory blocks in a 4-way set-associative cache using a
LRU replacement policy

In this work, we will focus on the analysis of direct-mapped caches and

set-associative caches that use a LRU replacement policy.

Caches with multiple levels are categorized intoinclusive, exclusiveandnon-inclusivecaches.

Inclusive caches require that the content in the higher cache levels should also be present in the

2.2 Basic Organization of a Real-Time System 15

lower level cache, i.e., if a memory block is available in the L1 cache it should also be loaded in the

L2 cache. In exclusive caches, the content in the higher cache levels must not be duplicated in the

lower cache levels, i.e., a memory block can be available only in L1 or L2. Non-inclusive caches

allow duplicated content at any cache level, however they do not strictly enforce the inclusion

property, i.e., a memory block can be available in only L1/L2 or in both.

In this thesis, when required we will assume a non-inclusive cache hierarchy.

2.2.3.3 System Bus

Off-chip memories like the random access memories (RAM) or non-volatile read only memory

(ROM) are very slow in comparison to the caches and are only accessed when the data/instructions

are not found in the caches. The processor is connected to the off-chip main memory (or a memory

controller) over a shared interconnection network usually called as the Front-Side Bus (FSB). The

FSB is also referred to as the processor system bus or simply the system bus.

In a MCP, system bus is used to communicate between processing cores and the main mem-

ory. Bus handles different types of communication traf�c including interrupt messages, memory

requests, I/O traf�c and coherency messages. Basic positioning of the system bus w.r.t the MCP

and the memory is shown in Figure 2.5.

Figure 2.5: Basic abstraction of the system Bus

As shown in Figure 2.5, system bus is composed of three components, i.e., an address bus, data

bus and control bus. These are separate channels used to transmit data, memory addresses from

where data is to be fetched from or written to and some control signals that are used to control the

overall functionality of the bus. Buswidthde�nes the number of bits that can be transferred by the

data bus, e.g., 32 or 64 bits. Similarly width of the address bus represents the maximum amount of

addressable memory. Busspeedis an also important property which indicates the speed at which

the bus can transfer data. Bus speed is expressed as number of cycles per second or Hertz (Hz).

Another important characteristic of a bus is thebandwidthor the maximum amount of data

it can transfer per unit time. Bandwidth of the system bus is given by the product of the data

path width, bus clock frequency and the number of data transfers the bus can perform per clock

cycle (bus, 2017a), i.e.,

Bus Bandwidth= width� clock f requency� data trans f ers per cycle

16 Theoretical Background

For example, a 8-byte (64 bits) wide bus with an operating frequency of 100 MHz with a ca-

pacity to perform 4 transfers per cycle has a bandwidth of 3200 megabytes per second (MB/s) (bus,

2017a), i.e.,

8B� 100MHz� 4 trans f ers=cycle= 3200MB=s

Bus perform communication usingmessagesandtransactions. A message is a logical unit

of information that holds the memory address at which the data must be written to or read from,

control signals and the data to be written (in case of a write operation). A transaction on the other

hand is a sequence of messages. For example, a read transaction contains a read message with the

memory address to read and a corresponding reply with the requested data. Bus transactions can

be performed in several ways.

• Atomic transactions: The word atomic implies to indivisibility or irreducibility, so an

atomic operation must be performed entirely or not performed at all. Similarly, an atomic

bus transaction is modeled as an indivisible request-reply pair. This means that no new re-

quest can be entertained unless the bus transmits the response to the prior request. Atomic

transactions are simpler to implement however, when using atomic transactions bus is un-

derutilized since only one request can be ful�lled at a given time.

• Pipelining: In a pipelined bus, transactions are divided into different stages, e.g., arbitration,

bus request, reply, data, error reporting etc. The basic idea is to combine any two phases of

a transaction that use different physical lines on the bus. For example, the data bus is only

responsible for transmitting the data written to or read from the memory and therefore only

use some physical lines on the bus. Similarly, the control bus only handles operations like

the arbitration, request, error reporting using independent bus lines. Therefore, multiple

transactions that do not use the bus components can be pipelined together to increase the

overall utilization of the bus. One example can be to overlap the address cycle of each

transaction with data cycles of the previous transaction since the data bus is not used during

address cycle and vice versa.

• Split transaction: In a bus that uses split transactions, a transaction is split into two compo-

nents a request transaction and a reply transaction. Both transactions are handled indepen-

dently of each other, where each transaction has to compete for an access to the bus. With

a split transaction bus once a memory request is made by a core, it immediately releases

the bus. In this way, other cores can also place there requests on the bus, increasing the

overall utilization of the bus. When the response to a memory request is ready, the memory

controller acquires the bus for the reply transaction and places the result on the bus. This

response is then delivered to the corresponding core by the bus controller. Bus controller

uses tags to identify the destination cores.

In split transaction buses, certain memory requests may be served out off order, i.e., the

responses may arrive in an order which does not match the order of requests issued. A split

2.2 Basic Organization of a Real-Time System 17

transaction bus is an example of an out-of-order bus whereas, both the atomic transaction

bus and the pipelined bus are an example of in-order buses.

In this work, we considering a multi-core platform, we will assume that the

bus is shared between cores and it uses an atomic transaction protocol.

Another important mechanism that is used to minimize the main memory overhead latency is

by using the hardware prefetching. Hardware prefetchers predict the next memory addresses to be

accessed and pro-actively fetch this data to the last-level caches from the main memory based on

the observed memory access patterns. However, in case of real-time tasks hardware prefetching

may results in non-deterministic delays in task executions time. For example, the prefetchers also

use the bus to perform transactions and hence may delay the requests issued by real-time tasks or

the prefetched cache lines might evict cache lines that were used by the real-time tasks. Hardware

prefetching is available in many commercial MCPs, with programmer having the facility to enable

or disable this feature (Hegde, 2008).

In this work, we assume that the hardware prefetching is disabled.

Bus arbitration protocols

Bus arbitration protocols de�ne the order in which the devices attached to the bus can access the

bus. In a MCP, bus arbitration protocols control the access of multiple cores to the shared memory.

Simultaneous requests by different cores to access the main memory may result in con�icts at the

bus. These con�icts are resolved by the bus arbiter based on an arbitration policy.

Arbitration policies used in MCP can be mainly categorized as static or dynamic arbitration

policies. In a static arbitration policy bus access patterns are de�ned at design time and does not

change at run time. Whereas, in a dynamic arbitration policy the access patterns may change

dynamically depending on the con�icts between cores or based on any other criteria, e.g., task

priority or the arrival time of the requests etc. Time division multiple access (TDMA) is a promi-

nent example of static bus arbitration policy whereas, First-in First-out (FIFO) and Round-robin

(RR) arbiters are examples of the dynamic arbitration policies. Below we brie�y describe the

functionality of some prominent arbitration policies used in modern MCPs.

• TDMA: TDMA bus arbitration uses a �xed schedule to provide different cores of a MCP,

access to the bus. This schedule or frame is periodic and is of a �xed size. At design time,

each core is assigned one or more �xed slots within the frame to access the bus. Requests

from a core are only entertained during the slots allocated to that core. Each core either

uses its allocated slots or these slots are not utilized. Therefore, TDMA bus arbiter can

under utilize the available bus capacity. However, TDMA arbitration is predictable and

composable. It is predictable because the maximum time required by a task running on one

core of a MCP to access the bus can be bounded at design time. Similarly, TDMA is also

composable since the access time of one task is independent of the requests issues by other

tasks running on other cores.

18 Theoretical Background

• FIFO: FIFO arbitration scheme works on the principle of �rst-in �rst-out. It maintains an

in-order list of requests issued by different cores. The core whose request is the earliest

is placed at the front of queue while later requests are subsequently added at the end of

the queue. FIFO arbitration may sometime result in starvation, since the core that has the

control of the bus may never complete hence, not allowing other cores to access the bus.

• Fixed priority (FP) arbitration: In FP arbitration policy, each request is assigned a priority

based on a certain criteria. The request with the highest priority is then granted access to the

bus. The drawback of FP arbitration is similar to that of FIFO arbitration, i.e., in case where

highly memory intensive tasks are assigned higher priorities by the arbiter, then requests

from lower priority tasks may need to wait inde�nitely before receiving a response. Fixed

priority arbiters are neither composable nor predictable as the time for access to the bus

cannot be upper bounded without the knowledge about the access patterns of the higher

priority requesters.

• Round-robin (RR) arbitration: Round-robin (RR) arbiter is a fair arbiter that allows in-

order access of the bus to every requester. Fixed time slots of equal length are allocated to

each requester. RR arbiter follows a rotating policy, i.e., the requester who is most recently

granted the bus in one frame will be the last to receive the access in next frame. RR arbiter is

predictable but however not composable. It is predictable since the maximum time to access

the bus can be bounded but, as the access time to the bus of one requester depends on the

number of other active requesters RR arbiter is not composable.

2.3 Ensuring Temporal Correctness of a RTS

Proving timing correctness of a RTS is traditionally a two-step process:

1. Timing analysis: The process of computing the WCET of tasks inisolation, i.e., an upper

bound on the time that a given task can take to complete its execution under all feasible

system states.

2. Schedulability analysis: The process used to ensure the schedulability of tasks, i.e., all

tasks will meet their deadlines when deployed on the target hardware.

In the subsections below, we will provide a brief overview of the timing analysis and schedulability

analysis relevant for this thesis.

2.3.1 Timing Analysis

As stated earlier, timing analysis is the process of estimating the worst-case timing requirement,

e.g., WCET, of an isolated task. When computing the WCET of a task, activities other than the

ones related to the considered task e.g., interrupts, blocking, preemptions or any kind of inter-

ference from other tasks in the system, are ignored. Different approach have been presented in

2.3 Ensuring Temporal Correctness of a RTS 19

literature to bound the WCET of tasks. However, without disrespecting the variety of individual

approaches, three approaches are commonly applied nowadays, i.e.,staticanalysis,measurement-

basedanalysis andhybrid analysis (Wilhelm et al., 2008a). In the context of this work, we will

only discuss the working of static timing analysis.

2.3.1.1 Static Analysis

In static analysis, a task is analyzed by constructing the control �ow of the program (or task)

rather than executing the task on the real hardware or a simulator. An abstract model is used for

the target hardware and for the inputs to the program and an upper bound on the WCET of task

is obtained using this combination. Core components used by any static timing analysis approach

are explained as follows:

Figure 2.6: Work �ow between different components of a timing-analysis tool (Wilhelm et al.,
2008a)

Value Analysis

Value analysis computes the effective address where a memory accesses goes. In case the exact

address of the referenced data cannot be determined, a range of addresses is conservatively pro-

vided. The analysis determines these addresses statically from a disciplined code (Thesing et al.,

2003) by computing ranges for the values in processor registers at every possible program point.

Value analysis can also compute the number of loop iterations and recursions (Martin et al., 1998).

Control-Flow Analysis

Control �ow analysis use the parameters computed by the values analysis, e.g., ranges for the

input data and iteration bounds of some loops, along with the call graph or the control-�ow graph

(CFG) of the task to gather information about possible execution paths. The result of the control

�ow analysis are usually constraints on the dynamic behavior of the task, e.g., which functions

may be called, dependencies between different conditional operations and information relating to

feasibility or in-feasibility of paths, etc.

20 Theoretical Background

Processor-Behavior Analysis

Processor-behavior analysis is the most important phase when determining the WCET of tasks

under the static analysis based approaches. It uses a conservative timing model of the targeted

hardware architecture in particular, of the components that in�uence the execution times, such

as memory, caches, pipelines, and branch prediction along with the information provided by the

value and control-�ow analysis to determine upper bounds on the execution times of instruc-

tions or basic blocks. Most approaches for processor-behavior analysis use techniques based on

the theory of Abstract Interpretation (Cousot and Cousot, 1977) to compute invariants about the

processor's execution states at each program point. These invariants provide information about

the contents of caches, the occupancy of functional units and processor queues, and of states of

branch-prediction units. This information is then used to, e.g., exclude pipeline stalls and to clas-

sify memory accesses as cache hits/misses (detailed overview of the intra-task cache analysis is

presented in Section 3.1).

Bound Calculation

This phase computes an upper bound on the execution times of the whole task using the �ow and

timing information derived in the previous phases. Different methods can be used to combine the

timing estimates determined in the previous phases into an end-to-end estimate. For example, in

approaches that useImplicit Path Enumeration Technique(IPET) (Li and Malik, 1997; Puschner

and Schedl, 1995; Theiling, 2002) techniques program �ow and basic-block execution time bounds

are combined into set of arithmetic constraints. Each program �ow edge in the task and basic-block

is assigned a time coef�cienttentity, i.e., an upper bound on the contribution of that entity to the

total execution time every time it is executed, and a count variablexentity, i.e., an upper bound on

the number of times that entity is executed. An upper bound on the task's WCET is then obtained

by maximizing the objective functionå i2entitiesxi � ti , where the value ofxi is subject to constraints

re�ecting the structure of the task and possible execution �ows.

Many commercial and research prototype based static analysis tools are available today such

as Bound-T (Holsti and Saarinen, 2002), aiT (Ferdinand et al., 2007), Heptane (Colin and Puaut,

2001; Hardy et al., 2017), Chronos (Li et al., 2007) and SWEET (Ermedahl, 2003). For a detailed

survey on the computation of WCET of tasks readers are directed to (Wilhelm et al., 2008a).

2.3.2 Schedulability Analysis

The output of the timing analysis, i.e., WCET of tasks, along with other timing constraints, e.g.,

task's period and deadline, are used by the schedulability analysis to determine if all tasks in

the system comply with their timing requirements. Several different approaches can be used

to perform the schedulability analysis depending on the scheduling algorithm and the priority

assignment of tasks. However, since in this work we focus on preemptive �xed-task priority

based scheduling algorithms such as RM and DM, we will use the traditionalresponse timebased

schedulability analysis (Liu and Layland, 1973; Joseph and Pandya, 1986). Under the response

2.3 Ensuring Temporal Correctness of a RTS 21

time based schedulability analysis, any taskt i is referred to asschedulable, i.e., the task meets its

timing constraints, if each of its instances or jobs complete their execution before the deadline,

i.e.,Ri � Di . The response timeRi of a taskt i is computed as follows:

Ri = Ci + å
8 j2hp(i)

�
Ri

Tj

�
� Cj (2.1)

whereCi is an upper bound on the WCET of taskt i , hp(i) denotes the set of tasks with higher

priority thant i andCj is an upper bound on the WCET of any taskt j 2 hp(i). Note that under

priority-driven preemptive scheduling taskt i can be preempted several times by higher priority

tasks in hp(i). However, within the response timeRi of task t i , any higher taskt j 2 hp(i) can

execute at most
l

Ri
Tj

m
times. Hence, the interference, i.e., the execution delay, taskt i may suffer

due to the executions of taskt j during its response time is upper bounded by
l

Ri
Tj

m
� Cj . As Ri

appears on both sides in Equation (2.1), i.e., Equation (2.1) is recursive, a �xed-point computation

onRi can be used to �nd a solution by initiatingRi toCi . For each task, the computation is stopped

if Ri does not evolve anymore, i.e., the task is schedulable, or the value ofRi exceeds the deadline,

i.e.,Ri > Di , in which case the task is deemed unschedulable. Note that a task setGis only said to

be schedulable according to any schedulability analysis if each taskt i 2 Gis schedulable.

2.3.3 Caches and Timing Analysis

The WCET of a task in isolation is an inherent property of the task which acts as an interface

between the timing analysis and schedulability analysis. However, the WCRT of a task when

co-executing with other tasks largely depends on the interference due to contention for resource

accesses such as the processor, caches, bus and the main memory.

Figure 2.7: Basic interface between timing and schedulability analysis

Figure 2.7 shows the basic interface between timing and schedulability analysis. We can see

that the WCRT of tasks depends on the timing behavior of resource such as caches, bus and the

main memory. Therefore, in order to have a sound estimate of task's WCRT it is very important to

�rst compute upper bounds on the interference due to contention for these resources and integrate

these bounds into the schedulability analysis.

As discussed above, interference due to contention for resources that are shared between tasks

can have a signi�cant affect on the timing behavior of tasks. Indeed, caches are considered as one

of the most important resource that can impact the execution of tasks. This is mainly because, the

time spent by the tasks to perform memory related operations largely depends on the availability

of data/instructions in the cache. In order to upper bound this time, a cache interference analysis

22 Theoretical Background

is performed that quanti�es the number main memory accesses that may be generated during the

execution of tasks. The output of the cache interference analysis is then used as an input for ana-

lyzing contention at the bus and main memory. This interdependence between the timing behavior

of caches and other resources makes the cache interference analysis very crucial in providing de-

terministic bounds on the WCRT of tasks. Typically, tasks can be subjected to two types of cache

interferences described as follows:

• Intra-task cache interference: Intra-task cache interference points to a situation where a

task can evict its own cache lines. This can happen in two situations; (i) when two memory

entries in the working set size of a task are mapped to same cache sets or (ii) when the

working set size of a task is larger than the cache size. Intra-task cache interference analysis

is usually considered as a part of the WCET analysis and several approaches have been

presented in literature to bound this type of cache interference (Wilhelm et al., 2008b) (intra-

task cache analysis will be discussed in detail in Section 3.1).

• Inter-task cache interference:Inter-task cache interference can be generated between dif-

ferent tasks running on the processor that are sharing the cache. Bounding inter-task cache

interference is a challenging task since it depends not only on the cache footprint of the

task under analysis but also on the cache usage of other tasks. Inter-task cache interference

is mainly observed in priority-driven preemptive systems were a higher priority task can

evict the preempted task's cached content. This results in extra delays during the execu-

tion of the preempted task. It has been shown by several works in literature (Stärner and

Asplund, 2004; Bui et al., 2008; Bastoni et al., 2010; Bertogna et al., 2011) that inter-task

cache interference can have a signi�cant affect on task's execution times and ignoring the

impact of inter-task cache interference on task schedulability may lead to optimistic results.

Therefore, in order to have a sound estimate of the WCRT of tasks, a precise bound on the

inter-task cache interference must be computed and integrated into the schedulability anal-

ysis. Several different approaches (Lv et al., 2015) have been presented in this regard that

will be discussed in detail in Section 3.2.

2.3.4 System Bus and Timing Analysis

In modern processors, multiple concurrently executing tasks can access the main memory in par-

allel which leads to contention on the shared bus. This contention results in an increased response

time of tasks running on the platform. Bounding this increase in response time or in other words

the interference due to shared bus is one of the main challenge due to following reasons:

1. Due to the lack of documentation provided by the vendors, system bus is usually consid-

ered as a black box, with very little information available about the bus arbitration and bus

controller implementation.

2.4 Chapter Summary 23

2. It is very dif�cult to predict at what instant the tasks will access the bus. Moreover, these ac-

cesses are not explicitly controlled by the operating system scheduler since they are mostly

initiated as a result of cache misses, coherency traf�c etc.

3. In FPPS higher priority tasks are executed prior to the lower priority tasks as they might

be performing some critical operations. However, once the memory requests are issued

by different tasks running on the processor the bus controller might reorder these requests

based on some different criterion. Consequently, this might result in an unexpected situation

where requests issued by the higher priority tasks may be served later than those from the

lower priority tasks.

4. Also, most modern processors use an out-of-order bus that employ different performance

enhancement mechanisms such as pipelining and split transactions which further compli-

cates the bus interference analysis.

In this thesis, we will focus on the computation of inter-task cache

interference and its integration into the schedulability analysis. Due to strong

interdependence between caches and the system bus, we will also evaluate the

impact of inter-task cache interference on bus contention.

2.4 Chapter Summary

In this chapter, we presented basic concepts that are necessary for the understanding of this thesis,

i.e., the basics of real-time systems, functionality of its core components and methods used to

ensure timing correctness of a real-time system. We also highlighted the importance of cache and

bus contention analysis to ensure timing correctness of tasks. In next chapter, we will describe the

related work focusing on cache and bus related contention in multi-tasking real-time systems.

Chapter 3

Related Work

In this chapter, we will provide a survey of the state-of-the-art in the computation of intra- and

inter-task cache interference. It also serves as a starting point for understanding different analysis

presented in subsequent chapters. This chapter is organized as follows: Section 3.1 presents promi-

nent state-of-the-art approaches used to quantify intra-task cache interference. Section 3.2 presents

the background on inter-task cache interference analysis focusing on single-level direct-mapped

(Section 3.2.1), set-associative (Section 3.2.2) and multi-level caches (Section 3.2.3). State-of-

the-art approaches that manage intra- and inter-task cache behavior by using methods such as

cache partitioning, cache locking, task layout optimization and enhanced scheduling models are

discussed in Section 3.3. Section 3.4 discusses most relevant approaches in the state-of-the-art that

quantify memory bus contention and evaluate its impact on schedulability. Finally, in Section 3.5,

we introduce a different positive prospective of cache memories due to intra-task cache re-use and

highlight its potential in improving schedulability.

3.1 Intra-task Cache Interference Analysis

Intra-task cache interference analysis or simplyintra-task cache analysisis often considered as

a part of the WCET analysis. The basic purpose of an intra-task cache analysis is to determine

the cache behavior of a task in isolation. This results in the classi�cation of individual memory

requests of a task as cache hits or misses. It also bounds the number of cache loads in differ-

ent segments of a program. Different approaches have been presented in literature for intra-task

cache analysis such as the static cache simulation presented by Muller et al. (Mueller, 2000) and

the abstract interpretation based approach presented by Ferdinand and Wilhelm (Ferdinand and

Wilhelm, 1999). Abstract interpretation (AI) (Cousot and Cousot, 1977) is a method for static

program analysis based on the semantic of the considered programming language. It uses an ab-

stract version of the program with an abstraction of the underline hardware components instead of

executing the program on the actual hardware. Abstract interpretation based approaches for cache

analysis are widely used in industry, e.g., in the aiT tool of AbsInt (abs).

24

3.1 Intra-task Cache Interference Analysis 25

Figure 3.1: Intra-task ache analysis is one of the main components in the timing analy-
sis (Phavorin and Richard)

In the context of this work, we will explain the working of Ferdinand's (Ferdinand and Wil-

helm, 1999; Theiling, 2002) intra-task cache analysis which is based on AI. For simplicity, we as-

sume a fully-associative LRU cache comprising of a set of cache linesl̂ = f l0; l1; :::; lS� 1g, where

S= CacheSize=LineSize. The cache stores a set of memory blocksM = f ma;mb; ::;mzg. Note that

for set-associative caches, the analysis can be performed independently for each cache set.

The work in (Ferdinand and Wilhelm, 1999; Theiling, 2002) uses the concept of abstract cache

states (ACS) to estimate the cache contents at different points during the execution of a task.

De�nition 3.1. Abstract Cache State (ACS): An abstract cache state ACS: l̂ ! 2M represents all

possible mappings between the set of memory blocks and the set of cache lines. For example, an

abstract cache state ACS(lx) = my, represent that in the abstract cache state ACS memory block

my is mapped to cache line lx, where x denote the age of the memory block according to the LRU

replacement strategy.

The analysis in (Ferdinand and Wilhelm, 1999; Theiling, 2002) uses three �xed point analyses,

i.e., must, mayandpersistence, to categorize memory references intoAlways-hit(AH), Always-

miss(AM), Persistent or First-miss(PS or FM) andNot-classi�ed(NC). This classi�cation is some-

times referred to asCache Hit/Miss Classi�cation(CHMC) and is described in Table 3.1. For each

analysis, Abstract cache sates are computed at every program point using two functions, named

UpdateandJoin.

De�nition 3.2 (Update Function). The Update function computes the abstract cache state after

a memory reference, .i.e., ACSout, using as inputs the abstract cache sate before the memory ref-

26 Related Work

Table 3.1: Categorization of memory references

Category Description
Always-hit (AH) The memory reference will always result in a cache hit

Always-miss
(AM)

The memory reference will always result in a cache miss

Persistent or
First-miss (PS or

FM)

The �rst execution of the reference may result in a cache miss however, all
further executions of the memory reference will always result in a cache
hit

Not-classi�ed
(NC)

The memory reference can not be classi�ed as AH, AM or PS.

erence, i.e., ACSin, and the referenced memory block. This function considers both the cache

replacement policy and the semantics of the analysis.

De�nition 3.3 (Join Function). A Join function is used to combine abstract cache states at control

�ow nodes with two or more predecessors, e.g., at the end of a conditional construct.

3.1.1 Must Analysis

The must cache analysis is used to �nd Always-hit (AH) cache references, i.e., the cache blocks

that are guaranteed to be in the cache at a speci�c program point. AH references represents the

common cache contents for all possible execution paths in the CFG leading to a program point.

In must cache analysis, the positions of the memory blocks in the abstract cache state are upper

bounds on the ages of the memory blocks. For example, ifACSmust represents a must abstract

cache state at any control �ow node that references a memory blockma andma 2 ACSmust(lx) for

a cache linelx, thenma is de�nitely in the cache and has an LRU age ofx. A reference toma at

this program point will always result in a cache hit. Moreover,ma will stay in the cache for the

nextS� x references to memory blocks that are not in the cache or are older thanma. The update

function for must analysis performs an access to a memory reference, e.g., to memory blockmb,

using the abstract cache state before the memory access as an input, i.e.,ACSmust
in , and produces

the output abstract cache state, i.e.,ACSmust
out after the memory access. InACSmust

out the age ofmb

will be 0 as it is now the most-recently used element. Ifmb was not inACSmust
in , then the age of all

elements inACSmust
in will be increased by 1 to produceACSmust

out . If mb was already inACSmust
in , then

the age of all element that were younger thanmb in ACSmust
in will be increased by 1 inACSmust

out .

Figure 3.2a shows an example of the update function for the must analysis.

The join function for the must analysis is similar to set intersection. A memory blockmb

only stays in the output abstract cache stateACSmust
out if it is in both operand abstract caches states,

e.g.,ACSmust
in1 andACSmust

in2 . In ACSmust
out mb will get the maximal age if it has two different ages in

ACSmust
in1 andACSmust

in2 . Figure 3.2b shows an example of the join function for the must analysis.

3.1 Intra-task Cache Interference Analysis 27

(a) Update (Must analysis) (b) Join (Must analysis) (c) Update (May analysis) (d) Join (May analysis)

(e) Update (Persistence analy-
sis)

(f) Join (Persistence analysis)

Figure 3.2: Join and Update functions for the Must, May and Persistence analysis

3.1.2 May Analysis

May cache analysis is used to determine the Always-Miss(AM) cache references, i.e., the cache

blocks that are guaranteed not to be in the cache at a certain program point. May analysis gives

the content that may be cached in all possible executions leading to a program point. In may cache

analysis, the positions of the memory blocks in the abstract cache state are lower bounds on the

ages of the memory blocks. For example, letACSmay represent the may abstract cache state at

any control �ow node that references a memory blockma. If ma =2 ACSmay(lx) for any arbitrary

cache linelx, thenma is de�nitely not in the cache. A reference toma at this program point will

be categorized as Always-miss(AM). The update function of the may cache analysis is similar to

the update function of the must cache analysis however, the only difference is in the treatment of

elements with the same age as the accessed element, e.g.,mb. In the update function of the may

cache analysis, ifmb was already inACSmay
in , then the age of all element that had the same age

asmb or were younger thanmb in ACSmay
in will be increased by 1 inACSmay

out . An example of the

update function for the may cache analysis is shown in Figure 3.2c.

The join function for the may analysis is similar to set union. If a memory blockmb has two

different ages in operand abstract caches states, e.g.,ACSmay
in1 andACSmay

in2 . Then,mb will have the

minimal age inACSmay
out . Figure 3.2d shows an example of the join function for the may analysis.

28 Related Work

3.1.3 Persistence Analysis

The persistence analysis is used to classify memory references as Persistent or First-Miss (PS

or FM), i.e., the memory reference to whom �rst access might be a miss but all subsequent ac-

cesses are AH. IfACSpersis represents the abstract cache state under the persistence analysis at

any control �ow node that references a memory blockma. Then,ma will be categorized as PS if

ma 2 ACSpersis(ly) for y 2 f 0; :::;S� 1g andma cannot be categorized as AH. The join function for

the persistence analysis is similar to set union. If a memory blockmb has two different ages in

operand abstract caches states, e.g.,ACSpersis
in1 andACSpersis

in2 . Then,mb will have the maximal age

in ACSmay
out . Figure 3.2f shows an example of the join function for the Persistence analysis.

The update function for the persistence analysis presented in (Theiling et al., 2000) is the same

as the update function of their Must analysis, i.e., upon an access to memory blockmb only the

ages of younger blocks are incremented. However, it has been recently found by (Cullmann, 2013;

Huynh et al., 2011) that this update function is unsound. Cullmann (Cullmann, 2013) resolved this

problem by proposing a modi�cation, i.e., upon an access to blockmb, the age bounds of all blocks

other thanmb, that have potentially been accessed beforemb will be increased. Figure 3.2e shows

an example of the update function for the Persistence analysis. Note that an exact persistence

analysis has been recently presented in (Stock et al., 2019; Reineke, 2018).

With the exception of AI-based approaches, different methods have been presented to bound

the intra-task cache interference. Li et al. (Li et al., 1996) presented an approach that uses the

concept ofCache State Transition Graphs (CSTGs)to model cache behavior. A CSTG models

the cache-state transitions for a given cache set and is built using a CFG. In (Li et al., 1996) the

authors try to bound the number of cache hits for each memory block. These bounds are then

modeled as linear constraints and combined into an integer linear program (ILP) to obtain the

WCET for the tasks. The approach in (Li et al., 1996) can provide a good analysis precision

however, it does not scale with program size due to the complexity of the ILP. In other works

model checking (Clarke et al., 1999) and timed automata (Alur and Dill, 1994) based approaches

have been used to model the cache behavior of programs. Prominent works in this regard include

the METAMOC approach (Dalsgaard et al., 2010), McAiT tool (Lv et al., 2011) and Gustavsson

et al.'s analysis (Gustavsson et al., 2010) etc.

3.1.4 Intra-task Cache Analysis for Multilevel Caches

Most modern processors are equipped with multilevel caches. Therefore, in order to have a pre-

cise estimate of the number of main memory requests generated by a task intra-task cache analysis

should be conducted considering all cache levels. In state-of-the-art two main analysis frameworks

are used to analyze multilevel caches, i.e.,separateanalysis andintegratedanalysis. In separate

analysis (Mueller, 1997; Hardy and Puaut, 2008), cache levels are analyzed independently, e.g.,

L1 cache is analyzed �rst. Then, the result of the L1 cache analysis is used as an input for the

analysis of L2 cache, and so on. On the contrary, integrated analysis (Sondag and Rajan, 2010)

analyze all cache level at the same time by building a holistic abstract domain. Separate analysis

3.1 Intra-task Cache Interference Analysis 29

have several advantages over the integrated approaches such as the �exibility to apply a different

analysis method for each cache level and scalability, i.e., the overall analysis is scalable as long

as the adopted single-level analysis is scalable. On the other hand, the integrated analysis can

be more precise than the separate analysis due to imprecise transfer of cache access information

across cache levels in the separate analysis. However, the integrated analysis are usually subjected

to scalability issues. As in this work, we only focus on non-inclusive multilevel caches, we will

brie�y describe the functionality of the multilevel cache analysis of (Hardy and Puaut, 2008).

The multilevel cache analysis proposed in (Hardy and Puaut, 2008) uses Ferdinand's cache analy-

sis (Ferdinand and Wilhelm, 1999; Theiling, 2002) at each cache level (see Section 3.1). The main

dif�culty in analyzing multiple cache levels is to handle the interaction between cache levels, i.e.,

to predict which memory reference will be accessed at which cache level. For example, level-one,

i.e., L1, cache is always accessed for each memory reference so, if a memory access is predicted

as AH at L1, then that memory access should not be considered during the analysis of level-two,

i.e., L2, cache. An interface calledCache Access Classi�cation(CAC) is proposed to describe this

information (Hardy and Puaut, 2008). For any memory referencer and cache levelL, the CAC is

de�ned as follows:

• N (Never): the access tor will never be performed at cache levelL

• A (Always): the access tor will always be performed at cache levelL

• U (Uncertain): it can not be guaranteed if the access tor will be/not be performed at cache

levelL.

CAC information relating to a memory reference is used as an input by the cache analysis at

each level to decide if that reference is to be considered during the analysis of that cache level

or not. The CAC for a referencer at a cache levelL depends on its CAC and CHMC at cache

level L � 1 as shown in Table 3.2. Combination ofCACr;L� 1 andCHMCr;L� 1 values in Table 3.2

Table 3.2: Computation of CAC of a memory referencer at cache levelL (Hardy and Puaut, 2008)

` ` ` ` ` ` ` ` ` ` ` ` ` `CACr;L� 1

CHMCr;L� 1 AM AH FM NC

Always (A) A N U U
Uncertain (U) U N U U
Never (N) N N N N

can be used to compute the CAC ofr at levelL, i.e.,CACr;L. For example, if CHMC and CAC

of r at levelL � 1 is AH and A respectively, i.e.,CHMCr;L� 1 = AH andCACr;L� 1 = A, then the

reference tor is never considered in the analysis of levelL, i.e., CACr;L� 1 = N. In an earlier

work, Mueller (Mueller, 1997) proposed that memory accesses with aU CAC at cache levelL � 1

should always be considered in the analysis of levelL, i.e., should be assigned a CAC of A at

level L. However, this assumption can be unsafe due to underestimation of memory block ages

as demonstrated in (Hardy and Puaut, 2008). The work in (Hardy and Puaut, 2008) solves this

30 Related Work

problem in Mueller's analysis (Mueller, 1997) by considering both N and A possibilities for U

accesses in the update function. Figure 3.3 shows the update function for U accesses proposed

in (Hardy and Puaut, 2008), which guarantees that the worst-case scenario is never missed. The

Figure 3.3: Update function to handle U accesses for multilevel caches (Hardy and Puaut, 2008)

analysis in (Hardy and Puaut, 2008) has also been extended to handle inclusive and exclusive

cache hierarchy (Hardy and Puaut, 2011).

3.2 Inter-task Cache Interference Analysis

Intra-task cache interference analysis presented in the previous section can be used to precisely

upper bound the number of cache hits/misses generated by a task while executing in isolation.

However, when the task is co-executed with other tasks it can be subjected to inter-task cache

interference due to sharing of caches. Speci�cally, in priority-driven preemptive scheduling, the

execution of a lower priority task can be interrupted several times due to preemptions by higher

priority task(s) and for every preemption, the preempting task(s) may evict cache entries of the

preempted task that may be required later on. This inter-task cache interference leads to additional

cache misses (other than the ones computed using the intra-task cache analysis) during the execu-

tion of the preempted task. Formally, in the state-of-the-art the increase in the execution time of

task due inter-task cache interference is refereed to ascache related preemption delay(CRPD).

De�nition 3.4 (Cache related preemption delay (CRPD)). When a lower priority taskt i is pre-

empted by a higher priority taskt j , the preempting taskt j may evict cache blocks of the preempted

taskt i that has to be reloaded aftert i resumes its execution. The additional execution time needed

by t i to perform these cache reloads is termed as cache related preemption delay (CRPD). The

CRPD a taskt i may suffer due to a preemption by a higher priority taskt i is usually denoted by

gi; j .

Figure 3.4 shows a visual representation of CRPD suffered by a taskt i due to preemptions by a

higher priority taskt j . We can observe that taskt i andt j both are using cache setsf 4;5g. Hence,

3.2 Inter-task Cache Interference Analysis 31

Figure 3.4: Visual representation of cache related preemption delay (CRPD)

for every preemption oft i by t j , the content oft i in cache setsf 4;5g is evicted and replaced by

the content oft j . Assuming cache setsf 4;5g hold useful data/instructions that are used several

times during the execution of taskt i , t i will be required to reload the evicted content after every

preemption by taskt j . This leads to an increase in the WCRT oft i due to CRPD.

It have been shown in the state-of-the-art (Liu and Solihin, 2010; Bui et al., 2008) that CRPDs

can signi�cantly affect the WCRT of tasks and hence should be bounded accurately. In litera-

ture different approaches have been used to calculate CRPDs considering single and multilevel

caches (Lv et al., 2015). These approaches use the notion ofuseful cache blocks (UCBs)and

evicting cache blocks (ECBs)to compute CRPDs. The concept of UCBs was introduced by Lee et

al. (Lee et al., 1998) and is de�ned as follows:

De�nition 3.5 (Useful cache block (UCB)). A memory block m is called aUseful Cache Block

(UCB) at program point P, if (i) m may be cached at P and (ii) m may be reused at program point

Q that may be reached from P without eviction of m on this path. The set of all UCBs of a taskt i

denoted by UCBi .

This de�nition of UCBs was later improved by Altmeyer et al (Altmeyer and Burguière, 2011),

by introducing the notion ofde�nitely-cached useful cache blocks (DC-UCBs).

De�nition 3.6 (De�nitely-cached useful cache block (DC-UCB)). A memory block m is called a

De�nitely-cached Useful Cache Block (DC-UCB)at program point P, if (i) m must be cached at

P and (ii) m may be reused at program point Q that may be reached from P without eviction of m

on this path.

The DC-UCB analysis (Altmeyer and Burguière, 2011) optimize the number of UCBs of tasks

by only accounting the cache misses the have not already been considered during the WCET

analysis. However, this method is only safe when used in combination with a WCET bound.

The notion of ECBs was introduced by Busquets-Mataix et al. (Busquets-Mataix et al., 1996)

and de�ned it as

32 Related Work

De�nition 3.7 (Evicting cache blocks (ECBs)). A memory block accessed during the execution of

a preempting task is referred to as anEvicting Cache Block (ECB). The set of all ECBs of a task

t i is denoted by ECBi .

Deriving the Set of UCBs/ECBs

The set of UCBs/ECBs of a task can be derived using the intra-task cache analysis methods de-

tailed in Section 3.2.

The set of UCBs of a taskt i is determined at every program point P during the execution of

t i . By de�nition (i.e., the original de�nition by Lee et al. (Lee et al., 1998)), a memory blockm is

a UCB at a program point P if it may be cached at P and may be reused at a later program point

Q that is reachable from P without eviction ofm along the path from P to Q. So to determine if

m is a UCB at P, the analysis has to compute the number of accesses (to different memory block

other thanm) from the last use ofm to program point P and the number of access (to different

memory block other thanm) from P to the next access to memory blockm after P. Effectively,

these number of accesses to/from program point P w.r.t. memory blockm can be computed by

using the May cache analysis (see Section 3.1.2) in forward and backward direction (Altmeyer,

2013). Consequently, if the age ofm at P in both forward and backward May analysis is less

than cache associativity then,m will be considered a UCB at program point P. Note that different

approaches can be used to compute the set of UCBs of tasks, e.g., see (Lee et al., 1998), (Negi

et al., 2003) and (Staschulat and Ernst, 2007).

Computation of the set of ECBs of a task is comparatively simple than the computation of

UCBs. By de�nition, all memory blocks that may be used by a task during its execution are its

ECBs. Therefore, to compute the set of ECBs of a task, May cache analysis (see Section 3.1.2) can

be used. As the May analysis over-approximate the cache content at every program point during

the execution of tasks, it suf�cient to computer the set of ECBs of tasks at their exist/end point,

e.g.,e. Note that for set-associative caches, the number of cache ways can be used as an upper

bound on the number of ECBs per cache set.

3.2.1 CRPD Computation for Single-level Direct-mapped Caches

For direct-mapped caches, CRPDs can be computed by only using the set of UCBs and ECBs of

tasks.

In one of the earlier works, Busquets-Mataix et al. (Busquets-Mataix et al., 1996) and later

Tomiyama and Dutt (Tomiyama and Dutt, 2000), proposed the ECB-only approach to calculate

the CRPD cost. They used ECB's of the preempting task in order to bound the CRPD. Using ECB-

only approach, Ift j is the higher priority task preempting a lower priority taskt i , the resulting

CRPD costgecb
i; j is given as follows:

gecb
i; j = dmem� j ECBj j (3.1)

3.2 Inter-task Cache Interference Analysis 33

Wheredmem corresponds to the time required to reload one memory block to cache from the

main memory. The approach of Busquets-Mataix et al. (Busquets-Mataix et al., 1996) results in

pessimistic CRPD bounds since it always assumes the worst-case where each block accessed by

a higher priority task can evict cache lines of the lower priority tasks. In contrast to (Busquets-

Mataix et al., 1996), Lee et al. (Lee et al., 1998) proposed the UCB-only approach, which uses the

UCBs of the lower priority taskt i preempted by the higher priority taskt j and the UCBs of all

the intermediate priority tasks (i.e., tasks with priority higher or tot i and strictly lower than that

of t j) to bound the CRPD cost. They used the intermediate priority tasks to account for nested

preemptions the resulting value for the CRPD cost is given as

gucb
i; j = dmem� max

8k2aff(i; j)
fj UCBkjg (3.2)

Where the set aff(i; j) contain the set of tasks with priorities higher than or equal to the pri-

ority of t i(including t i), but strictly lower than that oft j . UCB-only approach assumes that the

maximum number of UCBs among all tasks in aff(i; j) will be evicted for every preemption by

the preempting task. However, this is a pessimistic assumption since, in reality the number of

UCBs that can be evicted depends on the memory access patterns of both the preempting and the

preempted task.

The UCB-union approach presented by Tan and Mooney (Tan and Mooney, 2007) uses both

the preempted and the preempting task in order to calculate the CRPD cost. It uses the UCB's of

all tasks2 aff(i; j) and the ECBs of the preempting task in order to calculate the preemption cost.

The resulting CRPD in this case is denoted bygucb� u and is given as follows

gucb� u = dmem�
�
�
�
� [

8k2aff(i; j)

UCBk

�
\ ECBj

�
�
� (3.3)

The UCB-union approach dominates the ECB-only approach (Busquets-Mataix et al., 1996) but

can be pessimistic in some cases as described in (Altmeyer et al., 2012).

On a similar note to the work done by Tan and Mooney (Tan and Mooney, 2007), Altmeyer et

al. (Altmeyer et al., 2011) presented the ECB-union approach that uses the ECB's of all tasks in

hep(j) (i.e. all tasks having priority higher than or equal tot j) maximized over the UCB's of all

tasks in aff(i; j). The resulting preemption costgecb� u is given as

gecb� u = dmem� max
8k2aff(i; j)

 �
�
�UCBk \

� [

8h2hep(j)

ECBh

� �
�
�

!

(3.4)

ECB-union approach dominates the UCB-only approach (Lee et al., 1998) and provides a

reasonably precise bound on preemption cost especially when we have nested preemptions. But

both the UCB-union and the ECB-union approach are incomparable and can lead to overestimation

in different situations as shown in (Altmeyer et al., 2012). To reduce this overestimation Altmeyer

et al. (Altmeyer et al., 2012) proposed two multi-set variants of these approaches i.e., UCB-union

34 Related Work

multi-set and the ECB-union multi-set approach. These multi-set versions of the UCB-union and

ECB-union approaches additionally take into account the maximum number of jobsE j (Ri)
def=

l
Ri
Tj

m

that each higher priority taskt j can release during the response time oft i and the number of

preemptions of each low and intermediate priority task byt j , i.e.,E j (Rk)Ek(Ri)
def=

l
Rk
Tj

m
�

l
Ri
Tk

m
.

The ECB-Union Multi-set approach usesgecb� m
i; j to represent the CRPD cost due to all jobs of task

t j executing during the response time of taskt i . Wheregecb� m
i; j is given as

gecb� m
i; j = dmem�

E j (Ri)

å
l= 1

�
�Ml

�
� (3.5)

WhereMl is thelth-largest value inM, WhereM is a multi-set composed of multiple sets of

ECBs and UCBs of the corresponding tasks de�ned as follows:

M =
[

8k2aff(i; j)

[

E j (Rk)Ek(Ri)

�
�
�
�
�
UCBk \

� [

8h2hep(j)

ECBh

�
�
�
�
�
�

!

(3.6)

For the UCB-Union multi-set approach the CRPD cost is upper bounded bygucb� m
i; j de�ned as

follows:

gucb� m
i; j = dmem�

�
�Mucb

i; j \ Mecb
i; j

�
� (3.7)

whereMucb
i; j andMecb

i; j are multi-sets de�ned as

Mucb
i; j =

[

8k2aff(i; j)

0

@
[

E j (Rk)Ek(Ri)

UCBk

1

A (3.8)

and

Mecb
i; j =

[

E j (Ri)

ECBj (3.9)

Here,Mucb
i; j is a multi-set comprising sets of UCBs of all low and intermediate priority tasks2

aff(i; j) addedE j (Rk)Ek(Ri) times, i.e., the maximum number of timest j can preempt eacht k

during the response time oft i . Similarly, Mecb
i; j is a multi-set comprising the set of ECBs of all

jobs oft j executing within the response time oft i . The �nal value of the preemption costgucb� m
i; j

comes from the intersection of both these multi-sets.

The multi-set approaches, i.e., UCB-Union multi-set and ECB-union multi-set, dominate their

union counterparts, i.e., UCB-union and ECB-union respectively. However, it is demonstrated

in (Altmeyer et al., 2012) that the UCB-union and ECB-union multi-set approaches are incom-

parable. Consequently, a combined approach is proposed in (Altmeyer et al., 2012) that uses

min(gecb� m
i; j ;gucb� m

i; j) as an upper bound on the CRPD.

In a recent work, Markovic et al. (Marković et al., 2020a) has shown that the combined ap-

proach, i.e., the combination of UCB-union multi-set and ECB-union multi-set, may result in

over-approximating the CRPD cost by accounting for multiple preemption combinations which

cannot occur simultaneously during runtime. Markovic et al. (Marković et al., 2020a) instead pro-

3.2 Inter-task Cache Interference Analysis 35

poses an approach based on preemption partitioning, i.e., to divide all possible preemptions that

can occur in a time interval of lengtht into partitions of single-job preemptions. Consequently,

CRPD bound for each individual preemption is then computed using the most precise method.

This leads to signi�cant improvements in taskset schedulability.

3.2.2 CRPD Computation for Single-level Set-associative LRU Caches

The derivation of the set of UCBs and ECBs of tasks is similar for both direct-mapped and set-

associative caches. However, the main challenge in the computation of CRPD for set-associative

LRU caches is to safely compute the intersection between the UCBs and ECBs. This mainly

because with set-associative LRU caches a single ECB of the preempting task can lead to a chain

of misses of multiple UCBs of the preempted task, which is not the case for direct-mapped caches.

One solution to this problem was proposed by Burguière et al. (Burguière et al., 2009) by assuming

that all UCBs of the preempted task that map to a cache set will be evicted by any ECB of the

preempting task that map to the same cache set. A similar approach is proposed in (Altmeyer

et al., 2012; Markovíc et al., 2020a) to handle set-associative LRU caches. Indeed, the approaches

proposed in (Burguière et al., 2009; Altmeyer et al., 2012; Marković et al., 2020a) to compute

CRPD for set-associative cache are safe but overly pessimistic. The only existing approach that

computes a precise bound on the CRPD for set-associative LRU caches is proposed in (Altmeyer

et al., 2010). Instead of only using the set of UCBs and ECBs of tasks to compute CRPD, Altmeyer

et al. (Altmeyer et al., 2010) introduced the notion ofresiliencede�ned as follows.

De�nition 3.8 (Resilience (Altmeyer et al., 2010)). The resilience of a memory block m at program

point P is the maximumdisturbancethat m can endure before being evicted from the cache. This

disturbance represents the number of ECBs of preempting task(s) that may be mapped to the same

cache set as m.

The Resilience of a cache blockm at a program pointP is given by

resP(m) = (CacheAssociativity� 1) � max-ageP(m) (3.10)

wheremax-ageP(m) is themaximumLRU-age ofmat program point P, i.e., the maximum number

of accesses to the same cache set asm from the last use ofm (before or at program pointP) to

the next access tom afterP (Altmeyer et al., 2010). For example, assuming memory blocksmi ,

ma, mb, mc andmd in Figure 3.5 are all accessed by taskt i and that they are all mapped to the

same cache set, the maximum LRU-age of UCBmi at program point P, i.e.,max-ageP(mi), is 4

and therefore for a set-assocative cache with 8-ways, i.e.,CacheAssociativity= 8, its resilience

according to Eq. (3.10) is(8� 1) � 4 = 3.

For every program pointP, the maximum LRU-age of a UCBm can be calculated by using a

forward analysis to �nd the maximal number of accesses from the last use ofm to program point

P and a backward analysis to �nd the maximum number of accesses from program pointP to the

36 Related Work

next access tom. The maximum LRU-age ofmat program pointP is then bounded by the sum of

the bounds returned by both analyses (see (Altmeyer et al., 2010) for a detailed description).

Figure 3.5: Illustration of the maximum LRU-age of a UCBmi . The dashes (from left to right)
denote the sequence of memory accesses during the execution of taskt i .

In set-associative caches, each cache sets can be analyzed independently. Consequently, the

set of ECBs and UCBs of tasks can be computed per cache set. For any cache sets, if UCBs
i

denote the set of UCBs of the preempted taskt i in s andECBs
j denote the set of ECBs of the

preempting task ins, then, under the resilience-analysis, the CPRD suffered by a taskt i due to

a single preemption by a higher priority taskt j in a cache sets is given bygres;s
i; j , wheregres;s

i; j is

computed as follows:

gres;s
i; j = dmem�

�
�
�UCBs

i n f mi jres(mi) � j ECBs
j jg

�
�
� (3.11)

whereres(mi) is the resilience of a memory blockmi of taskt i . Note that the CRPD cost computed

using Equation (3.11), does not include the UCBs of taskt i that may remain cached even after a

preemption by taskt j (i.e., those for whichres(mi) � j ECBs
j j). Finally, the total CRPD taskt i can

suffer due to a single preemption by taskt j is computed using Equation (3.11) for every set in the

cache, i.e.,

gres
i; j = å

8s
gres;s

i; j (3.12)

Note that resilience analysis can be incorporated into ECB-union and ECB-union multi-set based

approaches as demonstrated in Altmeyer's dissertation (Altmeyer, 2013).

3.2.3 CRPD Computation for Multi-level Caches

Computation of CRPD poses additional challenges when considering caches with multiple lev-

els. These challenges stem from cache sharing between tasks at different cache levels with the

execution of one task potentially evicting memory blocks previously loaded into one or more

cache levels by other tasks. CRPD analysis for single-level caches has been extensively stud-

ied (Lee et al., 1998; Tomiyama and Dutt, 2000; Altmeyer et al., 2010, 2012; Lv et al., 2015).

However, due to added complexity of analyzing cache con�icts at multiple cache levels only few

approaches (Chattopadhyay and Roychoudhury, 2014; Zhang and Koutsoukos, 2016) have been

presented in literature that focus on CPRD analysis for multi-level caches. Chattopadhyay et

al. (Chattopadhyay and Roychoudhury, 2014) has proposed a CPRD analysis for multi-level non-

3.2 Inter-task Cache Interference Analysis 37

inclusive caches whereas Zhang et al. (Zhang and Koutsoukos, 2016) presented a CRPD analysis

considering inclusive multi-level caches.

In both works (Chattopadhyay and Roychoudhury, 2014; Zhang and Koutsoukos, 2016), au-

thors show that the existing analysis methods used for the computation of CRPD for single-level

caches cannot be directly used for multi-level caches mainly due to theindirect effect of preemp-

tion that exists in multi-level caches.

De�nition 3.9 (Indirect Effect of Preemption). Indirect effect of preemption refers to an increase

in the intra-task cache interference, i.e., cache contention between different code segments within

a task, at a lower cache level (i.e., L2 cache) due to preemptions that evict content from a higher

cache level (i.e., L1 cache).

To illustrate, consider the example scenario shown in Figure 3.6 that shows a sequence of

memory references during the execution of a task (from left to right). The top half of Figure 3.6

shows the contents of L1 and L2 caches in case of a non-preempted execution whereas the bottom

half of Figure 3.6 shows the contents of L1 and L2 caches in case of a preempted execution. All

memory blocks used by taskt i , i.e., memory blocks A, B andm, are mapped to same L1/L2 cache

set. We can see that in case of non-preempted execution, the second reference to memory block

m is a L2 cache hit. However, due to preemption at program point P (which only evicts memory

block A from L1 cache) the same reference to memory blockm results in a L2 cache miss. For

the scenario shown in Figure 3.6, memory blockm is evicted indirectly from the L2 cache due to

an increase in cache con�icts at L2 caused by the eviction of memory block A from the L1 cache.

This phenomenon is termed as the indirect effect of preemption.

The indirect effect of preemption happens due to memory blocks that are accessed from the

higher level cache, e.g., L1, during the normal (i.e., non-preempted) execution of a task but are

accessed from the lower level caches, e.g., L2, after the preemption. Since, lower level caches are

only accessed upon a cache miss from a higher level cache, i.e., L2 is only accessed when there is

a L1 miss, the indirect effect of preemption results in increasing the number of accesses to lower

cache levels, e.g., L2, which may result in increasing intra-task cache interference in those cache

levels. It has been identi�ed in (Chattopadhyay and Roychoudhury, 2014; Zhang and Koutsoukos,

2016) that the traditional UCB concept used to analyze CRPD in single-level caches is hard to use

in case of multi-level caches due to indirect effect of preemption. This is mainly because in single-

level caches, when computing CRPD due to preemption at a program point P, the analysis only

checks the �rst access of a memory blockm (i.e., a UCB at P) after preemption. If the �rst access

to m after preemption is a cache miss, the cost of reloadingm from the main memory is added to

the CRPD cost. However, in multi-level caches, the �rst access tom after preemption may result

in a cache hit but one or more next accessed tom after preemption may result in a cache miss due

to indirect effect of preemption. Therefore, for the computation of CRPD for multi-level caches,

Chattopadhyay et al. (Chattopadhyay and Roychoudhury, 2014) introduced the notion of UCBs in

the context of two-level caches and de�ned it as

38 Related Work

Figure 3.6: Illustration of the indirect effect of preemption suffered by a memory blockm due to
eviction of another memory blockA by preemption. Both L1 and L2 caches are assumed to be
two-way set-associative having only one cache set and the cache replacement policy is LRU.

De�nition 3.10 (Useful Cache Blocks (UCBs) in a two-level cache (Chattopadhyay and Roy-

choudhury, 2014)). In a two-level cache, a memory block mx;i of taskt i is considered a UCB at

program point P if (i) mx;i is cached at P in either L1, L2 or both and (ii) mx;i is reused at program

point Q that must be reached from P without eviction of mx;i from both L1 and L2 caches.

Based on the above de�nition authors in (Chattopadhyay and Roychoudhury, 2014) presented

an analysis to determine the set of UCBs of tasks for two-level non-inclusive caches. This set of

UCBs along with the set of memory references classi�ed as L2-hits by the intra-task cache analysis

is then used to compute the CRPD. Based on the work in (Chattopadhyay and Roychoudhury,

2014), Zhang et al. (Zhang and Koutsoukos, 2016) presented an analysis to compute CRPD for

multi-level inclusive caches. The analysis in (Zhang and Koutsoukos, 2016) identi�es additional

challenges in the computation of CRPD due to cache inclusion policy and use the notion ofuseful

positive reference(UPR) to compute CRPD.

De�nition 3.11 (Useful Positive References (UPRs)). The set of UPRs of a task at any program

point P is given by the set of memory blocks whose references are positively classi�ed, i.e., AH or

PS, by the intra-task cache analysis w.r.t program point P.

The analysis in (Zhang and Koutsoukos, 2016) derives the set of positive references that can

be considered as UPRs at a program point P, i.e., the references that can lead to additional cache

misses after a preemption at P, and bound the number of times each of them may act as a UPR.

This information is then used to upper bound the CRPD any task may suffer due to preemption at

3.2 Inter-task Cache Interference Analysis 39

any program point P. The main idea of the CRPD analysis presented in (Zhang and Koutsoukos,

2016) is similar to the UCB-only approach (Lee et al., 1998) as it also only use the UPRs of the

preempted task to bound the CRPD. Due to our focus on multi-level non-inclusive caches, we will

present a detailed CRPD analysis of (Chattopadhyay and Roychoudhury, 2014) in Chapter 8.

3.2.4 From CRPD to Timing Analysis

As discussed in Section 3.1, intra-task cache interference analysis is considered part of the WCET

analysis and the resulting WCET bounds of tasks also account for the intra-task cache interfer-

ence. However, the inter-task cache interference or CRPDs also needs to be considered when

performing the timing analysis of tasks. Different approaches have been proposed in literature to

account for CRPDs in WCET or WCRT of tasks. In (Ward et al., 2014), ward et al. discussed

the task-centric and preemption centric approaches. In task-centric approaches (Schneider, 2000;

Altmeyer and Burguière, 2011), the CRPD cost of one preemption multiplied with the possible

number of preemptions a task may suffer is added to the WCET of the preempted task. In con-

trast, in preemption centric approach (Basumallick and Nilsen, 1994) an upper bound on the CRPD

is added to the WCET of the preempting task. Ward et al. (Ward et al., 2014) showed that task-

centric approaches can be very pessimistic when the number of tasks and effectively the number

of possible preemptions are high. Whereas, preemption-centric approaches can results in overes-

timations when tasks have highly variant working set sizes (WSSs). To remove the pessimism in

task-centric and preemption-centric approaches Ward et al. (Ward et al., 2014) proposed a mixed-

approach where CRPD is accounted for in the WCET of both the preempting and the preempted

task. However, accounting for CRPDs in the WCET of a task can result in pessimistic WCET

bounds which in turn will result in low processor utilization. Busquets-Mataix et al. (Busquets-

Mataix et al., 1996) instead proposed an alternate approach to disintegrate the CRPD and the

WCET of tasks. In (Busquets-Mataix et al., 1996) authors compute an upper-bound on the CRPD

due to one preemption from a higher priority taskt j of a low priority taskt i using Equation. (3.1).

The resulting value of the CRPD is then added into the classical WCRT analysis given by Joseph

and Pandya (Joseph and Pandya, 1986). The resulting WCRT based schedulability analysis is

given by the following equation:

Rk+ 1
i = Ci + å

8 j2hp(i)

�
Rk

i

Tj

�
� (Cj + gone

i; j) (3.13)

wheregone
i; j accounts for the CRPD one job of taskt i may suffer due to preemption by a higher

priority taskt j . Altmeyer et al. (Altmeyer et al., 2011) also used the same WCRT analysis but

bounded the value of CRPD using Equation. (3.4). Essentially, the WCRT formulation given by

Equation (3.13) can be used by any analysis that explicitly considers the CRPD each job of task

t j may cause on taskt i . However, a disadvantage of analyses by Equation (3.13) is that the worst-

case CRPD costgone
i; j is always assumed each time taskt i is preempted by taskt j . As a result,

some cache evictions can be included multiple times.

40 Related Work

Staschulat et al. (Staschulat et al., 2005) used a slightly different formulation of the schedula-

bility analysis as they already accounted for the number of possible preemptions of each task.

Instead of computing the CRPD cost due to one preemption of taskt i by task t j , the work

in (Staschulat et al., 2005) computes an upper bound on the total CRPD taskt i may suffer due

to all jobs of taskt j that may execute in a time interval of lengtht. The resulting CRPD bound

is then incorporated into the schedulability analysis. Similar to (Staschulat et al., 2005), Altmeyer

et al. (Altmeyer et al., 2012) and Markovic et al. (Marković et al., 2020a) also used the same for-

mulation of WCRT analysis when using the multi-set based approaches that compute CRPD of

tasks over a given time interval. The schedulability analysis proposed by (Staschulat et al., 2005;

Altmeyer et al., 2012) when accounting for CRPDs in the WCRT analysis is given as follows:

Rk+ 1
i = Ci + å

8 j2hp(i)

�
Rk

i

Tj

�
� Cj + å

8 j2hp(i)

gmul
i; j (3.14)

wheregmul
i; j is an upper bound on the total CRPD taskt i may suffer due preemptions by a higher

priority taskt j in a time interval of lengtht. In general, Equation (3.13) and Equation (3.14) both

can be used to incorporate CRPDs into the schedulability analysis depending the method used to

compute the CRPD cost.

3.3 Other Approaches to Handle Intra- and Inter-task Cache Inter-

ference

The focus of this work is on the timing analysis techniques where caches are used without restric-

tions, however many approaches have been presented in literature to explicitly manage intra- and

inter-task cache behavior by using different methods such as cache partitioning, cache locking,

task layout optimization and enhanced scheduling models.

3.3.1 Cache Partitioning and Locking

Cache partitioning aims to eliminate potential inter-task cache con�icts by partitioning the cache

between tasks. The cache is divided into several sets or partitions which might be of different

sizes. These partitions are then assigned either exclusively to different tasks or are shared between

a subset of tasks to reduce inter-task cache interference. Different approaches have been presented

in literature for cache partitioning based on hardware (Kirk and Strosnider, 1990; Chousein and

Mahapatra, 2005) and software based implementations (Wolfe, 1993; Mueller, 1995; Liedtke et al.,

1997; Suhendra and Mitra, 2008). However, software-based cache partitioning is usually preferred

due to its several advantages over the hardware based cache partitioning (Mueller, 1995). Software

based cache partitioning approaches are either implemented in the OS or in the compiler. First soft-

ware based approach to cache partitioning was proposed by Wolfe (Wolfe, 1993). His approach

was similar to the page coloring approach later proposed by Liedtke et al. (Liedtke et al., 1997).

Page coloring is the most commonly used software based cache partitioning technique (Mueller,

3.3 Other Approaches to Handle Intra- and Inter-task Cache Interference 41

1995; Liedtke et al., 1997; Guan et al., 2009). It uses virtual to physical address translation at the

OS-level to map page addresses to prede�ned cache regions to avoid overlap between cache space.

Another approach that uses page coloring to reduce inter-task cache interference was presented by

Liedtke et al. (Liedtke et al., 1997). When using cache partitioning, usually the main goal is to

�nd the number of partitions and their respective sizes. The ideal scenario is where each task is

assigned its own private cache partition, i.e., to entirely eliminate inter-task cache interference.

However, this is usually not possible due to limited cache space. On the other hand, if tasks are

allocated smaller amount of cache space w.r.t the sizes of the tasks, the intra-task cache interfer-

ence may increase leading to an increase in the WCET of tasks. This is the reason why cache

partitioning based approach are usually subjected to a trade off between intra- and inter-task cache

interference (Kim et al., 2013).

Busquets et al. (Busquets-Mataix et al., 2000) proposed a cache partitioning technique that al-

lows some tasks to share a cache partition, whereas some tasks are allocated individual partitions.

They based their cache partition assignment on task priorities, i.e., higher priority tasks will be

assigned to same-sized private partitions, whereas the remaining tasks with lower priorities will

share one common partition. Plazar et al. (Plazar et al., 2009) proposed an approach to cache

partition size selection with the goal of minimizing the total processor utilization. Cache parti-

tioning problem was considered as an optimization problem by Bui et al. (Bui et al., 2008). The

authors used genetic algorithms to minimize the worst-case system utilization such that the sum

of all cache partitions cannot exceed the total cache size. Altmeyer et al. (Altmeyer et al., 2014,

2016) presented a cache partitioning algorithm that is optimal under certain cache-modeling as-

sumptions. However, the authors concluded that the trade off between intra- and inter-task cache

interference often favors sharing the cache rather than partitioning it.

Cache locking refers to the idea to prevented some cache lines from being overwritten once

loaded into the cache. It is a hardware feature which is not available in all modern processors.

Cache locking provides a predictable and controllable access to shared caches hence, improving

the performance of real-time applications. A number of hardware and software based approaches

have been proposed in literature that use the cache locking mechanism. The concept of cache

locking in the context of hard real-time system was �rst introduced by Campoy et al. (Campoy

et al., 2001). The authors proposed a genetic algorithm that selects the best instructions of tasks

to be locked in the cache such as to minimize the WCET of tasks. Their approach was designed

for preemptive systems and the results showed that their approach calculates the response time

of tasks with negligible overestimation. Puaut and Decotigny (Puaut and Decotigny, 2002) pre-

sented two algorithms that use the memory access patterns of tasks to determine which instructions

should be locked in the cache. Their approaches were designed to minimize intra-task and inter-

task cache interference. The experimental results show that the algorithms presented by Puaut

and Decotigny (Puaut and Decotigny, 2002) have a much better performance in comparison to

the static cache analysis. Puaut and Arnaud (Puaut and Arnaud, 2006) presented a dynamic cache

locking scheme. Basic blocks are extracted using the CFGs of tasks and these basic blocks are

then mapped to different regions in the cache. These regions can then be locked or unlocked based

42 Related Work

on different parameters used by the locking algorithm. Falk et al. (Falk et al., 2007) and Vera et

al. (Vera et al., 2003) proposed modi�cations to the compiler to extract information regarding the

data/instruction access pattern by tasks. This information was then used to lock cache lines. Liu

et al. (Liu et al., 2009a,b) also extracted the information available at compile time to propose al-

gorithms to perform cache locking considering instruction caches. The objective was to minimize

the worst-case CPU utilization by using both static and dynamic cache locking. The approaches

presented in (Liu et al., 2009a,b) are applicable to both single- and multi-tasking systems and show

a better performance than the approach presented in (Falk et al., 2007). An ILP based dynamic

cache locking scheme was presented by Aparicio et al. (Aparicio et al., 2011). The idea is to lock

the mostly used cache lines into the instruction cache at every context switch. Their approach

targeted HRT systems and deals with both intra- and inter-task cache interferences.

In more recent works, Ding et al. (Ding et al., 2014) highlighted the limitations of region-

based dynamic locking and proposed a partial cache locking strategy that can exploit the bene�ts

of the unlocked cache lines. The key idea of this work was the notion of loop-driven locking,

i.e., given a series of nested loops, each line selected for locking at an inner loop can also be

unlocked/locked at the exit/entry point of any of the outer loops. The approach presented by Ding

et al. (Ding et al., 2014) result in a better performance in comparison to the region-based dynamic

locking as proposed by Puaut and Arnaud (Puaut and Arnaud, 2006). The �rst work to evaluate

the combination of cache partitioning and locking using a real hardware and OS in the context of

multi-core real-time systems was presented by Mancuso et al. (Mancuso et al., 2013). They use a

pro�ling mechanism to analyze the memory access pattern of tasks and obtain the most frequently

accessed memory pages. Page coloring is then used to optimize the task placement in the cache.

Furthermore, cache locking by-line, by-master and by-way was then used to provide intra- and

inter-core cache isolation between tasks. Their approach was implemented on the Linux kernel

and was evaluated on the actual hardware, i.e., ARM Cortex-A9. The work in (Mancuso et al.,

2013) was extended and ported to Freescale P4080 in (Mancuso et al., 2015).

3.3.2 Task Layout Optimization

The position of a memory reference in the main memory in�uences its location in the cache. Task

layout optimization techniques focus on reducing the intra- and inter-task cache interference by

modifying the position of code segments within a task and by changing the layout of entire task

in the main memory without necessarily creating cache partitions. To reduce intra-task cache

con�icts, i.e., decrease in the number of cache misses during the execution of a task in isolation,

Tomiyama and Yasuura (Tomiyama and Yasuura, 1997) proposed a code placement technique.

The problem is formulated as an integer linear programming (ILP) problem, by which an optimal

placement of task's code segment in cache is found. Focusing on intra-task cache interference,

Kowarschik and Weiss (Kowarschik and Weiß, 2003) also proposed several data layout optimiza-

tion techniques such as loop interchange, etc., to increase locality and reduce the number of cache

misses. Lokuciejewski et al. (Lokuciejewski et al., 2008) proposed different algorithm aiming to

have tighter WCET bounds. They focused on functions that are frequently called by the task and

3.3 Other Approaches to Handle Intra- and Inter-task Cache Interference 43

tried to allocate them contiguous space in the main memory. In particular, they use a greedy algo-

rithm and a heuristic to achieve such a goal. A cache-aware code positioning approach has been

proposed by Falk and Kotthaus (Falk and Kotthaus, 2011). Their goal was to reduce intra-task

cache interference by building con�ict graphs between different code segments of a task. Tasks

are split in fragments and a greedy approach-based heuristic is used to position different fragments

in the main memory. Mezzetti and Vardanega (Mezzetti and Vardanega, 2013) also proposed a

cache-aware approach that optimizes procedure positioning to favor incremental development for

industrial needs.

Focusing on inter-task cache con�icts, Gebhard and Altmeyer (Altmeyer and Gebhard, 2007)

proposed an approach to optimize task layout in memory to improve task set schedulability by

minimizing the inter-task cache con�icts. Their approach showed that with different task layouts

in memory inter-task cache interference can be signi�cantly reduced. However, their approach

to bound the CRPDs was pessimistic since all ECBs of a task were treated as UCBs. Lunniss

et al. (Lunniss et al., 2012) later improved the work done in (Altmeyer and Gebhard, 2007) by

using a more tighter approach for CRPD calculation. They proposed a simulated annealing based

approach to optimize task layout in memory to reduce the inter-task cache interference and ef-

fectively improve schedulability. It has been identi�ed in (Altmeyer et al., 2014, 2016) that an

optimized layout of tasks in memory can outperform an optimal cache partitioning approach in

different scenarios.

3.3.3 Enhanced Scheduling Models

To reduce the impact of preemptions on task's timing propertieslimited-preemptivescheduling

techniques have also been proposed (Wang and Saksena, 1999; Baruah, 2005; Burns, 1993). Lim-

ited preemption models attempt to minimize preemption overheads by reducing the number of

allowed preemptions and/or allowing preemption at program locations where the effect of preemp-

tion is minimized. Limited preemptive scheduling can be subdivided into different streams, i.e.,

preemption thresholds scheduling (Wang and Saksena, 1999), �xed preemption points schedul-

ing (Burns, 1993) and deferred preemption scheduling (Baruah, 2005). In preemption threshold

scheduling, each task is assigned a regular priority and a preemption threshold, and the preemption

is allowed to take place only when the priority of the arriving task is higher than the threshold of the

running task. In �xed preemption point scheduling, a task implicitly executes in non-preemptive

mode and preemption is allowed only at prede�ned locations inside the task code. In deferred

preemption scheduling, for each task the longest interval that can be executed non-preemptively is

speci�ed, a higher priority task can only preempt a lower priority task after the �nalization of this

time interval. Historically, limited preemptive scheduling methods only aim to increase schedula-

bility by controlling preemptions without considering the preemption cost, e.g., CRPD. However,

under the limited preemptive scheduling paradigm, there exist few approaches in literature that

focus on incorporating intra- and inter-task cache interference into schedulability analysis.

Marinho et al. (Marinho et al., 2012a,b) computed an upper-bound on the inter-task cache in-

terference that any task may suffer under deferred preemption scheduling. A function based on

44 Related Work

task's execution �ow is used to compute the potential inter-task cache interference at a given pro-

gram point during the execution of task. The resulting cost is then incorporated into the WCET

of task. Bril et al. (Bril et al., 2014) presented a schedulability analysis for preemption thresh-

old scheduling that also accounts for inter-task cache interference. The techniques presented

in (Altmeyer et al., 2012) to bound inter-task cache interference under fully preemptive schedul-

ing are adapted to preemption threshold scheduling. Under �xed preemption point scheduling,

Ramaprasad and Mueller (Ramaprasad and Mueller, 2006) proposed an approach to computer

inter-task cache interference at different preemption points and due to preemption patterns in fully

preemptive periodic tasks. They also proposed a WCRT analysis (Ramaprasad and Mueller, 2008)

that accounts for CRPD suffered by periodic tasks having only one non-preemptive region when

scheduled using �xed preemption point scheduling. The main challenge in �xed preemption point

scheduling is the selection of preemption points. To this end, several preemption point selection

algorithms have been proposed by Bertogna et al. (Bertogna et al., 2011), Peng et al. (Peng et al.,

2014) and Cavicchio et al. (Cavicchio et al., 2015). Cavicchio et al. (Cavicchio et al., 2015) iden-

ti�ed the relationship between inter-task cache interference and preemption point selection and

proposed different algorithms for preemption point selection that reduces inter-task cache inter-

ference. In his PhD dissertation (Marković, 2020), Filipe Markovic has exclusively worked on

tightening the CRPD bound for tasks scheduled using �xed preemption point scheduling produc-

ing several publications (Markovic et al., 2017; Marković et al., 2018, 2020b).

3.4 Memory Bus Contention Analysis

Several works have been presented in literature to bound additional delays that impact task execu-

tions due to memory bus contention and integrate these delays into schedulability analyses (Maiza

et al., 2019).

In one of the earlier works Rosen et al. (Rosen et al., 2007a) proposed a TDMA based bus

arbitration policy to bound memory bus contention. A static schedule is used to allocate different

time slots to tasks that need to access the bus. A dedicated memory directly connected to the

bus arbiter is used to store this schedule. The approach resulted in a reasonable performance

since it prevented any deadlines miss due to contention at the bus. However, the approach used

is not �exible and has many pitfalls, i.e., it assumes a table-driven arbiter which are typically not

available in modern processors and it also needs to know the workload of tasks running on the

system apriori, in order to avoid situations where the bus contention increases the memory access

latency.

Schliecker et al. (Schliecker et al., 2010) proposed an event based model to bound the shared

resource (i.e., memory bus) contention. In this approach, tasks that are concurrently executing on

the processor can access the global resources using events that de�ne the maximum and minimum

access to a resource in a given time window. Every task is assigned a static priority and the time

to make a resource transaction is bounded. Therefore, the worst-case interference of a task can be

bounded by considering the interference from all its higher priority tasks. The problem with this

3.4 Memory Bus Contention Analysis 45

analysis is that it can overestimate the number of requests to a resource, since it always considers

a minimum time interval between two accesses to a resource.

Kelter et al. (Kelter et al., 2011) and Chattopadhyay et al. (Chattopadhyay et al., 2010) pro-

posed a WCRT analysis techniques to bound memory bus contention considering a TDMA bus

and a L1 instruction cache. However, these approaches have limited applicability as they assumed

separate buses and memories for both code and data which is uncommon in commodity hardware.

Moreover, these methods assume non-preemptive scheduling and therefore does not account for

inter-task cache interference.

Schranzofer et al. (Schranzhofer et al., 2010, 2011) presented a resource adaptive framework

for the WCRT analysis of real-time tasks. In their work, the authors proposed a task model in

which tasks are composed of superblocks, with each superblock having a unique entry and exit

point. These superblocks execute in sequence with each superblock having a WCET and a worst-

case number of access requests to a shared resource. Furthermore, these superblocks are assumed

to have different execution phases, i.e., acquisition, execution and replication phases. Based on the

operation of these phases different task execution models have been presented. However �tting

tasks into these models is a cumbersome task. For example, the dedicated model requires to know

apriori the memory access patterns of tasks in order to prefetch the required data for the compu-

tation phase. This requires the communication phases to be synchronized with the availability of

the bus slot for that task, which may not hold even for a predictable arbiter employing TDMA.

In a similar work, Pellizzoni et al.(Pellizzoni et al., 2010) proposed an approach that derives

arrival curves for the memory access patterns of tasks and compute an upper bound to the mem-

ory contention delay incurred. Their approach is based on the concept that tasks are composed

of superblocks that are executed in pre-assigned time slots. Experimental results show that this

approach can be used to bound the memory delay incurred by tasks however, with large number

of tasks the proposed model limits the applicability of the solution.

Dasari et al. (Dasari et al., 2011a) presented an analysis to bound the maximum number of

bus requests that can be made by a task in a given time interval using performance counters.

Consequently, the bus contention suffered by the tasks is modeled as an additional term in the

WCRT analysis. This work was later extended in Dasari et al. (Dasari et al., 2016). Although

their analysis provides reasonably precise estimates on the memory access demand of tasks but, it

uses non-preemptive scheduling and assumes partitioned caches and therefore does not take cache

related effects into account. Huang et al. (Huang et al., 2016) also presented a WCRT analysis that

accounts for shared memory bus contention that uses a �xed-priority arbitration scheme. Their

analysis has a speedup factor of 7 when used with a simple task allocation algorithm. However,

their model does not consider the impact of caches on the memory access demand of tasks which

may potentially lead to optimistic results. Davis et al. (Davis et al., 2018b) explicitly modeled

interference on cores, caches, memory bus and the main memory in a multicore system. The

analysis in (Davis et al., 2018b) also accounts for inter-task cache interference, i.e., CRPDs, when

bounding memory bus contention that can be suffered by the tasks under different bus arbitration

policies.

46 Related Work

3.5 Different Perspective of Caches

Most of the state-of-the-art approaches that focus on analyzing the impact of caches on the timing

analysis of tasks look at the negative perspective of caches, i.e., due to inter-task cache interfer-

ence or CRPDs that have a negative impact on schedulability. However, caches can also have a

positive impact on schedulability due tore-useof cached content between different code segments

within a task or between different job executions of the same task. This cache re-use has been

considered in the existing analysis when computing the WCET of tasks in the form of persistence

analysis (see Section 3.1.3) however, the notion of cache re-use can also be used across different

job executions of tasks. To illustrate, consider Figure 3.7 that depicts the same example schedule

as shown in Figure 3.4 but presents a different perspective. In Figure 3.7, while the red boxes show

Figure 3.7: Example schedule to highlight re-usable cache blocks between different jobs of taskt i

cache blocks of taskt i that needs to be reloaded from the main memory due to evictions by the

preempting taskt j , i.e., CRPD, the green boxes show cache blocks of taskt j that remain in the

cache after the execution of �rst job oft j . All cache blocks represented using green boxes will be

already available in the cache when second and third job of taskt j start executing. Consequently,

these existing cache blocks can be reused by the second and third job of taskt j , which results in

reducing the number of main memory accesses generated by those jobs. This reduction in main

memory accesses may also lead to a reduction in the execution time of second and third job of task

t j eventually, tightening the WCRT of taskt i .

There exist few works in the state-of-the-art that exploit the observation shown in Figure 3.7.

In one of the earlier works, Nemer et al. (Nemer et al., 2007, 2008) presented analyses for both

direct-mapped and set-associative caches that consider the cache re-use between different jobs

of a task and showed that inter-task cache reuse can have a signi�cant affect on schedulability.

Their approaches are based on the computation of entry and exit cache states after the execution

of each job of a task that leads to a set of memory accesses that must result in cache hits due

to previous instances of a task. However, their approaches are limited to non-preemptive task

sets under static scheduling and do not apply to preemptive systems with commonly used priority

based scheduling schemes. Recently, in his PhD dissertation (Tessler, 2019), Corey Tessler has

highlighted the bene�ts of cache re-use between different threads of a multi-threaded task. In the

3.5 Different Perspective of Caches 47

context of multi-thread real-time systems, Tessler et al. (Tessler and Fisher, 2016, 2018, 2019) has

made several important contribution with focus on inter-thread cache bene�ts.

In the works of Nemer et al. (Nemer et al., 2007, 2008) and Tessler et al. (Tessler and Fisher,

2016, 2018, 2019) the basic idea is the same, i.e., apositiveperspective of caches, which is also the

main focus of this thesis. However, we consider a more generic system model, i.e., �xed-priority

fully preemptive scheduling, with single threaded real-time tasks. We will start by exploring the

impact of intra-task cache re-use on the inter-task cache interference suffered by the task consid-

ering single-level direct mapped caches. We will then extend our analysis to set-associative LRU

and multi-level caches. Finally, we will demonstrate how a tighter bound on the inter-task cache

interference due to inter-task cache reuse may impact the memory bus contention in multicore

systems.

Part I

Analysis of Single-level Direct-mapped

Caches

48

Chapter 4

Using Cache Persistence to Improve the

Bounds on Inter-task Cache

Interference

As discussed in Chapter 3 (Section 3.2) many different approaches have been presented in the

state-of-the-art to bound inter-task cache interference. These approaches (Busquets-Mataix et al.,

1996; Lee et al., 1998; Tomiyama and Dutt, 2000; Staschulat et al., 2005; Tan and Mooney, 2007;

Altmeyer et al., 2011, 2012; Marković et al., 2020a) use the set of ECBs and UCBs of tasks to

bound inter-task cache interference (or more speci�cally CRPD) and incorporate it into the WCRT

analysis. However, all these approaches may result in pessimistic WCRT bounds due to the fact

that they only consider the effect of preemptions on the memory access demand of the preempted

task, but not thevariation in memory access demand of the preempting tasks. Instead, they all

assume that every job of a higher priority taskt j preempting a lower priority taskt i will ask for

its maximum memory access demand, i.e., its worst-case memory access demand in isolation.

Although this may be true for the �rst job released by the preempting taskt j , subsequent jobs of

t j may re-use most of the data and instructions that were already loaded in the cache during the

execution of its previous jobs (e.g., see Figure 3.7).

In this chapter, we have addressed this issue by proposing a novel analysis that captures the re-

use of cache blocks between job executions, to reduce the negative impact of caches on the WCRT

bound. Our approach is orthogonal to state-of-the-art methods used for CRPD calculations and can

be used independently with any of the methods described in Section 3.2. The main contributions

made in this chapter are as follows:

1. We introduced the concept ofpersistent cache blocks(PCBs) in the context of WCRT analy-

sis. PCBs are cache blocks that, once loaded into the cache by a taskt i will never be evicted

whent i runsin isolation. This concept allows us to capture the re-use of cache blocks be-

tween executions of the same task and reduce the memory access demand for subsequent

jobs of a task, making its memory access demandvariable,

50

4.1 Assumptions on the System Model 51

2. A cache-persistence-aware WCRT analysis for �xed-priority preemptive systems that ex-

ploits the variable memory access demand of preempting tasks to tighten the WCRT bound,

3. An extension of the proposed WCRT analysis to a multi-set approach that further improves

the WCRT bound by considering the total memory access demand of the preempting tasks

over a task's response time rather than the worst-case memory access demand of each inde-

pendent job, and

4. An experimental evaluation showing that our cache-persistence-aware WCRT analysis re-

sults in up to 13% higher task set schedulability than state-of-the-art approaches.

4.1 Assumptions on the System Model

In addition to the general system model detailed in Chapter 2, in this chapter we make the follow-

ing assumptions on the system model.

• We consider a single-core platform with a single level (L1) direct-mapped instruction cache.

• We consider a task setG comprisingn sporadic constrained deadline tasksf t 1; t 2; :::t ng.

Each taskt i 2 Gis de�ned by a triplet(Ci ;Ti ;Di), whereCi is the worst-case execution time

(WCET) of t i , Ti is its minimum inter-arrival time andDi is the relative deadline of each

instance or job oft i .

• In addition to the WCETCi , we use separate terms to measure the worst-case processing

demand and memory access demand of each task.PDi denote the worst-case processing

demand oft i , i.e., it only accounts for execution requirements oft i and does not include

the time spent byt i to perform memory operations.MDi denote the worst-case memory

access demand of any job of taskt i , i.e., the maximum time during which any job oft i

is performing memory operations. Note that the value ofCi , PDi andMDi are determined

assumingt i executes inisolation. It obviously hold thatCi > PDi andCi > MDi , but it

also holds thatCi � PDi + MDi
1 sincePDi andMDi may result from different execution

scenarios oft i along different execution paths (e.g., due to different inputs).

• The WCRT of taskt i , denoted byRi , is de�ned as the longest time between the arrival and

the completion of any job oft i .

• In this work, we consider that preemption costs only refer to additional cache reloads due

to those preemptions. Other overheads, e.g., due to context switches, scheduler invocations

and pipeline �ushes are assumed to be included in the WCET.

• We assume a timing-compositional architecture (Hahn et al., 2015), i.e., the timing contri-

bution of memory overheads can be analyzed separately from other architectural features.

1It is experimentally con�rmed sinceCi � PDi + MDi for several benchmarks from the Mälardalen Benchmark
Suite (Gustafsson et al., 2010) that were analyzed using the Heptane (Hardy et al., 2017) static WCET estimation tool
for a MIPS R2000/R3000 architecture.

52 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

• The worst-case time to reload on cache block from the main memory is bounded bydmem.

The list of important symbols used in this chapter is provided in Table 4.1.

Table 4.1: List of important symbols used in Chapter 4

Symbol Description
G Task set of sizen
t i Task with indexi
Ci Worst-case execution time of taskt i in isolation
Ti Minimum inter-arrival time of taskt i

Di Relative deadline of taskt i

Ri Worst-case response time of taskt i

Run
i Worst-case response time of taskt i computed using the CPRO-union approach

Rmul
i Worst-case response time of taskt i computed using the CPRO multi-set approach

PDi Worst-case processing demand of taskt i in isolation
MDi Worst-case memory access demand of taskt i in isolation
MDr

i Residual memory access demand of taskt i in isolation
M̂Di(t) Total memory access demand of taskt i in a time interval of lengtht
hp(i) The set of tasks with higher priority thant i

hep(i) The set of tasks with higher priority thant i includingt i , i.e., hep(i) = hp(i)[t i .
aff(i; j) The set of tasks with priorities higher than or equal to the priority oft i (including

t i), but strictly lower than that oft j . This set contains the intermediate priority
tasks, which may affect the response time oft i , but may also be preempted byt j .

dmem Time to reload one cache block from the main memory
MOi Memory overhead of taskt i

Ek(Ri) The maximum number of jobs any taskt k can release during the response timeRi

of taskt i

ECBi The set of evicting cache blocks (ECBs) of taskt i

UCBi The set of useful cache blocks (UCBs) of taskt i

PCBi The set of persistence cache blocks (PCBs) of taskt i

nPCBi The set of non-persistence cache blocks (nPCBs) of taskt i

Mpcb
j;i Multiset containing set of PCBs of taskt j

Mecb
j;i Multiset containing set of ECBs of all task in hep(i) nt j

Mecb� aff
j;i Multiset containing set of ECBs of all task in aff(i; j)

Mecb� hp
j;i Multiset containing set of ECBs of all task in hep(j) nt j

r j ;i Cache persistence reload overhead (CPRO) of one job of taskt j during the
response time of taskt i .

r̂ j ;i Total cache persistence reload overhead (CPRO) of taskt j in an interval of lengtht
while executing during the response time of taskt i .

gi; j (t) Total cache related preemption delay (CRPD) suffered by taskt i in a time interval
of lengtht due to preemptions by a higher priority taskt j 2 hp(i) .

gmul
i; j Upper bound on the total cache related preemption delay (CRPD) suffered by task

t i in a time interval of lengtht due to preemptions by a higher priority task
t j 2 hp(i) .

r mul
j;i (t) Upper bound on the total cache persistence reload overhead (CPRO) of taskt j in

an interval of lengtht while executing during the response time of taskt i .

4.2 Problem De�nition 53

4.2 Problem De�nition

In this section, �rst we provide a basic example to af�rm the motivation behind the work presented

in this chapter. Later, using this example as a base we provide some useful de�nitions that will be

used in rest of the chapter.

4.2.1 Motivational Example

As discussed in Chapter 3 (Section 3.2), the impact of a higher priority taskt j on the WCRT of

any lower priority taskt i can be estimated in a fairly accurate manner by analyzing the mapping of

UCBs and ECBs in the cache, i.e., by computing the CRPD caused by taskt j on taskt i . However,

the impact oft i on the memory access demand oft j is ignored during the WCRT analysis oft i .

Yet, higher priority tasks may often execute more than one job during the response time of a lower

priority task. Therefore, to accurately estimate the WCRT of a lower priority taskt i , one must

consider the impact of the preempted tasks on the memory access demand of each job released

by the preempting tasks. In the literature, this is dealt with by assuming that the memory access

demand for each job of a higher priority taskt j executing within the response time of a lower

priority task t i is always maximum, i.e, equal to the maximum memory access demandMD j .

Following that assumption, the total memory overheadMOi that must be accounted byt i during

its worst-case response time is upper bounded by the following equation derived in (Altmeyer

et al., 2015; Davis et al., 2018b).

MOi = MDi + å
8 j2hp(i)

�
Ri

Tj

�
� (MD j + gi; j) (4.1)

There is a signi�cant level of pessimism involved in Equation (4.1), as we will demonstrate

using the example below.

Example 4.1. Consider the two taskst 1 andt 2 (wheret 1 has a higher priority thant 2) presented

in Figure 4.1. We assume that the time dmem needed to access the main memory and load a

memory block to the cache is equal to10 time units and that the memory access demand oft 1 and

t 2 are MD1 = 60 and MD2 = 802, respectively. We also assume that memory blockf 9g accessed

by t 1 contains data that must be updated at the beginning of the execution of each of its jobs.

Figure 4.1 depicts a possible schedule together with the evolution of the cache contents over time.

The memory blocks that must be loaded/reloaded from the main memory after each preemption or

resumption are shown in bold with a bigger font size in Figure 4.1.

Initially, the cache is empty andt 2 loads all its ECBs from the main memory as soon as it

starts to execute. Whent 1 preemptst 2 for the �rst time, it also loads all its ECBs into the cache

with a memory access demand of MD1 = 60. Since there is an overlap between the mapping of

ECBs oft 1 and the mapping of UCBs oft 2 in the cache,t 1 evicts some of the useful cache blocks

2Note that because the same cache block may be used by several memory blocks of the same taskt i , the worst-case
memory access demandMDi of t i may be larger than the number of ECBs oft i multiplied bydmem.

54 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

Figure 4.1: Schedule and cache contents for a tasksetf t 1; t 2g with C1 = 100,C2 = 400,MD1 = 60,
MD2 = 80, ECB1 = f 5;6;7;8;9;10g, ECB2 = f 1;2;3;4;5;6g, UCB1 = f 6;7g, UCB2 = f 5;6g,
PCB1 = f 5;6;7;8;10g andPCB2 = f 1;2g. The schedule assumes thatt 1 releases its �rst job with
an offset of 100 time units.

of t 2. In turn, whent 2 resumes its execution, it has to account forg2;1 = 2� dmem= 20, in order to

load cache blocksf 5;6g again from main memory. However, when the second job oft 1 preempts

t 2, one can notice that it no longer needs to reload all of its ECBs. In fact, most of the memory

blocks needed byt 1 are still in the cache. As a consequence,t 1 must only reload memory blocks

f 5;6g, which have been evicted byt 2, as well as memory blockf 9g that must be reloaded for each

new job execution oft 1. The same scenario happens for all jobs released byt 1, except the �rst

one. The actual memory access demand for the second and third job oft 1 is hence much less (i.e.,

30) than MD1 = 60, illustrating that it is not constant across all job executions.

In the presented example, memory blocksf 5;6;7;8;10g are calledpersistent cache blocks

(PCBs), as they are never evicted from the cache once loaded whent 1 executes in isolation. In

contrast, cache blockf 9g is anon-persistent cache block(nPCB). nPCBs may be cache blocks that

are shared by several memory blocks of the same task, or simply data (e.g., sensor readings, value

on an input port, global shared data) that must be reloaded before each access. One must note that

PCBs and nPCBs are different from the notions of UCBs and ECBs in the sense that it does not

matter if they are referenced more than once during a single execution of a task. However, a PCB

must never be evicted from the cache by the task itself once it is fetched from main memory.

The state-of-the-art does not consider PCBs while calculating the memory overhead suffered

by a taskt i in case of preemptions. This results in pessimistic memory overhead evaluations and

hence pessimistic WCRT computations. This can easily be shown using the example in Figure 4.1.

4.2 Problem De�nition 55

If t 2's memory overhead is computed using Equation (4.1), one would get:

MO2 = MD2 + 3� MD1 + 3� g2;1 = 80+ 3� 60+ 3� 20= 320

Equation (4.1) considers the worst-case memory access demand, i.e.,MD1 for each job oft 1 that

executes during the response time oft 2. As we have shown in Example 4.1, the actual memory

access demand of the second and third job oft 1 is in fact much less. Considering the PCBs oft 1

while calculating the memory overheadMO2, the resulting value is given as:

MO2 = MD2 + MD1 + 2� (MD1 � j PCB1j � dmem) + 3� g2;1

= 80+ 60+ 2� (60� 5� 10)+ 3� 20= 220

This simple example highlights the necessity to consider PCBs when calculating the memory

access demand and hence the WCRT of a task.

4.2.2 Problem Formalization

The previous example casually introduced the notions of PCB and nPCB. We now formally de�ne

those two types of cache blocks associated to the execution of a taskt i .

De�nition 4.1 (Persistent cache block). A memory block of a taskt i is persistent if once loaded

by t i , it will never be invalidated or evicted from the cache whent i executes in isolation.

De�nition 4.2 (Non-persistent cache block). A non-persistent cache block (nPCB) of taskt i is an

ECB that is not a PCB. That is, it is a memory block that may need to be reloaded at some point

during the execution oft i (in the same or different jobs), even whent i executes in isolation.

The sets of PCBs and nPCBs associated to a taskt i are denoted byPCBi andnPCBi , respec-

tively. It follows from the two previous de�nitions that each cache block associated to a taskt i

(ECBi) is either a PCB or a nPCB, hence the following two relations:

PCBi [nPCBi = ECBi (4.2)

PCBi \ nPCBi = /0 (4.3)

By De�nition 4.1, if t i executes in isolation, a PCB is loaded only once from the main mem-

ory and hence contributes only once to the total memory access demand oft i . Even though all

the ECBs oft i (i.e., PCBs and nPCBs) contribute to its worst-case memory access demand in

isolation (i.e.,MDi), only the nPCBs, a subset ofECBi , must be loaded by more than one job oft i .

Considering the worst-case memory access demand for each job released by higher priority tasks

thant i when computing the WCRT oft i , as is implicitly the case in Equations (3.13) and (3.14),

is thus pessimistic. Therefore, we de�ne theresidual memory access demandof a taskt i as the

worst-case memory access demand oft i assuming that all the PCBs oft i are already in the cache

memory and therefore result in cache hits when being accessed.

56 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

De�nition 4.3 (Residual memory access demand). The residual memory access demand MDr
i of

task t i is the worst-case memory access demand over all the jobs oft i when all its PCBs are

already loaded in the cache memory. Therefore, MDr
i only accounts for the accesses to the nPCBs

of t i and can occur during any job execution oft i .

An upper bound on the total memory access demandMDi(t) of a taskt i within a time window

of lengtht whent i executes in isolation is proven in the following lemma.

Lemma 4.1. If a taskt i executes in isolation, then its total memory access demand MDi(t) within

a time window of length t is upper bounded bŷMDi(t) where

M̂Di(t)
def= min

��
t
Ti

�
MDi

�
t
Ti

�
MDr

i + j PCBi j � dmem

�
(4.4)

Proof. We prove that
l

t
Ti

m
MDi and

l
t
Ti

m
MDr

i + j PCBi j � dmemare both upper bounds on the total

memory access demandMDi(t) of t i . Thus, the minimum of those bounds is also an upper bound

onMDi(t).

1. t i can release at most
l

t
Ti

m
jobs in a time window of lengtht. By de�nition of MDi , each of

these jobs has a worst-case memory access demandMDi . Therefore,
l

t
Ti

m
MDi is an upper

bound on the total memory access demand oft i .

2. Recall from Equations (4.2) and (4.3) thatPCBi [nPCBi = ECBi andPCBi \ nPCBi = /0.

Characterizing the worst-case contribution of the PCBs and nPCBs to the total memory

access demand is therefore suf�cient to quantify the worst-case contribution of all the

cache blocks oft i to MDi(t). Since by De�nition 4.1, the persistent cache blocks must

be loaded only once, the maximum contribution of the cache blocks inPCBi to MDi(t)

is j PCBi j � dmem (i.e., the total number of PCBs times the worst-case memory access

time). By De�nition 4.3, the worst-case contribution of nPCBs to the memory access de-

mand of each job released byt i is MDr
i . Since a maximum of

l
t
Ti

m
jobs are released by

t i in a time window of lengtht, an upper bound on the total contribution of the nPCBs

to MDi(t) is given by
l

t
Ti

m
MDr

i . Adding the contributions of nPCBs and PCBs, we get
l

t
Ti

m
MDr

i + j PCBi j � dmemwhich is also an upper bound on the total memory access de-

mand oft i in a time interval of lengtht.

Although Equation (4.4) provides an upper bound on the total memory access demand oft i in

isolation, the total memory access demand oft i when executing concurrently with other tasks can

be much larger. Indeed, as can be observed in Example 4.1, the PCBs of a taskt j can be evicted

due to the execution of any task (i.e., tasks in hep(i) nt j) between the execution of two successive

jobs of t j . This requires the effect of all tasks in hep(i) n t j on the memory access demand of

t j 2 hp(i) during the WCRT oft i to be taken into account. We refer to this extra memory access

4.3 CPRO-union Approach 57

demand caused by the eviction of PCBs oft j by the tasks in hep(i) nt j ascache persistence reload

overhead(CPRO) and denote it byr j ;i . CPRO is formally de�ned as:

De�nition 4.4 (Cache persistence reload overhead). Cache persistence reload overhead, denoted

by r j ;i , is the maximum memory overhead of any taskt j due to eviction of its PCBs resulting from

the execution of all tasks inhep(i) nt j , while t j is executing during the response time oft i .

4.3 CPRO-union Approach

In this section, we present a simple approach similar to the state-of-the-art ECB-union (see Sec-

tion 3.2.1) to calculate the CPRO (i.e.,r j ;i). We further demonstrate howr j ;i can be incorporated

in the WCRT analysis of a taskt i . Later, in Section 4.4, we extend this simple union approach

into a multi-set variant to remove some of the pessimism associated with this analysis.

4.3.1 Computation of Cache Persistence Reload Overhead

As discussed in Section 4.2.2,r j ;i accounts for the extra memory access demand of each job of

t j 2 hp(i) due to evictions of its persistent cache blocks by other tasks running concurrently on

the processor.

As one can see in Figure 4.1, the PCBs of a taskt j 2 hp(i) can be evicted by the ECBs of

any other task running on the platform between two successive jobs oft j . The cache persistence

reload overheadr i; j can thus be upper bounded by the intersection of the setPCBj of all PCBs of

t j with all cache blocks (i.e., ECBs) that can be loaded by any other task between two executions

of t j . This observation leads to the following theorem.

Theorem 4.1. The cache persistence reload overhead imposed by the eviction of PCBs of a job of

taskt j 2 hp(i) on the worst-case response time of a taskt i is upper bounded by

r j ;i = dmem�

�
�
�
�PCBj \

� [

8t k2hep(i)nt j

ECBk
�
�
�
�
� (4.5)

Proof. Since a �xed-priority scheduling algorithm is used, only tasks with priorities higher than

or equal to the priority oft i (i.e., tasks in hep(i)) can execute during the response time oft i .

Therefore, any taskt k 2 hep(i) nt j can execute between two subsequent jobs oft j and hence evict

some or all the PCBs oft j .

The worst-case memory interference of any taskt k 2 hep(i) nt j on t j is when it reloads all

its cache blocks (i.e., its ECBs) between two subsequent jobs oft j . Therefore, the largest set of

memory blocks loaded by tasks in hep(i) nt j between two jobs oft j is given by
S

8t k2hep(i)nt j

ECBk.

The set of persistent cache blocks that must be reloaded byt j during each job execution is

thus upper bounded by the intersection betweent j 's PCBs (i.e.,PCBj) and
S

8t k2hep(i)nt j

ECBk.

58 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

Since each cache block reload takes at mostdmemtime units, the CPRO due to the eviction of

PCBs oft j by tasks in hep(i) nt j is upper bounded by

dmem�

�
�
�
�PCBj \

� [

8t k2hep(i)nt j

ECBk
�
�
�
�
�

Having de�ned an expression to calculater j ;i , we now de�ner j ;i(t), i.e., the total cache

persistence reload overhead ont j in a time window of lengtht due to the eviction of its PCBs

by tasks in hep(i) n t j . r j ;i(t) tells us by how much the memory access demand oft j can vary

in comparison to its memory access demand in isolation (i.e.,MD j (t)) due to the interference

generated by the other tasks executing concurrently witht j . Using Theorem 4.1,r j ;i(t) can be

easily computed as stated in Lemma 4.2 below.

Lemma 4.2. The total CPROr j ;i(t) on the execution time oft j due to the eviction of its PCBs by

tasks inhep(i) nt j in a time interval of length t is upper bounded byr̂ j ;i(t) where

r̂ j ;i(t)
def=

��
t
Tj

�
� 1

�
� r j ;i (4.6)

Proof. It directly follows from the fact thatt j releases at most
l

t
Tj

m
jobs in a time interval of

lengtht. As a result, at most
�l

t
Tj

m
� 1

�
evictions can happenbetweentwo subsequent jobs of

t j . Since by Theorem 4.1, the CPRO suffered by a job oft j is upper bounded byr j ;i , the total

overheadr j ;i(t) is upper bounded by
�l

t
Tj

m
� 1

�
� r j ;i .

4.3.2 WCRT Analysis

After showing how cache persistence reload overheadr j ;i of a high priority taskt j can be com-

puted, we now describe how it can be integrated into the WCRT analysis of any lower priority

taskt i . As mentioned in Section 3.2.4, the WCRT analysis for �xed-priority preemptive systems

was �rst presented in (Joseph and Pandya, 1986; Audsley et al., 1993) without considering mem-

ory overheads due to preemptions. It was then extended in several works (e.g., (Staschulat et al.,

2005; Altmeyer et al., 2011; Busquets-Mataix et al., 1996; Altmeyer et al., 2012)) to account for

the cache related preemption delays. Some of the most prominent approaches resulted in Equa-

tions (3.13) and (3.14), previously presented in Section 3.2.4.

Although these approaches are bene�cial, their WCRT analysis still rely exclusively on the

WCETCj of higher priority tasks when computing the worst-case response time of a lower priority

taskt i . That is, it assumes that each job of a taskt j 2 hp(i) executing within the response time oft i

asks for its worst-case memory access demandMD j . As discussed in Section 4.2, this assumption

is pessimistic. In fact, due to the existence of persistent cache blocks, oncet j loads all its ECBs

(i.e., PCBs and nPCBs), subsequent jobs oft j will only need to reload nPCBs and some of the

PCBs that may have been evicted due to the execution of tasks in hep(i) n t j . As a result, for

4.3 CPRO-union Approach 59

subsequent jobs oft j the memory access demand will be signi�cantly lower thanMD j . To exploit

this variable memory access demand, we present a more elaborate formulation of the WCRT

analysis. We propose that for any taskt i the WCRT of taskt i is upper bounded by the smallest

positive valueRi such that

Ri = Ci + å
8 j2hp(i)

(PD j (Ri) + MD j (Ri) + r j ;i(Ri) + gi; j (Ri)) (4.7)

In this WCRT formulation, we separately account for the maximum processing demandPD j (Ri)

and the maximum memory access demandMD j (Ri) (in isolation) that can be claimed by each

higher priority taskt j within the response timeRi of t i . The termsr j ;i(Ri) andgi; j (Ri) denote the

total cache persistence reload overhead due to the eviction of PCBs oft j by tasks in hep(i) nt j , and

the total cache related preemption delay due to the preemptions caused byt j within the response

time of t i , respectively. The terms (PD j (Ri) + MD j (Ri)) assume values obtained in isolation,

while the two last terms (r j ;i(Ri) + gi; j (Ri)) account for the overheads introduced by the eviction

of cache blocks by other tasks sharing the cache.

As already discussed in Section 3.2.4,gi; j (Ri) is upper bounded bygmul
i; j . Furthermore, as

proven in Lemmas 4.1 and 4.2,MD j (Ri) and r j ;i(Ri) are upper bounded by Equations (4.4)

and (4.6), respectively. Finally, because each taskt j releases at most
l

t
Tj

m
jobs in a time win-

dow of lengtht, PD j (Ri) is smaller than or equal to
l

Ri
Tj

m
PD j .

Replacing each term with its given bound, we get that

Ri � Ci + å
8 j2hp(i)

�
Ri

Tj

�
PD j + å

8 j2hp(i)

M̂D j (Ri) + å
8 j2hp(i)

r̂ j ;i(Ri) + å
8 j2hp(i)

gmul
i; j (4.8)

In systems where the number of PCBs is high and the cache interference is low, the value

provided byM̂D j (Ri)+ r̂ j ;i(Ri) should always be smaller than
l

Ri
Tj

m
MDi , and therefore we should

often have
l

Ri
Tj

m
PD j + M̂D j (t)+ r̂ j ;i(Ri) smaller than

l
Ri
Tj

m
Cj . In this case, Equation (4.8) will re-

sult in a tighter WCRT bound than Equation (3.14). However, in some situations, sinceM̂D j (t) and

r̂ j ;i(Ri) are upper bounds and not exact values, this formulation can result in an over-estimation

of the interference generated byt j on t i . In order to counter this effect, and knowing that Equa-

tion (3.14) is already an upper bound on the WCRT oft i , we further improve Equation (4.8) by

always taking the minimum between
l

Ri
Tj

m
Cj and

l
Ri
Tj

m
PD j + M̂D j (t) + r̂ j ;i(Ri) as the total in-

terference caused byt j on t i (see Equation (4.9) below). Following this simple modi�cation to

Equation (4.8), Equation (4.9) will always return a value that is smaller than or equal to the solu-

tion to Equation (3.14). Our approach hence dominates the UCB union multi-set approach de�ned

in (Altmeyer et al., 2012).

Run
i = Ci + å

8 j2hp(i)

min
��

Run
i

Tj

�
Cj ;

�
Run

i

Tj

�
PD j + M̂D j (Run

i) + r̂ j ;i(Run
i)

�
+ å

8 j2hp(i)

gmul
i; j (4.9)

60 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

Figure 4.2: Illustration of the pessimism associated with Equation (4.6) using the task set
f t 1; t 2 t 3g whent 1 andt 2 releasing their �rst jobs with an offset.

Note that Equation (4.9) is recursive. However, a solution can be found using simple �xed-

point iteration onRun
i initiating Run

i to Ci . The iteration stops as soon asRun
i does not evolve

anymore orRun
i > Di , in which case the task is deemed unschedulable.

4.4 CPRO Multi-Set Approach

The formulation in Equations (4.5) and (4.6) considers that the ECBs of all taskst k 2 hep(i) nt j

may interfere with every job oft j released within the response time oft i . This is pessimistic.

Indeed, considering two different taskst k andt l pertaining to hep(i) nt j , the number of timest l

can execute between two successive jobs oft j is not necessarily equal to the number of timest k

can execute between two successive jobs oft j . This situation is discussed in Example 4.2.

Example 4.2. Let t 1 = (1;4;4), t 2 = (4;30;30) and t 3 = (10;50;50), wheret 1 has the highest

priority and t 3 the lowest. Figure 4.2 presents a possible schedule that generates the worst-case

response time oft 3. As one can see,t 1 releases5 jobs during the response time oft 3. As a result,

Equation(4.9)upper bounds the total cache overheads on the PCBs oft 1 with 4 timesr 1;3. That

is, it assumes that botht 2 andt 3 execute and reload all their ECBs between every two successive

jobs oft 1. As can be seen in Figure 4.2, this is pessimistic. In fact,t 2 execute only twice between

jobs oft 1! Its impact on the total CPRO oft 1 is therefore clearly overestimated.

In order to reduce the pessimism associated with the computation ofr j ;i , we must consider the

actual number of times each taskt k 2 hep(i) nt j can execute between two successive jobs oft j .

For this reason, this section presents a multi-set variant of Equation (4.6). The resulting quantity

is an upper bound on̂r j ;i(t) denoted byr mul
j;i (t).

4.4.1 Computation ofr mul
j;i (t)

In this section, we �rst characterize the maximum number of times a taskt k 2 hep(i) n t j can

execute between two successive jobs oft j . To do so, we separately analyze the tasks in hep(j) nt j

(Lemma 4.3) and aff(i; j) (Lemma 4.4). We then use this information to upper bound the total

cache persistence reload overheadr j ;i(t) in Theorem 4.2.

4.4 CPRO Multi-Set Approach 61

Figure 4.3: Illustration of the maximum number of times the tasks in aff(i; j) and hep(j) nt j can
execute between two successive jobs oft j . When calculatingr 2;3, t 1 2 hep(2) nt 2 can release
maximally 3 jobs (with each job loading all its ECBs in the worst case). In contrast, the one job
released byt 3 2 aff(3;2) can execute and load its ECBs maximum 4 times.

Lemma 4.3. The maximum number of times a taskt k 2 hep(j) n t j can execute between two

successive jobs oft j within the response time Ri of t i is upper bounded by Ek(Ri).

Proof. Remember that the maximum number of jobs that each higher priority taskt k can release

during the response time of a taskt i is given byEk(Ri)
def=

l
Ri
Tk

m
. Furthermore, becauset k has a

higher or equal priority thant j , t j cannot preemptt k. Hence, the maximum number of timet k can

execute between two successive jobs oft j within a time window of lengthRi is upper bounded by

its number of released jobsEk(Ri) (see Figure 4.3 for an example).

Lemma 4.4. The maximum number of times a taskt k 2 aff(i; j) can execute between two succes-

sive jobs oft j within the response time Ri of t i is upper bounded by

(E j (Rk) + 1) � Ek(Ri) (4.10)

Proof. Ej (Rk)
def=

l
Rk
Tj

m
provides the maximum number of jobs thatt j can release during the re-

sponse time of a taskt k. Each of these released jobs may preempt the execution oft k. Considering

an arrival pattern such thatt k started to execute just before the �rst arrival oft j preemptingt k (see

Figure 4.3), the maximum number of times a job oft k may execute between two successive jobs

of t j is then given by(E j (Rk) + 1). SinceEk(Ri) jobs of t k are released within the response time

of t i , the maximum number of timest k may execute between two successive jobs oft j within the

response time oft i is upper bounded by(E j (Rk) + 1) � Ek(Ri).

Using Lemmas 4.3 and 4.4, one can derive an upper bound onr j ;i(t). This upper bound is

denoted byr mul
j;i (t) and is de�ned in the following theorem.

Theorem 4.2. The total cache persistence reload overheadr j ;i(Ri) on t j due to the eviction of its

PCBs by tasks inhep(i) nt j during the response time Ri of t i is upper bounded by

r mul
j;i

def= dmem�
�
�
�Mecb

j;i \ Mpcb
j;i

�
�
� (4.11)

62 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

where Mecb
j;i and Mpcb

j;i are multi-sets de�ned as

Mpcb
j;i =

[

E j (Ri)� 1

PCBj (4.12)

and

Mecb
j;i = Mecb� aff

j;i [Mecb� hp
j;i (4.13)

with

Mecb� aff
j;i =

[

8k2aff(i; j)

0

@
[

(E j (Rk)+ 1)Ek(Ri)

ECBk

1

A (4.14)

and

Mecb� hp
j;i =

[

8l2hep(j)nt j

0

@
[

El (Ri)

ECBl

1

A (4.15)

Proof. The proof is based on the three following facts:

1. t j releases at most
l

t
Tj

m
jobs in a time window of lengtht. At most

�l
t
Tj

m
� 1

�
evictions can

therefore happenbetweentwo subsequent jobs oft j . The largest set of PCBs oft j that can be

evicted between successive jobs oft j released during the response time oft i is therefore given by

the multi-setMpcb
j;i =

S

E j (Ri)� 1
PCBj .

2. By Lemma 4.3, the maximum number of times a taskt l 2 hep(j) nt j can execute between two

successive jobs oft j during the response time oft i is upper bounded byEl (Ri). Hence, the largest

set of ECBs that can be loaded byt l and interfere with the PCBs oft j is given by
S

El (Ri)
ECBl

(assuming thatt l reloads all its ECBs at each of its execution). This results in that the largest set

of ECBs loaded by the tasks in hep(j) nt j between successive executions oft j is upper bounded

by Mecb� hp
j;i =

S

8l2hep(j)nt j

S

El (Ri)
ECBl

!

.

3. By Lemma 4.4, the maximum number of times a taskt k 2 aff(i; j) can execute between

two successive jobs oft j during the response time oft i is upper bounded by(E j (Rk) + 1) �

Ek(Ri). Hence, the largest set of ECBs that can be loaded byt k between successive jobs oft j

during the response time oft i is given by
S

(E j (Rk)+ 1)Ek(Ri)
ECBk (assuming thatt k reloads all its

ECBs whenever it resumes its execution). This results in that the largest set of ECBs loaded

by the tasks in aff(i; j) between successive executions oft j is upper bounded byMecb� aff
j;i =

S

8k2aff(i; j)

S

(E j (Rk)+ 1)Ek(Ri)
ECBk

!

.

Therefore, by 2. and 3. the largest set of ECBs that can interfere with the PCBs oft j during

the response time oft i is upper bounded byMecb
j;i = Mecb� aff

j;i [Mecb� hp
j;i .

Finally, the largest set of PCBs oft j that can be evicted by the tasks in hep(i) nt j within the

response time oft i is upper bounded by the intersection ofMpcb
j;i with Mecb

j;i . Since reloading a

cache block takes at mostdmem time units, the total cache persistence reload overheadr j ;i(Ri) is

upper bounded bydmem�
�
�
�Mecb

j;i \ Mpcb
j;i

�
�
� .

4.4 CPRO Multi-Set Approach 63

4.4.2 Improving the Accuracy ofMecb
j;i

Theorem 4.2 provides a good upper bound on the total cache persistence reload overheadr j ;i(Ri)

during the response time oft i . However, Equations (4.14) and (4.15) still consider that each job

released by the taskst k 2 hep(i) nt j reload all their ECBs (i.e., PCBs and nPCBs) whenever they

resume their execution. Even though this assumption may be valid for the taskst l 2 hep(j) nt j ,

since each of their jobs contributes only once toMecb
j;i (hence assuming that each job oft l accesses

all its cache blocks during its execution), it is quite pessimistic for the taskst k 2 aff(i; j). Indeed,

by Lemma 4.4 and Equation (4.14), each job of a taskt k 2 aff(i; j) is assumed to contribute

(E j (Rk) + 1) times toMecb
j;i . However, a PCB of taskt k will be accessed at most once during each

job execution unless this PCB is also a UCB (in which case it may be used at several program

points of the task). The nPCBs must always be considered to be loaded several times during each

job execution though. Indeed, since they are not persistent, it means that several memory blocks

of t k are mapped to that same cache block, which can therefore be accessed more than once during

each job execution.

It results from this discussion thatMecb
j;i can be more accurately modeled by the following

equation:

Mecb
j;i = Mecb� aff0

j ;i [Mecb� hp
j;i (4.16)

with

Mecb� aff0

j ;i =
[

8k2aff(i; j)

2

4

0

@
[

Ek(Ri)

(PCBk nUCBk)

1

A
[

0

@
[

(E j (Rk)+ 1)Ek(Ri)

�
nPCBk [(PCBk \ UCBk)

�
1

A

3

5

(4.17)

where(PCBk \ UCBk) is the set of PCBs oft k that are also UCBs, and(nPCBk [(PCBk \ UCBk))

is therefore the set of ECBs that may be loaded more than once by each job oft k. All the other

ECBs (those that are not in(nPCBk [(PCBk \ UCBk)) and are thus in(PCBknUCBk) are loaded at

most once per job oft k and are therefore accounted separately in the �rst term of Equation (4.17).

4.4.3 WCRT Analysis

Using the exact same argumentation as in Section 4.3.2, the worst-case response time of taskt i

can be upper bounded by the smallest positive valueRmul
i such that:

Rmul
i = Ci + å

8 j2hp(i)

min
��

Rmul
i

Tj

�
Cj ;

�
Rmul

i

Tj

�
PD j+ M̂D j (Rmul

i) + r mul
j;i (Rmul

i)
�

+ å
8 j2hp(i)

gmul
i; j

(4.18)

It is important to note that, by construction, the WCRT formulation of Eq. (4.18) using the im-

proved variant of the multi-set approach dominates the WCRT given by standard multi-set ap-

proach (Eq. (4.9)) which in turn dominates the simple union approach presented in Section 4.3.1.

64 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

4.5 Static Analysis

Having presented our proposed cache persistence-aware WCRT analysis, we proceed by explain-

ing how the required input quantities, de�ned in Section 4.2.2, are obtained using standard static

analysis techniques integrated in WCET estimation tools.

Static cache analysis techniques use abstract interpretation to determine the worst-case be-

havior with respect to caches for each memory reference. The outcome of such techniques is a

classi�cation of references given by Table 3.1 (e.g.always-hitwhen the reference will always

result in a cache hit,always-misswhen the reference will always result in a cache miss,�rst-miss

when all successive occurrences of a reference but the �rst one will result in hits). The classi-

�cation of each reference allows to determine if a reference will never require a memory access

(always-hit) or may require an access to memory. To determine the relevant quantities required

for the analysis presented in this chapter, the method presented in (Theiling et al., 2000) is used.

As we previously discussed in Section 3.2, most WCET estimation tools use IPET (Implicit

Path Enumeration Technique) for WCET calculation. IPET is based on an Integer Linear Program-

ming (ILP) formulation of the WCET calculation problem (Li and Malik, 1995). This formulation

re�ects the program structure and the possible execution �ows using a set of linear constraints.

The WCET estimate for a task is obtained by maximizing the following objective function:

å
b2BasicBlocks

Eb � fb (4.19)

Eb (constant in the ILP problem) is the timing information of basic blockb. fb (variables in the

ILP system, to be instantiated by the ILP solver) correspond to the number of times basic blockb

is executed.

For a taskt i , quantitiesPDi andMDi are calculated using IPET by setting constantEb accord-

ingly for all basic blocks oft i . For the computation ofPDi , only the execution time of instructions

is included inEb, ignoring memory accesses. Conversely, when computingMDi , only memory

accesses (as detected by static cache analysis) are included inEb and the execution times of in-

structions are ignored.

For the particular case of direct-mapped caches, determiningPCBi and ECBi is straight-

forward. A memory block of taskt i belongs toPCBi if it is the only one mapped to a given

cache block.ECBi is simply the set of memory blocks of taskt i . DeterminingUCBi is achieved

using the method presented in (Lee et al., 1998). Finally, determiningMDr
i is very similar toMDi .

IPET is applied with an execution cost of 0 and considering memory accesses, but in contrast to

the computation ofMDi , only memory accesses for cache blocks innPCBi are considered.

4.6 Experimental Evaluation

In this section, we evaluate the effectiveness of our proposed approaches in comparison to state-

of-the-art techniques. We conducted three different experiments by varying the task utilizations,

4.6 Experimental Evaluation 65

number of tasks and the size of cache and evaluated their performance in terms of schedulability.

The different inputs previously de�ned in Section 4.5 were computed using the Heptane (Hardy

et al., 2017) static WCET estimation tool. Heptane produces upper bounds on the execution times

of hard real-time applications. It computes WCETs using static analysis at the binary code level.

For the analysis presented in this chapter, all experiments were conducted on C-code compiled

with gcc 4.1 with no optimization for MIPS R2000/R3000. The default linker memory layout is

used, i.e. functions are represented sequentially in memory, and unless explicitly stated, no align-

ment directive is used. Without loss of generality, all instructions are assumed to execute in1

cycle (cache access included). Each memory access, regardless of its source, results in a penalty

of dmem= 100cycles. By default a direct-mapped instruction cache of size 2 KB with a line size

of 32 B is considered.

We have integrated the results obtained from Heptane using static analysis with the MRTA

framework developed by Altmeyer et al. (Altmeyer et al., 2015) for multi-core response time anal-

ysis. The MRTA tool provides a compositional framework for timing veri�cation in multi-core

systems by explicitly modeling the interferences of the different components. We modi�ed the

MRTA tool to consider task parameters that we have introduced in order to perform the analysis

presented in this chapter. We have added a module in the MRTA framework that enables the cal-

culation of the total CPROr j ;i(Ri) using the approaches detailed in Section 4.3 and 4.4. Also, as

we only consider a single-core system, the preemption overhead calculation and the WCRT analy-

sis are altered accordingly. All the experiments were performed using the Mälardalen benchmark

suite (Gustafsson et al., 2010). Currently, we only consider the worst-case task layout where all

benchmarks start at the same static memory address, thus maximizing the inter-task memory in-

terference. The effect of different task layouts on our analysis will be discussed later in Chapter 6.

Evaluation is performed by randomly generating a large number of task sets and determining

their schedulability using WCRT analysis for two cases:

1. WCRT analysis including only the effect of CRPD, i.e., Equation (3.14) where CRPD is

computed using the UCB-Union multi-set approach (Equation (3.7)), and

2. Our proposed WCRT analysis that accounts for both CRPD and CPRO, i.e., CPRO Union

(Equation (4.9)) and CPRO multi-set with/without the improvement in Equation (4.18).

Each task within the task set is randomly assigned parameters from the Mälardalen benchmarks.

A subset of them is shown in Table 4.2. Also it should be clear from the numbers in Table 4.2

that the benchmark suite comprises of tasks with both small and big memory footprint (that �ll the

entire cache), consequently removing any bias in the results.

With the exception of parameters de�ned in Table 4.2, other parameters used in our experi-

ments are de�ned as follows:

• The default number of tasks in each task set are 10 with task utilizations generated using

UUnifast (Bini and Buttazzo, 2005).

66 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

Table 4.2: Task parameters for a selection of benchmarks from the Mälardalen Benchmark
Suite (Gustafsson et al., 2010)

Name Ci PDi MDi MDr
i ECBi PCBi UCBi nPCBi

lcdnum 3440 984 2740 192 20 20 20 0

insertsort 7574 5974 2343 752 16 16 10 0

bs 1399 203 1223 34 11 11 9 0

bsort100 712289 710289 90893 88907 20 20 15 0

ludcmp 45135 27036 21511 18442 98 30 43 68

fdct 17350 6550 11525 9327 106 22 58 84

ud 28427 20627 10415 10415 75 53 31 22

nsichneu 316409 22009 294400 294400 1377 0 110 1377

statemate 190496 10586 180110 180110 275 0 81 275

• Each task was randomly assigned one benchmark from the Mälardalen benchmark suite (Gustafs-

son et al., 2010) with values ofCi , PDi , MDi , MDr
i along with sets ofUCBi , ECBi , PCBi

andnPCBi obtained from the values given in Table 4.2.

• Task periods are set according the WCET assigned to each task from the benchmarks and

the randomly generated utilization, i.e.,Ti = Ci=Ui .

• Task deadlines are implicit with priorities assigned in deadline monotonic order.

4.6.1 Total Utilization

To evaluate how our proposed WCRT analysis accounting for both CPRO and CRPD (i.e., Eq (4.9)

and (4.18)) performs in terms of schedulability in comparison to the UCB-union multi-set ap-

proach (Altmeyer et al., 2012) (that only considers CRPD), we randomly generated 1000 task set

at different utilizations varied from 0.1 to 1 in steps of 0.025. Each task set contains 10 tasks,

with benchmark parameters generated for a 2 KB cache with 64 cache sets. The WCRT analysis

is performed for all approaches using the same task sets. A task set is deemed unschedulable if

the calculated WCRT for any task within the task set is greater than its deadline.

Figure 4.4 shows an average number of task sets that were schedulable using all the analyzed

approaches. The graph also shows a line marked as WCRT analysis with no CRPD cost (green

line) that gives an upper bound on maximum number of task set that were schedulable without

considering any CRPD cost. It is also important to note that we only show a cropped version of

the plot starting from a utilization of 0.6 mainly because for task set utilizations less than 0.6 all

approaches produced identical results. We can see from the results that the proposed WCRT anal-

ysis accounting for both CPRO and CRPD dominates the state-of-the-art WCRT analysis (UCB-

union multi-set (Altmeyer et al., 2012)) that only accounts for CRPD. In fact, the three proposed

approaches for CPRO calculation dominate the UCB-union multi-set approach (Altmeyer et al.,

2012). This is mainly because the UCB-union multi-set approach only uses WCET (effectively

4.6 Experimental Evaluation 67

Figure 4.4: Number of tasksets that are deemed schedulable for a for a varying total utilizations.

the worst-case memory access demand) of tasks during the WCRT analysis along with the CRPD

cost de�ned by Equation (3.7), which is very pessimistic. As a result, a high number of tasks tend

to be unschedulable, especially at higher utilizations.

We can also observe from the results that the CPRO multi-set approach dominates the CPRO-

union and UCB-union multi-set approaches whereas, the improved CPRO multi-set approach

(Equation. (4.18)) outperforms all the other approaches. In fact, when using the improved CPRO

multi-set approach we can have substantial gains in term of schedulability in comparison to the

UCB-union multi-set approach, for example at a utilization of 0.85, we gain around 13% in

schedulability.

4.6.2 Number of Tasks

In preemptive systems, the number of tasks adversely affects the schedulability of the task set. To

analyze the performance of all approaches w.r.t number of tasks, we varied the number of tasks

from 5 to 25 increasing by 5 tasks in each step. All parameters other than the number of tasks

have the same values as used in the previous section. We have used the weighted schedulability

measure de�ned by Bastoni et al. (Bastoni et al., 2010; Burns and Davis, 2014) to plot the results.

The weighted schedulability measure reduces what would otherwise be a 3-dimensional plot to

2-dimensions by eliminating the axis of task set utilization. Under weighted schedulability, more

68 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

Figure 4.5: Weighted schedulability measure by varying the number of tasks from 5 to 25.

weight is given to task sets with higher utilization. Using notations from (Burns and Davis, 2014),

let Sy(G; p) represent the result of the schedulability testy for a given task setG with an input

parameterp, i.e., Sy(G; p) = 1 if task setG is deemed schedulable for a given value ofp and

Sy(G; p) = 0 otherwise. Then, the weighted schedulability for that testy as a function ofp, is

given byWy(p), i.e.,

Wy(p) =
å 8G(U(G) � Sy(G; p))

å 8GU(G)
(4.20)

whereU(G) denote the core utilization of the task setG.

Figure 4.5 shows the results of our experiments. We can see that schedulability (varying from

0:3 to 1 by step of 0:025) for all approaches decreases as the number of tasks are increased.

Indeed, this is due to an increasing number of cache evictions and reloads. On the other hand,

we also observe that WCRT analysis accounting for both CPRO and CRPD performs signi�cantly

better in comparison to the other approach that only considers CRPD. The weighted schedulability

using the improved CPRO multi-set approach at each point in Figure 4.5 is up to 10% higher than

the UCB-union multi-set.

4.6.3 Cache Size

The cache size is an important factor that can affect the schedulability of tasks. If the cache is large

enough to accommodate all the tasks without any cache reuse no additional memory accesses are

4.6 Experimental Evaluation 69

Figure 4.6: Weighted schedulability measure by varying the number of cache sets

required. In fact, in this case all the ECBs of a task will be PCBs and will never be evicted from the

cache. Another case is when the cache is very small and each task can �ll the entire cache during

its execution. Consequently, this will result in higher memory access demand for each job of the

task. To evaluate the impact of cache size on the performance of the analyses, we varied the num-

ber of cache sets from 32 to 512, keeping all other task parameters constant. Figure 4.6 shows the

resulting weighted schedulability measure for each approach as a function of the number of cache

sets. As the cache line size is kept constant (i.e. 32 B), increasing the number of cache sets effec-

tively increase the cache size. Again, we can see that our proposed WCRT analysis accounting for

both CPRO and CRPD dominates the UCB-union multi-set approach (Altmeyer et al., 2012) that

only considers CRPD. In fact, by looking at the improved CPRO multi-set approach in Fig 4.6,

we can observe that by increasing cache size the overall schedulability also increases from 0.74

(with 32 cache sets) to 0.80 (with 512 cache sets). This is due to the fact that with a bigger cache

the number of PCBs for each task will also increase (hence reducing the residual memory access

demand). In contrast, for the UCB-union multi-set approach (consistently with (Altmeyer et al.,

2012)), the schedulability decreases due to an increase in the number of ECBs resulting in higher

preemption overheads.

70 Using Cache Persistence to Improve the Bounds on Inter-task Cache Interference

4.7 Chapter Summary

In this Chapter, we have presented our initial work that focus on improving the bounds on the inter-

task cache interference for single-level direct-mapped caches. The proposed analysis builds upon

the observation that a task can re-use cache contents between different jobs. We have presented

a method to capture these persistent cache blocks (PCBs) resulting in variable memory access

demand for different jobs from a task. The notion of cache persistence reload overhead (CPRO)

is introduced and different approaches are presented to calculate CPRO. These approaches are

orthogonal to state-of-the-art methods used for CRPD calculation and can be used independently

with any of these methods. A WCRT analysis is then presented that exploits this variable memory

access demand to reduce the preemption cost of higher priority tasks under �xed-priority preemp-

tive scheduling, thereby reducing the WCRT and improving schedulability.

We evaluated the performance of our approach against a prominent approach from the state-

of-the-art in terms of schedulability. Experiments were performed by varying different parameters

with most of the values taken from the Mälardalen benchmarks. Experimental results show that

our proposed WCRT analysis (accounting for both CPRO and CRPD) dominates the state-of-the-

art approaches (that only consider CRPD) with an average improvement of around 10% in terms

of schedulability.

Chapter 5

Integrated Analysis of Cache Related

Preemption Delays and Cache

Persistence Reload Overheads

In the work presented in Chapter 4, we derived two analyses for CPRO calculation that were

integrated into an improved response time analysis for FPPS that accounts for the reduction in

memory access demand of tasks due to cache persistence, along with the CRPD. The analysis

considers both the CRPD and cache persistence and dominates the state-of-the-art approaches that

only consider CRPD. However, the analysis presented in Chapter 4 may sometimes result in over-

estimation of the task response times. This is due to the fact that CRPD and CPRO are calculated

separately, providing independent upper bounds on the two classes of overheads. However, as

we later show in this chapter, scenarios maximizing CRPD and those maximizing CPRO may be

mutually exclusive, meaning that the total overheads can be substantially less than the sum of the

two bounds.

In this chapter, we focus on two questions:

1. Is it bene�cial to integrate the calculation of CRPD and CPRO to remove the over-estimation

in the total overheads of tasks?

2. Under what conditions and by how much can we gain in terms of schedulability by integrat-

ing the calculation of CRPD and CPRO?

We answer these questions by:

• identifying situations where considering CRPD and CPRO separately might result in over-

estimating the total memory overhead suffered by tasks due to double counting of some

memory blocks that need to be reloaded,

• demonstrating how to integrate the calculation of CRPD and CPRO to include only the

additional CPRO that are not already included in the CRPD calculation, and

71

72
Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload

Overheads

• through experimental evaluation using a set of benchmarks to derive important observations

that lead to situations where the integrated CRPD-CPRO analysis may or may not outper-

form separate treatment of CRPD and CPRO.

Table 5.1: List of important symbols used in Chapter 5

Symbol Description

G Task set of sizen

t i Task with indexi

Ci Worst-case execution time of taskt i

Ti Minimum inter-arrival time of taskt i

Di Relative deadline of taskt i

Ri Worst-case response time of taskt i

PDi Worst-case processing demand of taskt i

MDi Worst-case memory access demand of taskt i

MDr
i Residual memory access demand of taskt i

M̂Di(t) Total memory access demand of taskt i in a time interval of lengtht

hp(i) The set of tasks with higher priority thant i

hep(i) The set of tasks with higher priority thant i includingt i , i.e., hep(i) = hp(i)[t i .

aff(i; j) The set of intermediate tasks (includingt i) that may preemptt i but may them-

selves be preempted by some higher priority taskt j .
dmem Time to reload one cache block from the main memory

mi Total memory reload overhead during the response time of taskt i

msep
i Total memory reload overhead for taskt i under the separate CRPD and CPRO

analysis
mint

i Total memory reload overhead for taskt i under the integrated CRPD and CPRO

analysis
Di Upper-bound on the portion ofmi that is not accounted for ingtot

i

Dm
i Upper-bound on the portion ofmi that is not accounted for ingtot� m

i
�!
S Any execution schedule of tasks

Ek(Ri) The maximum number of jobs any taskt k can release during the response time

Ri of taskt i

Ndouble
l ; j (Ri) The number of jobs of any higher priority taskt l 2 hp(j) that are already ac-

counted for in the CRPD cost caused by another taskt j 2 hp(i) during the re-

sponse time oft i .
ECBi The set of evicting cache blocks (ECBs) of taskt i

UCBi The set of useful cache blocks (UCBs) of taskt i

PCBi The set of persistence cache blocks (PCBs) of taskt i

nPCBi The set of non-persistence cache blocks (nPCBs) of taskt i

Continued on next page

5.1 Problem Formalization 73

Table 5.1 – continued from previous page

Symbol Description

bk;` The` th cache block of a taskt k

S j ;i The biggest set of cache blocks that can be loaded by tasks in hep(i) nt j during

the response of taskt i and are not considered ingtot
i .

Mucb
i; j Multi-set containing set of UCBs of all tasks in aff(i; j)

Mecb
i; j Multi-set containing set of ECBs of taskt j

Mpcb
j;i Multi-set containing set of PCBs of taskt j

Mecb
j;i Multi-set containing set of ECBs of all task in hep(i) nt j

Mecb� aff
j;i Multi-set containing set of ECBs of all task in aff(i; j)

Mhp� int
j;i Multi-set containing set of cache blocks of all task in hep(j) nt j , whose evictions

are not taken into account in the CRPD costgucb� m
i; j

r j ;i CPRO of one job of taskt j during the response time of taskt i .

r̂ j ;i Total CPRO of taskt j in an interval of lengtht while executing during the re-

sponse time of taskt i .
dj ;i Upper bound on the CPRO of one job of taskt j during the response time of task

t i , after discounting what has already been taken into account in the CRPD cost

gucb
i; j .

dmul
j;i Upper bound on the CPRO of taskt j in a time intervalt during the response time

of taskt i , after discounting what has already been taken into account in the CRPD

costgucb� m
i; j .

gi; j CRPD suffered by taskt i due to preemptions by any higher priority taskt j 2 hp(i)

.
gucb

i; j CRPD suffered by taskt i due to one preemption by any higher priority taskt j 2

hp(i), computed using the UCB-union approach (i.e., Equation (3.3)).
gucb� m

i; j Total CRPD suffered by taskt i in a time interval of lengtht due to preemptions

by any higher priority taskt j 2 hp(i), computed using the UCB-union multi-set

approach (i.e., Equation (3.7)).
gtot

i Upper bound on the total CRPD suffered by taskt i during its response time under

the UCB-union approach (i.e., Equation (3.3)).
gtot� m

i Upper bound on the total CRPD suffered by taskt i during its response time under

the UCB-union multi-set approach (i.e., Equation (3.7)).

5.1 Problem Formalization

The CRPD of a task accounts for the evictions of its UCBs due to preemptions caused by higher

priority tasks. Similarly, the CPRO accounts for the evictions of its PCBs between successive job

executions. Therefore, the total time spent reloading cache blocks evicted during the response

74
Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload

Overheads

time of t i is bounded by the sum of the CRPD and the CPRO experienced by every task executing

duringt i 's response time. This overhead is denoted bymi and is de�ned as follows.

De�nition 5.1 (Total Memory Reload Overhead (mi)). Let CRPDi; j (
�!
S) and CPROi; j (

�!
S) be the

total actualCRPD and CPRO suffered byt j during the response time of one job oft i in a given

schedule
�!
S . The total memory reload overheadmi during the response time oft i is the maximum

sum of the CRPD and CPRO of all tasks executing duringt i 's response time in any schedule
�!
S .

Formally,

mi
def= max

8
�!
S

(

å
8t j 2hep(i)

�
CRPDi; j (

�!
S)+ CPROi; j (

�!
S)

�
)

(5.1)

From the above de�nition, it follows thatmi is upper-bounded byå t j 2hep(i)(g
ucb� m
i; j + r mul

j;i)

wheregucb� m
i; j andr mul

j;i are computed by Equation (3.7) and Equation (4.11), respectively. How-

ever, independently computing CRPD and CPRO may result in overestimating the actual total

memory reload overheadmi as illustrated in the example below.

Example 5.1. Let G be composed of three tasksf t 1; t 2; t 3g with t 1 having the highest priority

andt 3 the lowest. Figure 5.1 presents the task set parameters and the worst-case schedule fort 3

together with the evolution of the cache contents over time. Cache blocks that have been evicted

either due to CRPD or CPRO and must be reloaded from main memory are highlighted in red.

The set of PCBs are highlighted in green.

Initially, the cache is empty and witht 3 being the �rst task to execute it loads all its ECBs into

the cache. Whent 2 preemptst 3 for the �rst time, it also loads its ECBs. Similarly,t 2 is preempted

by the highest priority taskt 1 at time2. Note that ECBs of taskt 1 and UCBs/PCBs of taskt 2 are

mapped to the same cache blocks, i.e.,f 7;8;9;10g. Therefore, whent 2 resumes its execution after

the completion of the �rst job oft 1 it needs to reload all its UCBs, (highlighted in red) as they

were evicted byt 1. These additional memory accesses will be accounted for as CRPD.

Since, the �rst job oft 2 loads all oft 2's ECBs (PCBs and nPCBs) into the cache, subsequent

jobs oft 2 may have a lower memory access demand due to the existence of PCBs in the cache, i.e.,

blocksf 7;8;9;10g. However, some of these PCBs may be evicted due to other task executions. The

additional memory accesses required to reload evicted cache blocks are accounted for as CPRO.

Such a situation where the CPRO is maximized is depicted in Figure 5.1b.

Based on Figure 5.1a, the total memory reload overheadm3 during t 3's response time is equal

to the time needed to reload12cache blocks (i.e., the number of red blocks).

Now, if we use the UCB-union multi-set (Equation(3.7)) and the CPRO multi-set (Equa-

tion (4.11)) approaches to calculatem3, we have the following.

m3 � gucb� m
3;1 + gucb� m

3;2 + r mul
1;3 + r mul

2;3

Sincet 2 is the only task with useful cache blocks (UCB2 = f 7;8;9;10g), it is also the only

task suffering from CRPD. Therefore,gucb� m
3;2 = 0. Using (Equation(3.7)), we have (note that

5.1 Problem Formalization 75

(a) Schedule maximizing CRPD during the response time oft 3

(b) Schedule maximizing CPRO during the response time oft 3

Figure 5.1: Schedules maximizingt 3's response time whenC1 = 1,C2 = 2,C3 = 9, T1 = 6, T2 = 6,
T3 = 25, ECB1 = f 7;8;9;10g, ECB2 = f 7;8;9;10g, ECB3 = f 1;2;3;4;5g, UCB2 = f 7;8;9;10g,
PCB2 = f 7;8;9;10g andUCB1 = UCB3 = PCB1 = PCB3 = /0

E1(R3) = 3, E1(R2) = 1, E2(R3) = 3, and E3(R3) = 1):

gucb� m
3;1 = dmem� j (3� UCB3 [3� UCB2) \ (3� ECB1)j = dmem� 12

Similarly, when calculating the CPRO we can see that the set of PCBs for all tasks exceptt 2 is

empty. Hence, the total CPRO during the response time of taskt 3 comes only from the evictions of

PCBs of taskt 2. Assuming that the CPRO is calculated using Equation(4.11)we haver mul
1;3 = 0

and

r mul
2;3 = dmem� j (2� PCB2) \ (4� ECB3 [3� ECB1) j = dmem� 8

Adding CRPD and CPRO, it follows that the total memory reload overhead during the re-

sponse time oft 3 is upper-bounded by dmem� 20. Thus it appears that20cache blocks need to be

reloaded during the response time oft 3. The reason for the overestimation is that the total CRPD

is indeed upper-bounded by12cache blocks reloads (as shown in Figure 5.1a) and the total CPRO

is indeed upper-bounded by8 cache blocks reloads (as shown on Figure 5.1b), but both scheduling

76
Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload

Overheads

scenarios cannot happen at the same time. It is not possible for the three jobs oft 1 to result in the

group of 4 cache block reloads three times over due to preemptions (accounted for ingucb� m
3;1) and

two times over due to cache persistence overheads (accounted for inr mul
2;3). This observation leads

to the following lemma.

Lemma 5.1. Let us assume that the total CRPD during the response time of taskt i is computed

using Equation(3.3)or Equation(3.7)and that the total CPRO duringt i 's response time is com-

puted with Equation(4.6)or Equation(4.11). Let bk;` be the` th cache block of a taskt k 2 hp(i),

i.e., bk;` 2 ECBk. The eviction of bk;` will be accounted for in both the CRPD and CPRO, only if

bk;` is a UCB and a PCB oft k, i.e., bk;` 2 UCBk \ PCBk.

Proof. This claim follows directly from the fact that Equation (3.3) and Equation (3.7) account for

the evictions of UCBs of tasks in hep(i). Therefore, the eviction of cache blockbk;` will be con-

sidered in the CRPD calculation only if it is a UCB. Similarly, Equation (4.6) and Equation (4.11)

account for the evictions of PCBs of tasks in hp(i). Hence, the eviction of cache blockbk;` will

be considered in the CPRO calculation only if it is a PCB. Therefore, the eviction ofbk;` may be

accounted for in both the CRPD and CPRO, only ifbk;` 2 UCBk \ PCBk.

It can also be seen in Example 5.1 that for any taskt k 2 hp(i) (e.g.,t 2) executing during the

response time of a lower priority taskt i (e.g.,t 3), only higher priority tasks thant k (e.g.,t 1) can

participate in both the CRPD and CPRO oft k. This observation leads to the following lemma.

Lemma 5.2. For any taskt k 2 hp(i) executing during the response time of a lower priority task

t i , only the tasks inhp(k) can contribute to both the CRPD and CPRO oft k.

Proof. By De�nition 4.4, all tasks in hep(i) n t k can contribute to the CPRO oft k during the

response time oft i .

Let t ` be any task in hep(i) nt k. Two cases must be considered:

1. If t ` 2 aff(i;k) thent ` has a lower priority than thatt k. Therefore,t ` can never preemptt k

and hence cannot contribute tot k's CRPD.

2. If t ` 2 hp(k) thent ` has a higher priority than that oft k. Taskt ` can therefore preemptt k

and cause CRPD.

Hence, only tasks in hp(k) can contribute to botht k's CRPD and CPRO.

5.2 Integrated CRPD-CPRO Analysis

In the analysis presented in Chapter 4, CRPD and CPRO are calculated independently of each

other. As discussed in Section 5.1, this can lead to an overestimation of the total memory reload

overhead. In this section, we present a novel approach to bound the total memory reload overhead

during the response time of a taskt i . This section builds upon the UCB-union and CPRO-union

approaches for the calculation of CRPD and CPRO, respectively. In Section 5.3, we extend this

5.2 Integrated CRPD-CPRO Analysis 77

analysis to consider the more precise, but also more complex, multi-set variants of the CPRD and

CPRO calculation.

It follows from Lemma 5.1 that only the cache blocks in
S

8t j 2hp(i) (UCBj \ PCBj) can have

their evictions counted twice during the CRPD and CPRO calculations. This double counting can

be removed either (i) during the CRPD calculation by not considering the evictions of PCBs in
S

8t j 2hp(i) (UCBj \ PCBj), since their eviction will be accounted for in the CPRO; or, (ii) during

the CPRO calculation by not considering the eviction of UCBs in
S

8t j 2hp(i) (UCBj \ PCBj), since

their eviction will be considered in the CRPD. In this section, we focus on the latter solution

assuming that the CRPD is computed using the UCB-union approach (i.e., using Equation (3.3)).

Lemma 5.3. Let gtot
i be an upper-bound on the total CRPD during the response time Ri of t i .

Further assume thatgtot
i is computed using the UCB-union approach, i.e.,gtot

i
def= å

t j 2hp(i)

l
Ri
Tj

m
gucb

i; j .

LetDi be an upper-bound on the portion of the total memory reload overhead duringt i 's response

time that is not accounted for ingtot
i , that is,Di = mi � gtot

i , then we haveDi � å
8t j 2hp(i)

�l
Ri
Tj

m
� 1

�
�

dj ;i where

dj ;i
def= dmem�

�
�
�
�PCBj

\

� [

8t k2aff(i; j)

ECBk

� [� [

8t k2hp(j)

ECBk n(UCBj \ PCBj)
�

! �
�
�
� (5.2)

Proof. It was proven in (Tan and Mooney, 2007) thatgtot
i upper-bounds the total CRPD duringt i 's

response time. Therefore, the portion of the total memory reload overheadmi that is not accounted

for in gtot
i is a subset of the total CPRO duringt i 's response time. Similar to the calculation of

the total CPRO, at most
�l

Ri
Tj

m
� 1

�
jobs of each higher priority taskt j can suffer memory reload

overheaddj ;i not yet accounted for ingtot
i . Since the total CPRO is an upper-bound onDi , using

Equation (4.6) and Equation (4.5) we haveDi � å t j 2hp(i)

�l
Ri
Tj

m
� 1

�
� dj ;i with dj ;i � r j ;i . We

now prove the validity ofdj ;i .

Since a �xed-priority scheduling algorithm is used, only tasks with priorities higher than or

equal to the priority oft i (i.e., tasks in hep(i)) can execute during the response time oft i . There-

fore, any taskt k 2 hep(i) n t j can execute between two subsequent jobs of another taskt j and

hence participate int j 's CPRO by evicting some or all its PCBs. Lett k be any task in hep(i) nt j .

Two cases need to be considered (note that hep(i) nt j = aff(i; j) [hp(j)).

1. t k 2 aff(i; j). Sincet k has a lower priority thant j it cannot preemptt j , and hencet k does not

contribute to the CRPD oft j . Therefore, the memory reload overhead generated byt k on

t j is not part ofgtot
i and must be entirely accounted for indi; j . This worst-case interference

of t k on t j is maximized whent k loads all its cache blocks (i.e.,ECBk).

2. If t k 2 hp(j) then, by Lemma 5.2,t k may contribute to both the CRPD and CPRO oft j . As

stated in Lemma 5.1, the evictions of cache blocks oft j in UCBj \ PCBj were already

considered ingtot
i . Therefore, the number of cache block evictions caused byt k on t j

78
Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload

Overheads

that were not accounted for ingtot
i is maximized whent k loads all the cache blocks in

ECBk n(UCBj \ PCBj).

From 1. and 2., the biggest setS j ;i of cache blocks that can be loaded by tasks in hep(i) nt j

and were not yet considered ingtot
i is given by:

S j ;i =

0

@
[

8t k2aff(i; j)

ECBk

1

A
[

0

@
[

8t l 2hp(j)

ECBl n(UCBj \ PCBj)

1

A

The set of PCBs that must be reloaded byt j at each job execution is thus upper-bounded by the

intersection betweent j 's PCBs (i.e.,PCBj) and the setS j ;i derived above. Since each cache

block reload takes at mostdmemtime units, the timedj ;i spent byt j at each job execution to reload

evicted PCBs that were not yet considered ingtot
i is bounded by Equation (5.2).

As a corollary of Lemma 5.3, we can upper-bound the total memory reload overheadmi as

stated in the following theorem:

Theorem 5.1. The total memory reload overheadmi during t i 's response time is upper-bounded

by

å
t j 2hp(i)

 ��
Ri

Tj

�
� gucb

i; j

�
+

��
Ri

Tj

�
� 1

�
� dj ;i

!

(5.3)

Proof. Follows from Lemma 5.3 sincemi = Di + gtot
i .

This directly leads to the following theorem:

Theorem 5.2. The WCRT oft i is upper-bounded by the smallest positive solution to

Ri = Ci + å
8 j2hp(i)

gi; j + min

(�
Ri

Tj

�
Cj ;

�
Ri

Tj

�
PD j + M̂D j (Ri) + d̂j ;i

)!

(5.4)

where

d̂j ;i
def=

��
Ri

Tj

�
� 1

�
dj ;i (5.5)

andgi; j is given by
l

Ri
Tj

m
gucb

i; j for UCB-Union.

Proof. By Theorem 5.1 and substitutinĝdj ;i for r̂ j ;i in Equation (4.9)

Since,dj ;i calculated using Equation (5.2) is always less than or equal tor j ;i calculated using

Equation (4.5), the resulting WCRT obtained using Equation (5.4) is always less than or equal to

the WCRT obtained using Equation (4.9) whengi; j is computed using the UCB-union approach.

In other words, the integrated approach to CRPD and CPRO analysis given by Theorem 5.2dom-

inatesthe simple combination of the UCB-union and CPRO-union approaches.

5.3 Multi-set Approach to Integrated CRPD-CPRO analysis 79

Example 5.2. We now compute the total memory reload overhead of taskt 3 in Example 5.1 using

the results derived in Theorem 5.1.

Note that the UCB-union (Equation(3.3)) and the UCB-union multi-set (Equation(3.7)) ap-

proaches would give exactly the same values for the total CRPD. Therefore, the total CRPD is

upper-bounded by dmem� 12.

The set of PCBs for all tasks exceptt 2 is empty. Therefore, based on Equation(5.2), we have

d1;3 = 0 and

d2;3 = dmem� j PCB2 \ (ECB3 [(ECB1 n(UCB2 \ PCB2))) j

= dmem� jf 7;8;9;10g \ (f 7;8;9;10gn f7;8;9;10g) j = 0

According to Theorem 5.1,m3 is thus upper-bounded by(12� dmem), which is in this case the exact

overhead experienced during the response time oft 3 as illustrated in Figure 5.1a.

5.3 Multi-set Approach to Integrated CRPD-CPRO analysis

In this section, we improve over the analysis presented in Section 5.2 by building upon the UCB-

union multi-set (Equation (3.7)) and CPRO-union multi-set (Equation (4.11)) analyses that were

shown to dominate the UCB-union and CPRO-union approaches.

While the UCB-union approach assumes that every job of a taskt k 2 hp(i) executing during

the response time oft i can contribute to the total CRPD, the UCB-union multi-set approach (Equa-

tion (3.7)) considers that only a subset oft k's jobs actually contribute to the preemption overhead.

Hence, we must also differentiate between jobs that are considered in the CRPD and those that are

not, when computing the portion of the total memory reload overheadmi that is not yet accounted

for in the total CRPD.

Example 5.3. The example task set in Figure 5.2 has three taskst 1, t 2 and t 3 with priorities

assigned in numerical order such thatt 1 has the highest priority. We want to analyze the total

memory reload overheadm3 during the response time oft 3. Taskt 2 is the only task with UCB2 \

PCB2 6= /0. The sets of UCBs and PCBs oft 1 andt 3 are empty. Therefore,t 2 is the only task that

may suffer CRPD and CPRO. The total memory reload overheadm3 is thus bounded by the sum of

the CRPD and CPRO suffered byt 2 during the response time oft 3.

By Lemma 5.2,t 1 is the only task that can contribute to botht 2's CRPD and CPRO. Since

t 1 can preempt each job oft 2 at most once (i.e., E1(R2) = 1), and becauset 2 releases three jobs

during t 3's response time (i.e., E2(R3) = 3), at most three jobs oft 1 are preempting jobs oft 2

during the response time oft 3, i.e., E1(R2)E2(R3) = 3. Therefore, at most three jobs oft 1 may be

contributing to botht 2's CRPD and CPRO duringt 3's response time. The one remaining job of

t 1 can only execute between two jobs oft 2, and hence contributes only tot 2's CPRO.

To calculate the CPRO that any taskt j 2 hp(i) can suffer during the response time oft i ,

taking into consideration what has already been accounted for in the CRPD cost, we �rst analyze

80
Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload

Overheads

Figure 5.2: Illustrating the pessimism associated with the separate UCB-union multi-set and CPRO
multi-set analysis using the task setf t 1; t 2; t 3g with C1 = 1, C2 = 2, C3 = 5, T1 = 3, T2 = 5 and
T3 = 20.

the impact of each task in hep(i) nt j on the CPRO oft j . We characterize the maximum number

of times a taskt k 2 hep(i) nt j can execute between successive jobs oft j . To do so, we separately

analyze the tasks in aff(i; j) (Lemma 4.4) and the tasks in hp(j) (Lemma 4.3). We then identify

how many jobs of each task contribute only to the CPRO oft j and how many jobs contribute to

both the CRPD and the CPRO oft j (Lemma 5.6). We then make use of this information to derive

a multi-set formulation (Lemma 5.7) that calculates the additional CPRO of a taskt j 2 hp(i) that

is not already accounted for in the CRPD cost computed with Equation (3.7).

Lemma 5.4. The maximum number of times a taskt k 2 aff(i; j) can execute between jobs oft j

released duringt i 's response time is upper-bounded by(E j (Rk) + 1) � Ek(Ri).

Proof. Lemma 4.4 in Chapter 4.

Lemma 5.5. The maximum number of times a taskt k 2 hp(j) can execute between successive

jobs oft j released duringt i 's response time is upper bounded by Ek(Ri).

Proof. Lemma 4.3 in Chapter 4.

Example 5.3 shows that not all of the jobs released by a higher priority taskt l 2 hp(j) (e.g.,

t 1 in Figure 5.2) during the response time of a lower priority taskt i (e.g.,t 3 in Figure 5.2) can

preemptt j (e.g., t 2 in Figure 5.2). The jobs that do not preempt cannot contribute to both the

CRPD and the CPRO oft j . This observation leads to the following Lemma:

Lemma 5.6. For a taskt j 2 hp(i) executing during the response time oft i , the number of jobs of

any higher priority taskt l 2 hp(j) that are already accounted for in the CRPDgucb� m
i; j is given by

Ndouble
l ; j (Ri) = minf El (Ri) ; El (Rj)E j (Ri)g.

Proof. The CRPDgucb� m
i; j in Equation (3.7) is composed of the intersection of the two multi-sets

Mucb
i; j andMecb

i; j .

1. The calculation ofMecb
i; j (i.e., Equation (3.9)) assumes that a taskt l 2 hp(j) can release at

mostEl (Ri) jobs during the response timeRi of t i . Therefore, at mostEl (Ri) jobs of t l

preemptingt j are accounted for in the calculation ofgucb� m
i; j in Equation (3.7).

5.3 Multi-set Approach to Integrated CRPD-CPRO analysis 81

2. The calculation ofMucb
i; j (Equation (3.8)) assumes that for any taskt j 2 aff(i; j), El (Rj)E j (Ri)

is an upper bound on the number of timest j can be preempted byt l during t i 's response

time. Therefore, at mostEl (Rj)E j (Ri) jobs of t l are accounted for ingucb� m
i; j (i.e., Equa-

tion (3.7)).

It follows that the number of jobs oft l accounted for ingucb� m
i; j is given byNdouble

l ; j (Ri).

Using Lemmas 4.3-4.4, 5.2 and 5.6 we derive an upper bound on the CPRO any taskt j 2 hp(i)

can suffer duringt i 's response time, discounting what has already been taken into account in the

CRPD costgucb� m
i; j . This upper bound is denoted bydmul

j;i .

Lemma 5.7. Let gtot� m
i be an upper-bound on the total CRPD during the response time Ri of t i .

Further assume thatgtot� m
i is computed using the UCB-union multi-set approach, i.e.,gtot� m

i =

å
t j 2hp(i)

gucb� m
i; j . LetDm

i be an upper-bound on the portion of the total memory reload overhead that

was not accounted for ingtot� m
i , that is,Dm

i = mi � gtot� m
i , then:

Dm
i � å

t j 2hp(i)

dmul
j;i (5.6)

where

dmul
j;i

def= dmem�
�
�
�Mecb

j;i \ Mpcb
j;i

�
�
� (5.7)

where Mecb
j;i and Mpcb

j;i are multi-sets de�ned as

Mpcb
j;i =

[

E j (Ri)� 1

PCBj (5.8)

Mecb
j;i = Mecb� aff

j;i [Mhp� int
j;i (5.9)

with

Mecb� aff
j;i =

[

8k2aff(i; j)

0

@
[

(E j (Rk)+ 1)Ek(Ri)

ECBk

1

A (5.10)

Mhp� int
j;i =

[

8l2hp(j)

[

El (Ri)� Ndouble
l ; j (Ri)

ECBl

!
[

[

Ndouble
l ; j (Ri)

ECBl n
�

UCBj \ PCBj

�
!!

(5.11)

Proof. Sincegtot� m
i upper-bounds the total CRPD duringt i 's response time calculated using Equa-

tion (3.7), the portion ofmi that is not accounted for ingtot� m
i is a subset of the total CPRO during

t i 's response time that is,

Dm
i � å

t j 2hp(i)

dmul
j;i

wheredmul
j;i � r mul

j;i .

82
Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload

Overheads

We prove the validity ofdmul
j;i below.

1. Sincet j can release at most
l

t
Tj

m
jobs in a time window of lengtht, the PCBs oft j can be

evicted at most
�l

t
Tj

m
� 1

�
times within the time window of lengtht, contributing to CPRO1.

Therefore, the largest set of PCBs oft j that can be evicted during the response time oft i is upper

bounded by the multi-setMpcb
j;i =

S

E j (Ri)� 1
PCBj given in Equation (5.8).

2. By Lemma 4.4, the maximum number of times a taskt k 2 aff(i; j) can execute between two

successive jobs oft j during the response time oft i is upper bounded by(E j (Rk) + 1) � Ek(Ri).

Hence, the largest set of ECBs that can be loaded byt k between successive jobs oft j during the

response time oft i is given by
S

(E j (Rk)+ 1)Ek(Ri)
ECBk. Therefore the largest set of ECBs loaded

by the tasks in aff(i; j) between successive executions oft j is upper bounded byMecb� aff
j;i =

S

8k2aff(i; j)

S

(E j (Rk)+ 1)Ek(Ri)
ECBk

!

given in Equation (5.10).

3. By Lemma 4.3, the maximum number of times a taskt l 2 hp(j) can execute between two suc-

cessive jobs oft j during the response time oft i is upper bounded byEl (Ri). Hence, the largest set

of ECBs that can be loaded byt l and interfere with the PCBs oft j is given by
S

El (Ri)
ECBl . How-

ever, by Lemma 5.2, ast l 2 hp(j) it can contribute to both the CRPD and CPRO oft j during the

response time oft i . Further, by Lemma 5.6, the number of jobs oft l that were already considered

in the CRPD oft j is equal toNdouble
l ; j (Ri). Therefore, instead of assuming that all jobs released

by t l 2 hp(j) during the response time oft i contribute todmul
j;i , the multi-setMhp� int

j;i separately

categorizes the impact of jobs oft l that can/cannot be contributing to both the CRPD and CPRO

of t j during the response time oft i .

3.1 SinceNdouble
l ; j (Ri) is the number of jobs oft l that were already considered in the CRPD of

t j , thenEl (Ri) � Ndouble
l ; j (Ri) jobs of t l only contribute to the CPRO oft j . The memory reload

overhead generated by theseEl (Ri) � Ndouble
l ; j (Ri) jobs of t l on t j is not part ofgtot� m

i and must

therefore be entirely accounted for indmul
j;i . The worst-case interference of all these jobs is maxi-

mized when every job oft l loads all its cache blocks (i.e.,ECBl). Hence, the worse-case impact

that these jobs oft l can have on thet j 's CPRO is bounded by the multi-set
S

El (Ri)� Ndouble
l ; j (Ri)

ECBl

given in the �rst term of Equation (5.11).

3.2For all jobs oft l that can contribute to both the CRPD and CPRO oft j , i.e.,Ndouble
l ; j (Ri), then as

stated in Lemma 5.1, the evictions of cache blocks oft j in UCBj \ PCBj were already considered

in gtot� m
i . Therefore, the number of cache block evictions caused by theseNdouble

l ; j (Ri) jobs oft l on

t j that were not accounted for ingtot� m
i is maximized when each job loads all the cache blocks in

ECBl n(UCBj \ PCBj). Hence, the worse-case additional impact of all jobs oft l that contribute

to both the CRPD and CPRO oft j is bounded by the multi-set,
S

Ndouble
l ; j (Ri)

ECBl n(UCBj \ PCBj)

given by the second term of Equation (5.11).

1Recall from Equation (4.4) that all PCBs are assumed to be loaded once anyway.

5.4 Experimental Evaluation 83

Therefore, by 2. and 3. above, the largest set of ECBs that can interfere with the PCBs of

t j during the response time oft i is upper bounded byMecb
j;i = Mecb� aff

j;i [Mhp� int
j;i given by Equa-

tion (5.9). Hence, the largest set of PCBs oft j that can be evicted by the tasks in hep(i) n t j

within the response time oft i with evictions not already considered ingtot� m
i , is upper bounded

by the intersection ofMpcb
j;i with Mecb

j;i . Since reloading a cache block takes at mostdmem time

units, an upper bound on the total CPROdmul
j;i , not already included in the CRPD, is given by

dmem�
�
�
�Mecb

j;i \ Mpcb
j;i

�
�
� in Equation (5.7).

As a corollary of Lemma 5.7, we can upper-bound the total memory reload overheadmi as

stated in the following theorem:

Theorem 5.3. The total memory reload overheadmi during t i 's response time is upper-bounded

by

å
t j 2hp(i)

�
gucb� m

i; j + dmul
j;i

�
(5.12)

Proof. Follows from Lemma 5.7 sincemi = Dm
i + gtot� m

i .

This leads directly to the following theorem.

Theorem 5.4. The WCRT oft i is upper-bounded by the smallest positive solution to

Ri = Ci + å
8 j2hp(i)

gi; j + min

(�
Ri

Tj

�
Cj ;

�
Ri

Tj

�
PD j + M̂D j (Ri) + dmul

j;i

)!

(5.13)

wheregi; j is given bygucb� m
i; j for UCB-Union Multi-set (i.e., Equation(3.7)).

Proof. By Theorem 5.3 and substitutingdmul
j;i for r̂ j ;i in Equation (4.9)

Since,dmul
j;i calculated using Equation (5.7) is always less than or equal tor mul

j;i calculated

using Equation (4.11), the resulting WCRT obtained using Equation (5.13) is always less than

or equal to the WCRT obtained using Equation (4.9) whengi; j is computed using the UCB-Union

multi-set approach. In other words, the integrated multi-set approach to CRPD and CPRO analysis

given by Theorem 5.4dominatesthe seperate combination of the UCB-Union multi-set and CPRO

multi-set approaches.

5.4 Experimental Evaluation

In this section, we evaluate how the integrated CRPD-CPRO analyses perform in terms of schedu-

lability and whether it is bene�cial to use the integrated approaches in comparison to the analyses

that separately account for CRPD and CPRO. We performed experiments using the Mälardalen

benchmark suite (Gustafsson et al., 2010) and a set of sequential benchmarks from TACLEBench (Heiko,

2016) with various parameter settings.

84
Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload

Overheads

The tasks parametersCi , PDi , MDi , MDr
i along with the sets ofUCBi , ECBi , PCBi andnPCBi

were extracted using the Heptane static WCET analysis tool (Hardy et al., 2017) as presented in

Chapter 4. The target architecture was MIPS R2000/R3000 assuming a cache line size of 32 Bytes,

a cache size of 8kB and a block reload timedmem= 8ms. The memory footprint of each task was

upper bounded by 256 cache sets (i.e., 100% of the cache size). Table 5.2 shows the resulting task

parameters for the benchmarks used during the experiments.

The other task set parameters were randomly generated as follows. The default number of

tasks was 10 with task utilizations generated using UUnifast (Bini and Buttazzo, 2005). Each task

was randomly assigned the valuesCi , PDi , MDi , MDr
i , UCBi , ECBi , PCBi andnPCBi of one of the

analyzed benchmarks. Task periods were set such thatTi = Ci=Ui . Task deadlines were implicit

and priorities were assigned in deadline monotonic order.

We conducted experiments varying the total task utilization, cache size, block reload time and

task memory footprints. A WCRT based schedulability analysis is performed using the same task

sets for all approaches.

5.4.1 Core Utilization.

In this experiment, we randomly generated 100 task sets (with 10 tasks each) with a total uti-

lizations varied from 0:025 to 1 in steps of 0:025. The experiment was �rst performed using the

Mälardalen benchmarks and then using TACLEBench's sequential benchmarks.

Figure 5.3a and 5.3b show the number of task sets that were deemed schedulable by the differ-

ent analyses. Both plots also show the number of task sets that were deemed schedulable without

considering any CRPD or CPRO. We only show cropped versions of the plots starting from a

utilization of 0:7. All approaches produce identical results below this point.

Observation 5.1. Integrated CRPD-CPRO analyses out-perform the state-of-the-art CPRO-union

and multi-set approaches that separately account for CRPD and CPRO.

Figure 5.3a shows that when using Mälardalen benchmarks the integrated schedulability tests

accepted more task sets in comparison to tests using separate CRPD and CPRO analyses. The

difference between the integrated CRPD-CPRO union approach and the separate CPRO-union

approach is more signi�cant in comparison to their multi-set counterparts. The schedulability

ratio is increased by up to 7%. However, as the separate CPRO multi-set approach is already much

more precise the difference between the integrated CRPD-CPRO multi-set and the separate CPRO

multi-set approach is only around 2%. Nevertheless, we can observe that there are task sets that

were schedulable using the integrated CRPD-CPRO approaches but not with the separate CPRO-

union and multi-set approaches, therefore in this case the integrated CRPD-CPRO approaches

outperforms the separate CPRO-union and multi-set approaches. Note also that the schedulability

gain slightly increases when the cache size increases. For instance, when there are 512 cache sets

the gain is 8% for the integrated CRPD-CPRO union analysis, and 4% for the multi-set analysis.

Observation 5.2.For benchmarks (i.e., tasks) with large memory footprints, there is no gain when

integrating the CRPD-CPRO calculation.

5.4 Experimental Evaluation 85

Table 5.2: Task parameters for the benchmarks used during the experiments

Name Ci PDi MDi MDr
i ECBi PCBi UCBi nPCBi Benchmark Type

lcdnum 3440 984 2740 192 20 20 20 0 Mälardalen

bs 1399 203 1223 34 11 11 10 0 Mälardalen

�bcall 1585 785 886 89 8 8 7 0 Mälardalen

bsort100 712289 710289 90893 88907 20 20 18 0 Mälardalen

select 17138 11158 7858 1394 60 60 60 0 Mälardalen

sqrt 5667 2770 3242 362 26 26 25 0 Mälardalen

jfdctint 17347 7747 10473 965 96 96 96 0 Mälardalen

insertsort 7574 5974 2343 752 16 16 10 0 Mälardalen

cnt 10090 7191 3818 933 27 27 26 0 Mälardalen

prime 25891 23791 4246 2152 17 17 16 0 Mälardalen

ndes 137968 120823 31871 14834 121 75 100 46 Mälardalen

crc 143172 135796 25288 17932 44 44 43 0 Mälardalen

fdct 17350 6550 11525 9327 106 22 58 84 Mälardalen

minver 21668 4868 17265 518 167 167 159 0 Mälardalen

fft 157880 123681 45816 11888 141 141 140 0 Mälardalen

ud 28427 20627 10415 10415 75 53 31 22 Mälardalen

adpcm 230123 196131 55609 21501 240 240 237 0 Mälardalen

nsichneu 316409 22009 294400 294400 256 0 256 256 Mälardalen

statemate 190496 10586 180110 180110 256 36 256 220 Mälardalen

fmref 12117800 2143590 10148500 10063200 256 161 256 95 TACLEBench

adpcm-dec 479761 460616 84090 64892 173 173 172 0 TACLEBench

adpcm-enc 482994 462750 70921 50646 178 178 177 0 TACLEBench

h264-dec 2609630 1661910 1143780 1130800 256 133 256 123 TACLEBench

huff-dec 821956 808273 112838 97680 84 84 84 0 TACLEBench

lift 1945120 1929300 282201 265799 140 140 140 0 TACLEBench

petrinet 38532 4632 34191 9633 256 229 256 27 TACLEBench

audiobeam 1883880 1824060 310955 302240 253 75 253 178 TACLEBench

86
Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload

Overheads

(a) Schedulability ratio using Mälardalen benchmarks

(b) Schedulability ratio using TACLEBench

Figure 5.3: Schedulability ratio with respect to total core utilization

5.4 Experimental Evaluation 87

As shown in Figure 5.3b, the integrated CRPD-CPRO analyses do not improve over the state-

of-the-art for the TACLEBench benchmarks. In fact, the same number of task sets were schedu-

lable using all the approaches. The difference with Figure 5.3a can be understood as follows.

Mälardalen benchmarks consist of both light and heavy tasks (see Table 5.2) whereas the majority

of tasks in TACLEBench have large memory footprints using the entire cache. Therefore, almost

all tasks overlap in the cache, in which case the tasks with lower priority than a taskt j (i.e., the

tasks in aff(i; j)) evict the same cache blocks oft j as the tasks with higher priority (i.e, in hp(j)).

Hence, according to Equation (5.2) and Equation (5.7), integrating the CRPD and CPRO analyses

does not provide any gain.

From here on, we only show experimental results obtained using the Mälardalen benchmarks.

5.4.2 Cache size

For �xed priority preemptive systems, the cache size can have a signi�cant impact on the overall

schedulability of the system. In this experiment, we vary the total number of cache sets from

32 to 512. Figure 5.4a shows the resulting weighted schedulability (Bastoni et al., 2010) (see

Equation (4.20)) of each approach plotted against the total cache size2.

Observation 5.3. The integrated CRPD-CPRO analyses tend to outperform the separate analyses

when the cache size increases.

We can see from the plot in Figure 5.4a, that initially increasing the cache size decreases the

schedulability of all the approaches (i.e., from 32 to 128). This is mainly because most tasks

use between 32 to 128 cache sets. Hence, increasing the cache size in this interval increases the

number of ECBs and UCBs of tasks resulting in higher values of CRPD. Most of the cache blocks

are evicted (and reloaded) for every task execution and hence we observe that all the approaches

produce similar results. However, a further increase in cache size (i.e., from 128 to 512) means

more tasks �t in the cache with less con�icts between tasks. Therefore, we see an increase in

schedulability of all approaches. Also increasing the cache size results in increasing the number

of PCBs of tasks, so the overlap between UCBs and PCBs of tasks also increase. Hence, we

observe that with an increase in cache size from 128 to 512, the integrated CRPD-CPRO union

and multi-set approach tend to perform better than the analyses that separately accounts for CPRD

and CPRO.

5.4.3 Block Reload Time (dmem)

In this experiment, we analyze the impact of block reload timedmem on the performance of all

the approaches by varying it between 2ms to 20ms, with all other parameters set to default values.

Figure 5.4b shows the resulting weighted schedulability.

2When calculating weighted schedulability we only consider task set utilizations between 0.6 to 1 since for lower
utilizations, all task sets are schedulable.

88
Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload

Overheads

(a) Varying cache size

(b) Varying block reload timedmem

Figure 5.4: Weighted schedulability measure by varying cache utilization, block reload timedmem

and cache size

5.4 Experimental Evaluation 89

Observation 5.4. For very low or very high values of block reload time dmem, the integrated and

separate CRPD-CPRO analyses produce similar results.

For smaller values ofdmem (i.e., between 2ms and 4ms) the impact of CRPD and CPRO on

the schedulability of tasks is minimal. This means that similar results are achieved for integrated

and separate union and multi-set approaches. Similarly, for higher values ofdmem (i.e., dmem>

15ms), the CRPD becomes very high and thus negates any gain in schedulability resulting from

the reduction of the CPRO cost in the integrated analysis. In contrast, for values ofdmembetween

8ms to 12ms the impact of the overlap between CRPD and CPRO is visible. Note that for very low

values ofdmem (i.e., between 2ms and 4ms) all analysis perform better than the “No Preemption

Cost" analysis. This is mainly because the “No Preemption Cost" analysis does not account for

cache persistence and only use the WCET of tasks to compute the response time.

5.4.4 Task Priority and Memory footprint

The integrated CRPD-CPRO approaches avoid double counting in the total memory reload over-

head caused by the higher priority tasks. Therefore, the memory footprints of higher priority tasks

can greatly affect the performance of the integrated CRPD-CPRO analysis.

To evaluate the impact of task memory footprints on the performance of the integrated CRPD-

CPRO approaches, we performed a simple experiment using a single task set comprising 6 tasks

(t 1 to t 6, wheret 1 has the highest priority). We increased the memory footprint (i.e., number of

ECBs) of the highest priority taskt 1 and analyzed its impact on the total memory reload overhead

m4 of the medium priority taskt 4. Task set parameters used in this experiment were set as follows.

Core utilization was �xed at 0:7, with task utilizations generated using UUnifast algorithm. Each

task was assigned parameters using theludcmpbenchmark3. Task periods were set such that

Ti = Ci=Ui (i.e., T1 = 161586,T2 = 171642,T3 = 220971,T4 = 710848,T5 = 1363503 andT6 =

14533791). Cache size was �xed to 256 cache sets withdmem= 8ms.

In this experiment, we evaluate the relative performance of the integrated CRPD-CPRO ap-

proaches in terms of memory reload overheadm. Therefore, we report thegain on the total mem-

ory reload overheadmgain for taskt 4, i.e.,mgain
4 , by increasing the number of ECBs of the highest

priority taskt 1.

The relative gainmgain
i is de�ned asmgain

i
def= msep

i � mint
i

msep
i

wheremsep
i is the total memory reload

overhead for taskt i under the separate CRPD and CPRO analysis andmint
i is similarly the total

obtained with the integrated analysis. For the integrated CRPD-CPRO Union approach,mint
i is

given by Equation (5.3), whereas for the CRPD-CPRO multi-set approachmint
i is given by Equa-

tion (5.12). For the separate approaches, in each case the value ofr j ;i or r mul
j;i is used instead of

dj ;i or dmul
j;i .

Observation 5.5. If the memory footprint of higher priority tasks increase, then the relative gain

of the integrated analyses over the state-of-the-art analyses increases.

3Here, we deliberately chose a benchmark with signi�cant memory footprint to impact the memory reload overhead
of other tasks.

90
Integrated Analysis of Cache Related Preemption Delays and Cache Persistence Reload

Overheads

Table 5.3: Relative gainmgain
4 for the CRPD-CPRO union and multi-set approaches by increasing

the number of ECBs oft 1

Increase oft 1's ECBs mgain
4 with integrated mgain

4 with integrated
(%) CRPD-CPRO union CRPD-CPRO multi-set

No Increase 9% 12%
20% 11% 16%
40% 13% 18%
60% 14% 20%
80% 15% 20%
100% 16% 20%

Table 5.3 shows that the gain in total memory reload overhead oft 4 increases with thet 1's

memory footprint.

This behavior can be explained as follows. If one of the higher priority tasks (e.g.,t 1) has a

big memory footprint (i.e., more ECBs) it can contribute more to both CRPD and CPRO of lower

priority tasks. This results in increasing the overlap between the CRPD and CPRO of those tasks.

In contrast, if the higher priority tasks have small memory footprints, they will have less impact

on the CRPD and CPRO of medium and lower priority tasks and hence the overlap between the

CRPD and CPRO will also be small.

This observation explains the rather small average schedulability gain in the experiments pre-

sented until now. Since tasks with smaller memory footprints mostly have lower execution times,

their periods are most of the time shorter. Therefore, higher priority tasks usually have smaller

memory footprints in the randomly generated task sets, hence resulting in a reduced gain. Yet,

we note that this relationship between memory footprint, WCET, and period does not always hold

in practice. Tasks with short periods and a relatively small WCET may still have a substantial

memory footprint if they implemented via straight-line code. Similarly tasks with long WCETs

may have a small memory footprint in the case where they implement a small loop that is repeated

many times.

5.5 Chapter Summary

In this Chapter we answer two questions: (1) Is it bene�cial to integrate the calculation of CRPD

and CPRO? and (2) when and to what extent can we gain in terms of schedulability by inte-

grating the calculation of CRPD and CPRO? Our experimental evaluation, as well as theoretical

dominance results, showed that integrated CRPD-CPRO analysis can, in some cases, increase the

schedulability ratio by 2% to 7% by providing a tighter calculation of total memory reload over-

heads compared to the analyses that treat CRPD and CPRO independently. However, as pointed

out using a set of observations in the experimental evaluation the gains obtained using the inte-

grated CRPD-CPRO analysis are dependent on certain system con�gurations and parameter val-

ues. The average gains in terms of schedulability resulting from the integration of CRPD-CPRO

5.5 Chapter Summary 91

calculations may not be large; however, it is important to note that nevertheless, the integrated

approaches dominate the separate treatment of CRPD and CPRO and this dominance is obtained

with no increase in complexity, or need for extra information. Therefore, it is indeed bene�cial to

integrate the calculation of CRPD and CPRO.

Chapter 6

Evaluating the Impact of Memory

Layout of Tasks on Schedulability

When computing the inter-task cache interference, i.e., CRPD and CPRO, the analysis presented

in Chapter 4 considers the worst-case task layout in memory, i.e., all tasks start at the same static

memory address, which maximizes the inter-task cache interference. Similarly, the analysis pre-

sented in Chapter 5, assume a sequential layout of tasks in memory. As discussed in Section 3.3.2,

the position of a task in the main memory determines which cache blocks will be used by the task

which in turn impacts the inter-task cache interference that can be suffered by that task. In this

chapter, we will investigate the impact of different task layouts on task set schedulability.

As already discussed in Chapter 3, several different approaches have been presented in liter-

ature to bound the intra- and inter-task cache interference by means of cache partitioning (Kirk

and Strosnider, 1990; Wolfe, 1993; Altmeyer et al., 2014; Busquets-Mataix et al., 1997; Bui et al.,

2008; Kim et al., 2013; Altmeyer et al., 2016) or by optimizing the task layout in memory (Lunniss

et al., 2012; Altmeyer and Gebhard, 2007). However, these existing cache partitioning and task

layout optimization techniques focus on either the intra- or the inter-task cache interference and

do not exploit the fact that both intra- and inter-task cache interference can beinterrelated. For

example, the cache partitioning approaches mainly focus on inter-task cache interference and are

subjected to one basic problem: the available cache space may not be enough for each task to have

its own independent (i.e., non-overlapping) cache partition. Also with cache partitioning, as the

number of tasks increase, cache space that can be used for each individual task becomes always

smaller. This reduced amount of cache space available to each task potentially increases its intra-

task cache interference (i.e., the task may itself start to evict its own cache blocks) resulting in an

increased execution time due to an increase in the number of main memory accesses. This may

eventually cause the task to become unschedulable even though it does not suffer any inter-task

cache interference. Similarly, the approaches focusing on optimizing task layout in memory (Lun-

niss et al., 2012; Altmeyer and Gebhard, 2007) changes task placements in memory to reduce the

inter-task cache interference while allowing tasks an unconstrained use of the cache. However,

even with an optimal layout of tasks in memory, allowing tasks an unconstrained use of cache

92

6.1 Cache Coloring 93

may still result in higher inter-task cache interference, e.g., the cache block evictions of lower

priority tasks caused by a higher priority task using the whole cache will be inevitable even with

an optimal layout of tasks unless the cache space used by the higher priority task is reduced (i.e.,

potentially increasing the intra-task cache interference of the higher priority task to decrease the

inter-task cache interference it may cause).

In this chapter, we evaluate the impact of memory layout of tasks on schedulability by iden-

tifying the relationship between intra- and inter-task cache interference. First, we show how one

can model intra- and inter-task cache interference in a way that allows balancing their respective

contribution to tasks worst-case response times. We then propose a technique optimizing the task

layout in memory that result in improved task set schedulability. The main contributions of this

chapter are as follows:

1. We present acache coloringapproach to optimize task layout in memory such that cache

colors assigned to tasks are not strictly private but may be shared between tasks;

2. we model the impact of a given cache color assignment on different task parameters and

show how intra- and inter-task cache interference can be upper-bounded when using cache

coloring;

3. we present asimulated annealingalgorithm to optimize the cache color assignment to tasks

by re-allocating and re-sizing the cache colors assigned to tasks such that the task set's

schedulability is achieved; and

4. we perform an experimental evaluation using a set of benchmarks showing that our approach

results in up to 13% higher schedulability than state-of-the-art approaches.

6.1 Cache Coloring

As discussed in Section 3.3.1, cache (or page) coloring is a software technique that is widely

used to partition the cache by controlling the mapping of physical memory address to cache

blocks (Liedtke et al., 1997; Guan et al., 2009; Mancuso et al., 2013; Kim et al., 2013). Cache

coloring is mainly supported by systems that usevirtual memory. The rationale behind virtual

memory is to divide the address space used by tasks into blocks calledpages. Each page represent

a series of contagious memory addresses used by tasks. The Memory Management Unit (MMU)

maps these pages to physical memory location by translating the virtual page addresses into phys-

ical memory addresses. Figure 6.1 shows an example mapping between physical addresses and

cache entries. When virtual memory is used, each memory address referenced by a task translates

into a virtual address, whereg least signi�cant bits represent a page offset. The remaining bits

of the virtual address corresponds to a physical page number. The location of a memory block in

the cache is determined by its physical address. We can see in Figure 6.1 that for a cache with 2s

cache sets and a cache line size of 2l bytes, lastl bits of the physical address represent the cache

line offset. Whereas, the nexts bits are used as a set index into the cache. In this scenario, the

94 Evaluating the Impact of Memory Layout of Tasks on Schedulability

Figure 6.1: A visual representation of cache coloring (Kim et al., 2013)

overlapping bits between physical page number and the set index represent thecolor bits. Cache

coloring uses these overlapping bits as a color index, which effectively divides the cache into

2s+ l � g cache partitions. By controlling the color of pages assigned to a task, the operating system

(OS) can manipulate cache blocks at the granularity of the page size times the cache associativity.

The maximum number of colors that a platform can support is usually computed as follows:

Number of Cache Colors=
CacheSize

CacheAssociativity� PageSize

6.2 Assumptions on the System Model

In addition to the general system model detailed in Chapter 2 and Chapter 4, in this chapter we

make the following assumptions on the system model.

• The cache is assumed to be direct-mapped withktotal colors. Each color is uniquely num-

bered between 1 toktotal. The size of a cache color is denoted byksize and is equal the

number of successive sets in the cache that may be used by tasks assigned to that color.

For simplicity, we assume that the size of every cache color is the same. Note that this is a

common practice in real systems (Gracioli et al., 2015).

• The task setGcomprisesn tasks, i.e.,G= f t 1; ::::; t ng. Each taskt i is de�ned by a triplet

(Ci [ki], Ti , Di), whereCi [ki] is a vector of lengthktotal that contains the worst-case execution

time of taskt i in isolation assumingki contiguous cache colors are assigned tot i . Note

that ki represents thenumberof cache colors used byt i , whereas thesetof cache colors

assigned tot i is denoted bycki . The minimum inter-arrival time oft i is Ti andDi is its

relative deadline. We assume that the tasks have constrained deadlines, i.e.,Di � Ti .

• For each taskt i , PDi denotes the worst-case processing demand oft i considering that every

memory access is a cache hit.MDi [ki] is the worst-case memory access demand (in terms

of time) of any job of taskt i executing in isolation and assuming thatki contiguous cache

6.2 Assumptions on the System Model 95

colors are assigned tot i . It is usually assumed thatCi [ki] is non-increasing withki , i.e.,ki <

ki + 1 =) Ci [ki] � Ci [ki + 1]. However, we note that sincePDi is independent of the number

of cache colors assigned tot i , it is the worst-case memory access demandMDi [ki] which

must be de�ned as a non-increasing function w.r.t. the number of cache colors assigned tot i ,

i.e.,ki < ki + 1 =) MDi [ki] � MDi [ki + 1]. Furthermore, we assume that the values ofCi [ki],

PDi andMDi [ki] can be calculated using a static timing analysis tool such as Heptane (Hardy

et al., 2017).

• Similar to the de�nition ofCi [ki] andMDi [ki], in this chapter we assume that the residual

memory access demand (see De�nition 4.3) of taskt i also depends on the number of cache

colors assigned tot i , i.e., ki . Hence, in this chapter, we will denote the residual memory

access demand of taskt i by MDr
i [ki]. Consequently, Equation (4.4) used to compute the

total memory access demand̂MDi(t) of taskt i within a time window of lengtht is adapted

as follows:

M̂Di(t) = min
n �

t
Ti

�
� MDi [ki] ;

�
t
Ti

�
� MDr

i [ki] + PCBi(ki) � dmem

o
(6.1)

wherePCBi(ki) denote the maximum number of PCBs of taskt i , whent i is assignedki

cache colors.

The list of important symbols used in this chapter is provided in Table 6.1.

Table 6.1: List of important symbols used in Chapter 6

Symbol Description

G Task set of sizen

t i Task with indexi

ktotal The total number of colors in the cache

ksize The size of one cache color

ki The number of cache colors allocated to taskt i

cki The set of cache colors allocated to taskt i .

Ci [ki] Vector of lengthktotal that contains the worst-case execution time of taskt i in

isolation assumingki contiguous cache colors are assigned tot i .
Cmin

i Worst-case execution time of taskt i in isolation assumingt i is allocated a cache

of in�nite size, i.e., the total cache space assigned to taskt i is greater or equal to

the size oft i in main memory.
Ti Minimum inter-arrival time of taskt i

Di Relative deadline of taskt i

Ri Worst-case response time of taskt i

PDi Worst-case processing demand of taskt i in isolation

Continued on next page

96 Evaluating the Impact of Memory Layout of Tasks on Schedulability

Table 6.1 – continued from previous page

Symbol Description

MDi [ki] Worst-case memory access demand of any job of taskt i executing in isolation

and assuming thatki contiguous cache colors are assigned tot i .
MDmin

i Worst-case memory access demand of taskt i in isolation assumingt i is allocated

an in�nite cache space, i.e., the total cache space assigned to taskt i is greater or

equal to the size oft i in main memory.
MDmax

i Maximum worst-case memory access demand oft i in isolation when there is no

cache assigned to taskt i (i.e.,ki = 0).
DMDi [ki] The change in the worst-case memory access demandMDi [ki] of taskt i due to

an increase in the number of cache colorski assigned tot i .
MDr

i [ki] Residual memory access demand of taskt i in isolation assuming thatki contigu-

ous cache colors are assigned tot i .
DMDr

j [k j] The change in the residual memory access demandMDr
j [k j] of taskt j due to an

increase in the number of cache colorsk j assigned tot j .
M̂Di(t) Total memory access demand of taskt i in a time interval of lengtht

hp(i) The set of tasks with higher priority thant i

hep(i) The set of tasks with higher priority thant i includingt i , i.e., hep(i) = hp(i)[t i .

aff(i; j) The set of intermediate tasks (includingt i) that may preemptt i but may them-

selves be preempted by some higher priority taskt j .
dmem Time to reload one cache block from the main memory

CI intra;ki
i Upper bound on the intra-task cache interference suffered by taskt i when as-

signedki contiguous cache colors.
CI inter;g

i;j (Ri) Upper bound on the inter-task cache interference in terms of CRPD that taskt i

may suffer during its response time due to preemptions by any higher priority

taskt j 2 hp(i).
CI inter;r

j;i (Ri) Upper bound on the inter-task cache interference in terms of CPRO that each

higher priority taskt j 2 hp(i) may suffer during the response time oft i .
ki; j The worst-case number of cache colors that may suffer evictions as a result of a

single preemption of taskt i by taskt j .
k

0

j ;i The maximum number of cache colors of taskt j that can be evicted between

its successive jobs due to the executions of all tasks in hep(i) n t j during the

response time of taskt i .
ECBi(ki) The maximum number of ECBs of taskt i when assignedki cache colors

UCBi(ki) The maximum number of UCBs of taskt i when assignedki cache colors

PCBi(ki) The maximum number of PCBs of taskt i when assignedki cache colors

Ni The average number of times each UCB of taskt i is accessed while it is cached

N
0

j The average number of times each PCB oft j is accessed after it is loaded in the

cache.
Continued on next page

6.3 Cache Interference Aware WCRT Analysis 97

Table 6.1 – continued from previous page

Symbol Description

r col
j;i CPRO suffered by one job of a higher priority taskt j 2 hp(i) during the response

time of a lower priority taskt i , when using cache coloring.
r one

j;i CPRO of one job of a higher priority taskt j 2 hp(i) during the response time of

a lower priority taskt i , when considering the difference between the worst-case

and the residual memory access demand of taskt j .
gcol

i; j CRPD suffered by taskt i due to one preemption by any higher priority task

t j 2 hp(i) when using cache coloring.
gucb

i; j CRPD suffered by taskt i due to one preemption by any higher priority task

t j 2 hp(i), computed using the UCB-union approach (i.e., Equation (3.3)).
gtot

i; j Total CRPD suffered by taskt i in a time interval of lengtht due to preemptions

by any higher priority taskt j 2 hp(i).
Sli Slack of taskt i , i.e., the difference between the relative deadline and the WCRT

of t i .
Sltot Total slack of task setG

6.3 Cache Interference Aware WCRT Analysis

In this chapter, we will calculate the WCRT of a taskt i using a similar formulation as presented

in Equation (4.9). However, we will explicitly consider the intra- and inter-task cache interference

suffered by tasks during the response timeRi of taskt i , i.e.,

Ri = Cmin
i + CI intra;ki

i + å
8 j2hp(i)

min

(�
Ri

Tj

� �
Cmin

j + CI intra;kj
j

�
;
�

Ri

Tj

�
PD j (6.2)

+ M̂D j (Ri) + CI inter;r
j;i (Ri)

)

+ CI inter;g
i;j (Ri)

!

In Equation (6.2),Cmin
i denotes the worst-case execution time of taskt i in isolation assumingt i is

allocated a cache of in�nite size (or more practically, the total cache space assigned to taskt i is

greater or equal to the size oft i in main memory). The intra-task cache interference oft i w.r.t the

number of cache colorski assigned tot i is denoted byCI intra;ki
i as intra-task interference impacts

only the execution time oft i itself. Similarly, the intra-task cache interferenceCI intra;kj
j of each

higher priority taskt j 2 hp(i) executing during the response time oft i is considered in the higher

priority interference term within the sum on higher priority tasks. Moreover,CI inter;g
i;j (Ri) denotes

the inter-task cache interference in terms of CRPD that taskt i may suffer during its response time

due to preemptions by any higher priority taskt j 2 hp(i) andCI inter;r
j;i (Ri) bounds the inter-task

cache interference in terms of CPRO that each higher priority taskt j 2 hp(i) may suffer during the

response time oft i . Note that in Equation (6.2),M̂D j (Ri) will be calculated using Equation (6.1).

98 Evaluating the Impact of Memory Layout of Tasks on Schedulability

Figure 6.2: Increase in execution demand and memory access demand of taskt i due to reduction
in number of cache colors assigned tot i .

SinceM̂D j (Ri) is a function ofMD j [k j], MDr
j [k j] and the number of PCBs oft j , which are in turn

functions of the number of cache colorsk j assigned tot j therefore,M̂D j (Ri) directly considers the

intra-task interference of all jobs oft j executing during the response time oft i . In the following

sections, we detail how the total intra- and inter-task cache interference can be bounded under the

cache coloring approach considered in this chapter.

6.4 Bounding Intra-Task Cache Interference

Intra-task cache interference represents contention between different code segments of a task that

are mapped to the same cache space. If the cache space allocated to a task is not suf�cient to

hold all its instructions/data, the task may self-evict its own cache content resulting in higher main

memory access demand even when the task is executing in isolation. For a taskt i its intra-task

cache interference depends on the cache space or the number of cache colorski assigned tot i .

Consider the plot of worst-case execution time (Ci [ki]) and the worst-case memory access demand

(MDi [ki]) of taskt i with respect to the number of cache colorski assigned tot i shown in Figure 6.2.

The plot shows the actual variation in the worst-case execution time and the worst-case memory

access demand of the benchmarkfdct of the Mälardalen benchmark suite (Gustafsson et al.,

2010), i.e., represented as taskt i , when the number of cache colorski assigned tot i are varied in a

descending order from 8 to 1. The values in Figure 6.2 were obtained using Heptane (Hardy et al.,

2017) for a cache with 8 cache colors, each having a size of 512 Bytes.

6.5 Bounding Inter-task Cache Interference 99

Figure 6.2 shows that when the number of cache colors (or cache space) assigned to taskt i is

greater or equal to the size oft i in main memory (i.e., forki � 4), the worst-case execution time

(Ci [ki]) and the worst-case memory access demand (MDi [ki]) of t i is minimum, i.e.,Ci [ki] = Cmin
i

andMDi [ki] = MDmin
i for ki � 4, whereMDmin

i represents the worst-case memory access demand

of taskt i in isolation assumingt i is allocated an in�nite cache size. Effectively, forki � 4 t i will

suffer no intra-task cache interference.

We can also observe from the plot in Figure 6.2 that by decreasing the number of cache colors

ki assigned tot i , its worst-case execution time (Ci [ki]) and the worst-case memory access demand

(MDi [ki]) tend to increase. This increase inCi [ki] andMDi [ki] is due to an increase in the intra-task

cache interference oft i mainly because by reducing the number cache colorski , the number of

UCBs of taskt i may also decrease, i.e., by decreasing the number of cache colorski (or the cache

space) assigned tot i , cache blocks oft i that were previously mapped to different cache sets and

were reused more than once before eviction may now map to the same cache set. Consequently,

loading one cache block will evict the other thus resulting in reducing the number of cache blocks

of t i that can be reused, i.e., the number of UCBs. Effectively, this reduction of the number of

UCBs results in increasingMDi [ki] of t i for ki < 4. Therefore, the intra-task cache interference of

a task directly relates to it worst-case memory access demand in the following manner

CI intra;ki
i = MDi [ki] � MDmin

i (6.3)

The resulting intra-task cache interference of taskt i for a given cache color assignmentki , i.e.,

CI intra;ki
i , is accounted for in the WCRT oft i (i.e., Equation (6.2)) by explicitly addingCI intra;ki

i to

Cmin
i which is the worst-case execution time oft i in isolation assumingt i is allocated an in�nite

cache. However, we note that becauseCI intra;ki
i depends onMDi [ki] and sinceMDi [ki] may not

necessarily be experienced on the same execution path oft i for different cache color assignments

cki , it holds thatCi [ki] � Cmin
i + CI intra;ki

i . Hence, Equation (6.3) provides a safe upper-bound on

intra-task cache interference even for multi-paths programs.

6.5 Bounding Inter-task Cache Interference

The inter-task cache interference a taskt i may suffer due to higher priority tasks in hp(i) is mainly

categorized into two types, i.e., the inter-task cache interference due to CRPDs and the inter-task

cache interference due to CPROs.

The inter-task cache interference in terms of CRPD results from the eviction of UCBs oft i

due to preemptions by a higher priority taskt j in hp(i) and is denoted byCI inter;g
i;j . Whereas, the

inter-task cache interference in terms of CPRO results from the eviction of PCBs of the higher

priority taskt j 2 hp(i) due to the executions of all other tasks in the system (whilet j executes

during the response time oft i) and is denoted byCI inter;r
j;i . In the following subsections, we explain

howCI inter;g
i;j andCI inter;r

j;i can be bounded when using a cache coloring approach.

100 Evaluating the Impact of Memory Layout of Tasks on Schedulability

6.5.1 Inter-Task Cache Interference due to CRPDs

As discussed in Chapter 3 (Section 3.2), a number of methods have been proposed in the litera-

ture (Lee et al., 1998; Busquets-Mataix et al., 1996; Tomiyama and Dutt, 2000; Tan and Mooney,

2007; Staschulat et al., 2005; Altmeyer et al., 2011, 2012; Marković et al., 2020a) for computing

the CRPD under FPPS using the set of UCBs and/or ECBs. However, in this chapter, we focus on

a UCB-union-like approach (Tan and Mooney, 2007) to calculate the CRPD cost due to sharing

of cache colors between several tasks. Recall, that the UCB-union approach (Tan and Mooney,

2007) uses intersection between the set of ECBs of the preempting taskt j and the set of UCBs of

all tasks inaff(i; j) possibly affected by the preemption caused byt j to calculate CRPD costgucb
i; j

(see Equation (3.3)).

However, when cache colors are being assigned to tasks, Equation (3.3) cannot be used as

is. This is mainly because when coloring tasks, any variation in the cache color of any task may

potentially change the set of UCBs and ECBs of all tasks int . Indeed, the actual mapping of tasks

within a cache color may not be known as it is handled by the cache controller.1 Consequently, the

actual set of ECBs/UCBs of tasks may not be known as they depend on the actual cache sets used

by the tasks. For example, consider two taskst i andt s sharing the same cache colorck, where

ck comprises 4 cache sets, numbered from 1 to 4. If botht i andt s have 2 UCBs under this cache

assignment, these UCBs can be mapped to any of the four cache sets depending on howt i andt s

are mapped withinck by the cache controller, i.e.,UCBi = f 1;2g andUCBs = f 3;4g or any other

combinations with or without overlapping betweenUCBi andUCBs. Since the actual set of UCBs

of tasks might not be known, using different set of UCBs of tasks in Equation (3.3) may produce

different pessimistic/optimistic value for the CRPD costgucb
i; j .

In order to bound the CRPD under our cache coloring approach, we �rst determine the cache

colors that may be affected whent i is preempted by a higher priority taskt j 2 hp(i). Assuming

that the cache color assignment of tasks has already been done, i.e.,t i andt j are assigned a set of

cki andckj cache colors respectively.

We know from the UCB-union approach (Equation (3.3)), that when a taskt i is preempted by

a higher priority taskt j , the set of UCBs of all tasks in aff(i; j) can be evicted. Similarly, when a

taskt i using a set ofcki cache colors is preempted by a higher priority taskt j whose assigned a

set ofckj cache colors, the cache colors used by all tasks in aff(i; j) may be evicted. Therefore,

the maximum number of cache colors that may be affected due to a single preemption oft i by t j

is bounded byki; j , where

ki; j =

�
�
�
�
�
�

0

@
[

8s2aff(i; j)

cks

1

A \ ckj

�
�
�
�
�
�

(6.4)

1Most cache controllers (Liedtke et al., 1997; Lin et al., 2008; Zhang et al., 2009; Suhendra and Mitra, 2008) work at
the granularity of a memory page and can be controlled to make sure memory pages of a task map to the speci�ed cache
color. However, when sharing cache colors among tasks, memory pages of different tasks may map to the same cache
color so changing the mapping of one task may affect the others, making it dif�cult to predict the actual placement of
tasks in cache.

6.5 Bounding Inter-task Cache Interference 101

Here,ki; j gives the worst-case number of cache colors that may suffer evictions as a result of a sin-

gle preemption of taskt i by taskt j . Therefore, the productki; j � ksizecan be used to upper bound

the number of cache sets that may be evicted due to a single preemption oft i by t j . However, this

bound can obviously be very pessimistic, mainly because it does not consider the actual number

of UCBs in those cache sets and hence the actual number of memory blocks that must be reloaded

from main memory after eviction.

To tightly bound the CRPD cost, both the number of potentially evicted cache colors, i.e.,ki; j ,

and the number of ECBs/UCBs of tasks must be considered. We know that under cache coloring

the actual set of ECBs/UCBs, i.e., their mapping in cache, may not be known as they depend on

the actual cache sets assigned to tasks. However, theirnumberonly depends on the number of

cache colors assigned to tasks rather than the actual cache sets assigned to those tasks. Therefore,

let UCBi(ki) andECBi(ki) be de�ned as

• UCBi(ki): The maximum number of UCBs2 of taskt i when it is assignedki cache colors.

• ECBi(ki): The maximum number of ECBs of taskt i when it is assignedki cache colors.

Effectively, the CRPD cost due to a single preemption oft i by t j can be bounded using the

notion ofUCBi(ki) andECBi(ki).

Lemma 6.1. The CRPD cost due to a single preemption of a lower priority taskt i by a higher

priority taskt j is bounded bygcol
i; j , i.e.,

gcol
i; j = dmem� min

(

å
8s2aff(i; j)

(UCBs(ks) � Vs; j) ;ECBj (ki; j)

)

(6.5)

where Vs; j = 1 if jcks \ ckj j > 0 and Vs; j = 0; otherwise.

Proof. We prove that bothå 8s2aff(i; j) (UCBs(ks) � Vs; j) andECBj (ki; j) are upper bounds on the

CRPD costgcol
i; j . Therefore, the minimum between the two is also an upper bound ongcol

i; j .

(1). From the UCB-union approach (Equation (3.3)), it follows that when taskt i is preempted by

a higher priority taskt j , the set of UCBs of all tasks in aff(i; j) may be evicted. However, when

using cache coloring the actual set of UCBs of a taskt s 2 aff(i; j) may not be known. Instead, we

know the maximum number of UCBs oft s, i.e.,UCBs(ks), for a given cache color assignmentcks

with sizeks. Also due to cache coloring,t j can only evict UCBs of a taskt s 2 aff(i; j) only when

jcks\ ckj j > 0 (i.e.,Vs; j = 1). Hence, the total number of UCBs among all tasks in aff(i; j) that can

be evicted byt j is bounded byå 8s2aff(i; j) (UCBs(ks) � Vs; j). Therefore, for a single preemption of

t i by t j , å 8s2aff(i; j) (UCBs(ks) � Vs; j) upper bounds the CRPD costgcol
i; j .

(2). The ECB-only approach (Busquets-Mataix et al., 1996; Tomiyama and Dutt, 2000) implies

that the number of ECBs of the preempting task upper bounds the total CRPD cost that a task

2The maximum number of ECBs, UCBs and PCBs of a task for a given cache color assignment can be computed
using any static timing analysis tool such as Heptane (Hardy et al., 2017).

102 Evaluating the Impact of Memory Layout of Tasks on Schedulability

may cause, i.e., for a single preemption oft i by t j the number of ECBs oft j also upper bounds

the CRPD cost. However, due to cache coloring not all cache colors used byt j , i.e., k j , may

overlap with cache colors used by taskt i (and by tasks in aff(i; j)) except forki; j cache colors (i.e.,

Equation (6.4)).

Hence, the maximum number of ECBs oft j in theki; j overlapping cache colors used by tasks

in aff(i; j), i.e.,ECBj (ki; j), upper bounds the CRPD costgcol
i; j from t j 's perspective.

The lemma follows.

For a single preemption oft i by t j , the CRPD cost can be bounded using Lemma 6.1. However

as we will now prove, the actual time taken to reload all UCBs oft i from the main memory is also

bounded by the change in the worst-case memory access demand of taskt i w.r.t the number of

cache colorski assigned tot i .

To illustrate, letMDmax
i be the maximum worst-case memory access demand oft i when there

is no cache assigned tot i (i.e., ki = 0). Now, consider the example plot of main memory access

demandMDi [ki] of a taskt i shown in Figure 6.3. The plot shows the normalized worst-case

memory access demand of thefdct benchmark of the Mälardalen benchmark suite when the

number of cache colorski assigned to that task varies. The values reported in Fig. 6.3 were

obtained using the same cache con�guration as in Figure 6.2. Figure 6.3 shows that forki = 0 the

Figure 6.3: Worst-case memory access demandMDi [ki] of taskt i w.r.t the number of cache colors
assigned tot i .

worst-case memory access demand oft i is maximum, i.e.,MDi [ki] = MDmax
i . Also, forki = 0 since

no cache space is assigned tot i there cannot be any useful cache blocks, i.e.,UCBi = /0. Moreover,

sinceMDi [ki] is a non-increasing function w.r.t. the number of cache colorski , we observe that by

increasingki , MDi [ki] is decreasing.

6.5 Bounding Inter-task Cache Interference 103

This decrease inMDi [ki] of taskt i is due to an increase in its number of UCBs, i.e., by in-

creasing the number of cache colorski (or cache space) assigned tot i , more instructions/data oft i

may remain cached and therefore reused without having to reload them from main memory. This

effectively increases the number of UCBs oft i , leading to a reduction in its worst-case memory

access demand. The change in the worst-case memory access demandMDi [ki] of t i due to an

increase in the number of cache colorski assigned tot i can be bounded byDMDi [ki], where

DMDi [ki] = MDmax
i � MDi [ki] (6.6)

As the change in worst-case memory access demand oft i is due to an increase in the number of

accesses to UCBs oft i . Formally,

UCBi(ki) � Ni � dmem� DMDi [ki] (6.7)

whereNi is the average number of times each UCB oft i is accessed while it is cached.

SinceDMDi [ki] bounds the time to reload all UCBs oft i for a given cache color assignmentki ,

it also bounds the total CRPDt i can suffer due to eviction of its UCBs by tasks in hp(i). However,

we know from Lemma 6.1 that when taskt i is preempted by a higher priority taskt j 2 hp(i),

UCBs of all tasks in aff(i; j) can be evicted. Therefore, to bound the total CRPDt i may suffer

due to preemptions by a taskt j 2 hp(i) the change in the worst-case memory access demand of

all tasks in aff(i; j) should be considered.

Lemma 6.2. The total CRPD cost suffered by a taskt i due to preemptions by a higher priority

taskt j 2 hp(i) is bounded by

8 j 2 hp(i) : gtot
i; j � å

8s2aff(i; j)

DMDs[ks] (6.8)

Proof. Assuming tasks are assigned priorities in ascending order such that taskt i� 1 has a higher

priority thant i , we prove by induction that Equation (6.8) holds8 j 2 hp(i).

Base Case:Considert i andt i� 1 such thatt i� 1 has a priority just above that oft i . Therefore,

aff(i; i � 1) = t i .

The total CRPD thatt i may suffer due to taskt i� 1, i.e., gtot
i;i� 1, can never be larger than the

time to reload all UCBs oft i Ni times from the main memory, i.e., the number of times UCBs of

t i were accessed in cache whent i executes in isolation. Whereas, Equation (6.7) implies that that

time is bounded byDMDi [ki]. Hence, forj = i � 1, gtot
i; j � DMDi [ki].

Induction step: Consider another taskt s having a priority higher thant i and assume that Equa-

tion (6.8) holds forj = s, then Equation (6.8) also holds forj = s� 1.

For j = s� 1, aff(i;s� 1) = f t i ; ::::t sg, so using Equation (6.5) we know that whent s� 1

preempts taskt i it may evict UCBs of all tasks in aff(i;s� 1), i.e., f UCBi(ki); ::::UCBs(ks)g.

Also, by the same reasoning than above we know that the total CRPD every task in aff(i;s� 1) =

f t i ; ::::t sg may suffer due to taskt s� 1 is bounded byf DMDi [ki]; ::::DMDs[ks]g respectively.

104 Evaluating the Impact of Memory Layout of Tasks on Schedulability

So, it follows that forj = s� 1, the total CRPDt i may suffer due tot j is bounded such that

gtot
i; j � å 8s2aff(i; j) DMDs[ks].

Therefore, by induction Equation (6.8) holds for allj 2 hp(i).

Since a higher priority taskt j 2 hp(i) can release
l

t
Tj

m
jobs during a time window of length

t and the CRPD caused by each of these jobs ont i can also be bounded usinggcol
i; j (i.e., Equa-

tion (6.5)), therefore the total CRPDt i may suffer due tot j , i.e., gtot
i; j , during a time window of

lengtht is bounded such thatgtot
i; j �

l
t
Tj

m
� gcol

i; j .

Consequently, The total inter-task cache interference in terms of CRPD suffered byt i due to a

higher priority taskt j 2 hp(i) in a time interval of lengtht is upper bounded byCI inter;g
i;j (t), where

CI inter;g
i;j (t) = min

 �
t
Tj

�
� gcol

i; j ; å
8s2aff(i; j)

DMDs[ks]

!

(6.9)

6.5.2 Inter-Task Cache Interference due to CPROs

In Chapter 4 and Chapter 6, we presented different approaches to compute the CPRO of tasks.

However, in this chapter we will focus on a CPRO-union (i.e., Equation (4.5)) alike approach

to bound CPRO under the proposed cache coloring approach. To calculate the CPRO of a task

t j 2 hp(i) executing during the response time oft i , the CPRO-union approach uses the set of

PCBs of taskt j and the set of ECBs of all tasks in hep(i) nt j (see Equation (4.5)). However, as

already discussed for the CRPD calculation (Section 6.5.1), it is not possible to directly use the

CPRO-union approach (i.e., Equation (4.5)) under the cache coloring technique considered in this

chapter, mainly because the actual set, i.e., their accurate placement in cache, of PCBs and ECBs

may not be known. Therefore, to bound the CPRO of a taskt j (executing during the response

time of t i) under our cache coloring approach, we use a similar technique to the one used in

Section 6.5.1. We �rst bound the worst-case number of cache colors that may be evicted between

two subsequent jobs oft j .

Assumingt i andt j are assigned a set ofcki andckj cache colors respectively, then the max-

imum number of cache colors oft j that can be evicted between its successive jobs due to the

executions of all tasks in hep(i) nt j during the response time oft i can be bounded byk
0

j ;i calcu-

lated as follows.

k
0

j ;i =

�
�
�
�
�
�
ckj \

� [

8t s2hep(i)nt j

cks
�
�
�
�
�
�
�

(6.10)

wherek
0

j ;i bounds the number of cache colors that can be affected by evictions between two suc-

cessive jobs oft j . Therefore, the productk
0

j ;i � ksize bounds the maximum number of cache sets

that can be evicted between two successive jobs oft j . However, that is obviously pessimistic and

to have a tighter bound on the CPRO in terms of the number of PCBs oft j that may be evicted

between its two successive jobs, we de�nePCBi(ki), i.e.,

• PCBi(ki): The maximum number of PCBs of taskt i when it is assignedki cache colors.

6.5 Bounding Inter-task Cache Interference 105

PCBi(ki) can also be computed in a similar manner toECBi(ki) and UCBi(ki) as detailed in

Section 6.5.1. Furthermore,PCBj (k j) andECBi(ki) can be used to bound the CPRO of a task

t j 2 hp(i) executing during the response time oft i using the following lemma

Lemma 6.3. r col
j;i bounds the CPRO or the maximum number of PCBs of taskt j that may be

evicted between two successive jobs oft j due to eviction of k
0

j ;i cache colors by tasks inhep(i) nt j ,

where

r col
j;i = dmem� min

(

PCBj (k j); å
8t s2hep(i)nt j

�
ECBs(k

0

j ;i) � Vs; j

�
)

(6.11)

where Vs; j = 1 if jcks \ ckj j > 0 and Vs; j = 0; otherwise.

Proof. We prove that bothPCBj (k j) andå 8t s2hep(i)nt j
(ECBs(k

0

j ;i) � Vs; j) are upper bounds on the

CPRO costr col
j;i . Therefore, a minimum between the two bounds is also an upper bound onr col

j;i .

(1). By de�nition of PCBs, the CPRO of a task is upper bounded by its number of PCBs. Hence,

assumingt j is assignedk j cache colors, the maximum number of PCBs oft j are given by

PCBj (k j). Therefore, the maximum CPRO one job oft j can suffer during the response time

of t i is upper bounded byPCBj (k j).

(2). The worst-case memory interference of any taskt s 2 hep(i) nt j on t j is when it loads all its

ECBs between two subsequent jobs oft j . With cache coloring, ifks cache colors are assigned to

a taskt s 2 hep(i) nt j , the maximum number of ECBs oft s that can be loaded between two jobs

of t j are bounded byECBs(ks).

(3). However,t s can only evict PCBs of taskt j only if jcks \ ckj j > 0 (i.e.,Vs; j = 1) and not all

cache colors used byt s (i.e., cks) may overlap with cache color used byt j except fork
0

j ;i cache

colors (see Equation (6.10)). Effectively,ECBs(k
0

j ;i) � Vs; j bounds the number of ECBs oft s that

may overlap and potentially evict PCBs oft j .

Since allt s 2 hep(i) nt j may execute between two successive jobs oft j potentially evicting

its PCBs. The worst-case memory interference of allt s 2 hep(i) nt j on PCBs oft j is bounded by

å 8t s2hep(i)nt j
ECBs(k

0

j ;i � Vs; j). So the lemma follows.

The CPRO (i.e.,r col
j;i) suffered by a single job of a higher priority taskt j 2 hep(i) executing

during the response time oft i can be bounded using Lemma 6.3. However, since the CPRO

accounts for the extra memory accesses of a taskt j due to eviction of its PCBs, it may also

depend on the memory access demand oft j given thatt j is assignedk j cache colors.

To further illustrate this point, consider the example plot (i.e., Figure 6.4) of a taskt j rep-

resenting the same (i.e.,fdct) benchmark from the Mälardalen benchmark suite with the same

cache con�guration as used in Figure 6.3. The plot in Figure 6.4 shows two types of memory ac-

cess demands of taskt j with respect to the number of cache colors (i.e.,k j) assigned tot j , i.e., the

worst-case memory access demand (MD j [k j]) and the residual memory access demand (MDr
j [k j]).

From Figure 6.4, we observe that when the number of cache colors assigned tot j are less than or

equal to 3 , the worst-case memory access demandMD j [k j] of t j is equal to its residual memory

106 Evaluating the Impact of Memory Layout of Tasks on Schedulability

Figure 6.4: Variation in the worst-case and residual memory access demand of taskt j w.r.t the
number of cache colors assigned.

access demandMDr
j [k j], showing that fork j � 3, t j has no PCBs. However, by further increasing

the cache colors assigned tot j (i.e., for k j > 3), we can see an increasing difference between the

worst-case memory access demandMD j [k j] and the residual memory access demandMDr
j [k j] of

t j . This difference is due to an increase in the number of PCBs oft j and is denoted byDMDr
j [k j],

where

DMDr
j [k j] = MD j [k j] � MDr

j [k j] (6.12)

DMDr
j [k j] corresponds to the reduction in time to access main memory due to an increase in the

number of PCBs oft j . Therefore,DMDr
j [k j] effectively bounds the number of PCBs oft j given

thatt j is assignedk j cache colors, i.e.,

PCBj (k j) � N
0

j � dmem� DMDr
j [k j] (6.13)

whereN
0

j is the average number of times each PCB oft j is accessed. SinceDMDr
j [k j] bounds the

number of PCBs of taskt j , it also bounds the CPRO suffered byt j when it executes during the

response time of a lower priority taskt i .

Lemma 6.4. The CPRO due to the eviction of PCBs of a job of taskt j 2 hp(i) executing during

the response time of a taskt i , i.e.,r one
j;i , is upper bounded by the difference between the worst-case

and the residual memory access demand oft j , i.e.,

r one
j;i � DMDr

j [k j] (6.14)

Proof.

(1). Equation (6.11) implies that the CPRO of one job of taskt j 2 hp(i) executing during the

response time of a taskt i is upper bounded by the time to reload all PCBs oft j from main memory

given a cache color assignmentk j , i.e.,r one
j;i � PCBj (k j) � dmem.

(2). Also, from Equation (6.13) it follows that the time to reload all PCBs oft j for a given cache

color assignmentk j is bounded by the difference between the worst-case and the residual memory

access demand oft j , i.e.,PCBj (k j) � N
0

j � dmem� DMDr
j [k j].

6.6 Optimizing Cache Color Assignment 107

(3). By de�nition of PCBs,N
0

j � 1. So the lemma follows.

Lemma 6.4 can be used to bound the CPRO of one job of taskt j 2 hep(i) executing during

the response time of a taskt i . However, we know that taskt j may execute several times during

the execution oft i therefore, the total inter-task cache interference in terms of CPRO suffered by

t j while executing during the response time oft i can be bounded using the following theorem

Theorem 6.1. The total inter-task cache interference in terms of CPRO suffered by a higher pri-

ority taskt j 2 hp(i) due to evictions of its PCBs by tasks inhep(i) nt j in a time interval of length

t is bounded by CIinter;r
j;i , where

CI inter;r
j;i (t) =

��
t
Tj

�
� 1

�
� min

�
r col

j;i ;DMDr
j [k j]

�
(6.15)

Proof.

(1). It is proved in Lemma 4.2 that in a time interval of lengtht at most
�l

t
Tj

m
� 1

�
jobs of taskt j

can suffer CPRO.

(2). It implies that bothr col
j;i (Equation (6.11)) andDMDr

j [k j] (by Lemma 6.4 and Equation (6.12))

upper bound the CPRO suffered by one job oft j executing during the response time oft i . There-

fore, the minimum between the two bounds is also an upper bound on the CPRO suffered by a

single job oft j during the response time oft i .

The theorem directly follows from the two points above.

6.6 Optimizing Cache Color Assignment

In this section, we detail how we optimize the cache color assignment of tasks to balance the intra-

and inter-task cache interference such that it results in improving task set schedulability. We have

used aSimulated Annealing(SA) approach to optimize cache color assignment of tasks. Simulated

annealing (Kirkpatrick et al., 1983) is a meta-heuristic that allows to �nd a near optimal solution

to an optimization problem in a reasonable computational time. It starts with a randomized state

and in a polling loop moves to neighboring states always accepting the moves that improve the

value of the objective function. However, the SA may also accept bad moves (i.e., that does

not improve upon the objective function) according to a probability distribution dependent on

the“temperature”. This is different from other local search based techniques that only accept

solutions that are better than the initial solution and may get stuck into a local optimum rather than

global optima. Our SA-based cache coloring approach is given by Algorithm 6.1.

When allocating cache colors to tasks, Algorithm 6.1 starts by assigning sequential cache

colors to alln tasks in a given task setG. Cache colors are assigned to tasks in priority order with

the highest priority task �rst. Once the sequential cache color assignment is done, the algorithm

checks the schedulability of each task inG. If all tasks in task setG are schedulable with the

sequential cache color allocation (i.e.,Gis schedulable), no changes are made to the cache color

assignment of tasks and the algorithm returns true and exit. However, ifG was not schedulable

108 Evaluating the Impact of Memory Layout of Tasks on Schedulability

Algorithm 6.1 Simulated annealing based algorithm to optimize cache color assignment of tasks

Require: task setG= f t 1; t 2; :::; t ng; total cache colorsktotal

Ensure: Cache color assignmentf ck1;ck2; :::;ckng; true if Gis schedulable andf alseotherwise.
1: for i 1 ton do
2: f ckig = /0
3: end for
4: AssignSequentialColors(G,ktotal);
5: if isSchedulable(G) then
6: return true;
7: else
8: SimulatedAnnealing(G);
9: if isSchedulable(G) then

10: return true;
11: else
12: return false;
13: end if
14: end if
15: Function SimulatedAnnealing(G)
16: CurrentTemp 400;DesiredTemp 0:001;CoolingRate 0:99;
17: while CurrentTemp� DesiredTempdo
18: TaksetSlackOld= CalculateTasksetSlack(G);
19: SelectRandom(ReAllocate() ;Shi f tLayout() ;ReSize()) ;
20: TaksetSlackNew= CalculateTasksetSlack(G);
21: DSlack TaksetSlackOld� TaksetSlackNew
22: if DSlack� 0 then
23: Accept new cache color assignment forG;
24: else
25: Randomprob rand(0;1)

26: if Randomprob< e
� DSlack

CurrentTemp then
27: Accept new cache color assignment forG;
28: else
29: Discard new cache color assignment ofG;
30: end if
31: end if
32: CurrentTemp= CurrentTemp� CoolingRate;
33: end while
34: end function

with the sequential cache color allocation, cache color assignment of tasks is optimized using SA.

The SA algorithm uses the sequential cache color assignment of tasks as the initial solution and

then iteratively tries to improve it by randomly performing one of the following operations:

• Re-allocate():Swap the set of cache colors assigned to two distinct tasks. Namely two op-

erations can be performed, (1)swap-neighbors(): swapping the set of cache colors assigned

to two neighboring tasks. This swap is based on the order of tasks in the main memory rather

than their priorities ;(2)swap-random(): swap the set of cache colors of two randomly cho-

sen tasks. These tasks may or may not be adjacent in main memory. If the chosen tasks are

not adjacent in memory, cache color assignment of tasks in between them is also updated.

• Shift-layout(): Increasing/decreasing the starting offset of a randomly chosen task in the

6.6 Optimizing Cache Color Assignment 109

main memory (i.e., shifting tasks right or left). To avoid creating gaps between tasks in

main memory we essentially left/right shift all tasks in the main memory.

• Re-size():Randomly choose a task and re-allocate the number of cache colors assigned to

that task, i.e., either by increasing or decreasing the number of cache colors assigned to that

task.

As we later show in Section 6.6.1, re-sizing the cache space assigned to tasks can be very

bene�cial especially when the tasks have large cache footprints. Also, increasing/decreasing

the number of cache colors assigned to tasks effectively allows to trade between the intra-

and inter-task cache interference which may result in improving task set schedulability.

To evaluate different cache color assignments, the WCRT analysis (i.e., Equation (6.2)) can

be used at every iteration of the SA algorithm, i.e., checking the schedulability of all tasks in

G after performing any of the above mentioned operations. However, this may be computation-

ally expensive. Also, the boolean result given by Equation (6.2) can only distinguish between

schedulable/unschedulable cache color assignments and does not provide any information about

the impact of different cache color assignments on the intra- and inter-task cache interference suf-

fered by the tasks. Therefore, to better quantify the quality of a cache color assignment of tasks

and to guide the SA algorithm towards an optimal solution, we use the notion ofslack. SlackSl of

a taskt i is denoted bySli and is de�ned as“the difference between the relative deadline and the

WCRT oft i” , i.e.,Sli = Di � Ri , whereRi is calculated by considering the worst-case interference

on t i by all higher priority tasks in hp(i), i.e., by settingRi == Di in Equation (6.2). The total

slackSltot of task setGis given as

Sltot =
n

å
i= 1

wi � Si (6.16)

wherewi is the weight assigned to everyt i 2 Gsuch that,

wi = 0 if Sli � 0 and wi = 1; otherwise.

Note that only the tasks with a negative slack will be assigned a non-zero weight, i.e.,wi = 1. This

is mainly because these are the tasks that were not schedulable for a given cache color assignment

but may become schedulable by changing their cache color assignment. The total task set slack

is calculated after randomly performing any of the above mentioned moves during every iteration

of the SA algorithm. If the change in the total task set slack from the last iteration is positive

then the new cache color assignment of tasks will always be accepted. However, even if the

change in task set slack is negative the new cache color assignment of tasks may still be accepted

depending on how negative the change is and the current temperature of the SA algorithm, i.e.,

if a randomly chosen probability between 0 and 1 is less than the probability of accepting the

negative change, i.e.,e
� DSlack

CurrentTemp (see Algorithm 6.1), then the new cache color assignment for

G will be accepted. Otherwise, the new cache color assignment will be discarded. After every

iteration, the temperature of SA is reduced by multiplying it with a cooling factor until it reaches

110 Evaluating the Impact of Memory Layout of Tasks on Schedulability

the desired temperature. The initial temperature, desired temperature and the cooling factor de�nes

the maximum number of iterations for the SA algorithm. In general, when the temperature is high,

the SA algorithm is more open to negative changes that may be useful to escape local minima.

6.6.1 Working Example

To evaluate the effectiveness of the SA-based cache color assignment approach detailed in the pre-

vious section, we performed a small experiment using a single task set comprised of 10 tasks from

the Mälardalen benchmark suite (Gustafsson et al., 2010) shown in Table 6.2, i.e.,t 1 = minmax

to t 10 = bsort100, wheret 1 has the highest priority. The selection of tasks was purely random

and although these tasks may not represent a real task set, they do represent typical code found in

real-time systems. For each task, the WCETCi [ki], worst-case memory access demandMDi [ki],

worst-case processing demandPDi and the number of ECBs (i.e.,ECB(ki)), UCBs (i.e.,UCB(ki))

and PCBs (i.e.,PCB(ki)) were extracted using the Heptane static WCET analysis tool (Hardy

et al., 2017) as presented in Chapter 4 and 5. Note that the values forCi [ki], MDi [ki] andPDi in

Table 6.2 are in clock cycles. The number of cache colors used by each task, i.e.,ki , were set

such thatki =
l

ECBi (ki)
ksize

m
. The target architecture was MIPS R2000/R3000 assuming an instruction

cache with line size of 32 Bytes and the total cache size of 16kB such that the cache has a total of

32 cache colors, i.e.,ktotal = 32 with each color having a size of 512 Bytes, i.e.,ksize= 512 Bytes.

The block reload timedmemwas set to 10ms.

Table 6.2: Task set parameters used in the working example

Name Ci [ki] PDi MDi [ki] ki Ti

minmax 2522 122 2400 2 14315
lcdnum 3440 984 2740 2 73143

cnt 10090 7191 3818 2 85816
ns 30149 28149 6172 2 169744

statemate 43344 10586 35257 18 636613
insertsort 7574 5974 2343 1 734873
nsichneu 316409 22009 294400 32 1889824

qurt 26141 9241 17713 5 2899034
fft 157880 123681 45816 9 6550339

bsort100 712289 710289 90893 2 267271122

The task set was created by �xing the core utilization at 0.8, with task utilizations generated

using the UUnifast algorithm (Bini and Buttazzo, 2005). Task periods were set such thatTi =

Ci [ki]=Ui . All tasks had implicit deadlines with priorities assigned in deadline monotonic order.

We checked task set schedulability using the following approaches:

• No preemption cost:The WCRT analysis was performed assuming there is no preemption

cost.

6.6 Optimizing Cache Color Assignment 111

• SA-based cache color assignment:Cache color assignment of tasks was optimized using

the SA algorithm detailed in Section 6.6.

• SA-based cache color assignment without re-sizing:The SA algorithm was used to opti-

mize cache color assignment of tasks however, re-size() operation was not permitted.

• Sequential cache color assignment:Tasks were assigned cache colors in a sequential man-

ner with the highest priority task �rst.

• Full cache partitioning: The cache partitioning algorithm presented in (Altmeyer et al.,

2014, 2016) was used to assign independent non-overlapping cache colors (i.e., partitions)

to all tasks.

• SA-based cache color assignment without cache persistenceThe SA algorithm was used

to optimize cache color assignment of tasks without considering cache persistence.

We observed that the task set was schedulable only with two approaches, i.e., no preemption

cost and the SA algorithm with re-sizing. All other approaches were not able to schedule the task

set. The �nal cache color allocations for the sequential cache color assignment, full cache parti-

tioning and the SA algorithm with re-sizing, are shown in Figure 6.5a, 6.5b and 6.5c respectively.

The sequential cache color assignment of tasks (see Figure 6.5a) was subjected to high inter-

task cache interference (i.e., CRPD and CPRO), mainly because most cache colors were shared

among tasks. This results in making the task set unschedulable. On the contrary, with full cache

partitioning (see Figure 6.5b) there is no inter-task cache interference. However, the task set was

still not schedulable due to an increase in the intra-task cache interference of some tasks that were

assigned fewer cache colors than the actual number of cache colors needed by those tasks. The

layout of tasks in cache resulting from the SA algorithm with re-sizing is shown in Figure 6.5c. The

task set was schedulable mainly because the overall cache interference between tasks was reduced

by trading between intra- and inter-task cache interference, e.g., the inter-task cache interference

caused byt 7 on all lower priority tasks (i.e.,t 8, t 9 andt 10) was reduced by increasing the intra-

task cache interference oft 7 (i.e., by reducing the number of cache colors used byt 7). Note that

the task set was also not schedulable using the SA algorithm without re-sizing. This shows that

even with an optimized task layout, allowing tasks an unconstrained use of the cache may still

result in higher inter-task cache interference that can make the task set unschedulable.

112 Evaluating the Impact of Memory Layout of Tasks on Schedulability

(a) Sequential cache color assignment.

(b) Full cache partitioning.

(c) SA-based cache color assignment with re-sizing.

Figure 6.5: Different cache color assignments of task set in Table 6.2.

6.7 Experimental Evaluation

In this section, we evaluate how our proposed SA-based cache coloring approach performs in

terms of schedulability in comparison to few existing task layout optimization techniques. Ex-

periments were performed using the Mälardalen benchmark suite with parametersCi [ki], PDi ,

MDi [ki], MDr
i [ki], UCBi(ki), ECBi(ki) andPCBi(ki) extracted using Heptane for the same cache

con�guration as used in Section 6.6.1. The number of cache colors used by each task, i.e.,ki , were

set such thatki =
l

ECBi (ki)
ksize

m
. Each task was randomly assigned the valuesCi [ki], PDi , MDi [ki],

MDr
i [ki], UCBi(ki), ECBi(ki), PCBi(ki) andki of one of the analyzed benchmarks. Other task set

6.7 Experimental Evaluation 113

parameters were randomly generated as follows. The default number of tasks was 10 with task

utilizations generated using UUnifast (Bini and Buttazzo, 2005). Task periods were set such that

Ti = Ci [ki]=Ui . Task deadlines were implicit and priorities were assigned in deadline monotonic

order.

We conducted different experiments by varying core utilization, number of cache colors, size

of cache colors and number of tasks. Schedulability analysis was performed using the same task

sets for all the approaches detailed in Section 6.6.1 using their respective WCRT analysis.

1) Core Utilization: In this experiment, we randomly generated 1000 task set (each comprised of

10 tasks) at different core utilizations varied from 0.05 to 1 in steps of 0.05. Figure 6.6a shows

the average number of task sets that were deemed schedulable using all the analyzed approaches

against the total core utilization. The green line marked as “No preemption cost" is an upper bound

on the maximum number of task sets that were schedulable without considering any CRPD/CPRO.

Figure 6.6a shows that the proposed SA-based cache color assignment with/without re-sizing was

able to schedule more task sets than all the other approaches. Also, we note that while initially

the full cache partitioning approach performs worst however, at higher core utilizations it tends to

outperform the sequential cache color assignment and the SA-based cache color assignment (no

persistence) approach. This is mainly because at higher core utilizations, task periods become

smaller resulting in higher inter-task cache interference. It is due to higher inter-task cache inter-

ference that at core utilizations of 0:85 and 0:9 the difference between the full cache partitioning

approach and the SA-based cache color assignment without re-sizing is minimal. However, the

SA-based cache color assignment with re-sizing counters this increase in inter-task cache inter-

ference by trading intra-task cache interference, i.e., increasing intra-task cache interference to

reduce inter-task cache interference. Consequently, this results in improving task set schedulabil-

ity even at higher core utilizations. For example at a utilization of 0:9, the SA-based cache color

assignment with re-sizing was able to schedule up to 11 percentage points more task sets than the

SA-based cache color assignment without re-sizing and up to 13 percentage points more task sets

than the full cache partitioning approach.

2) Number of Cache Colors: In this experiment, we evaluate the impact of cache size on the

performance of the analyzed approaches by varying the number of cache color from 4 to 64.

As the size of cache colors is constant (i.e., 512 B), increasing the number of cache colors also

increases the cache size. All parameters other than the number of cache colors have the same

values as used in the previous experiment. We have used the weighted schedulability measure

(see Equation (4.20)) de�ned by Bastoni et al. (Bastoni et al., 2010) to plot the results as shown

in Figure 6.6b. We observe that initially increasing the number of cache colors (i.e., from 4 to 8)

decreases the schedulability of all approaches except the full cache partitioning approach. This is

mainly because in this interval most cache colors were shared between tasks resulting in higher

inter-task cache interference. However, even in this interval the SA-based cache color assignment

with re-sizing outperforms all other approaches. A further increase in the number of cache colors

results in reducing the number of cache colors that are shared among tasks. Therefore, we see

an increase in the schedulability of all approaches. Understandably, the performance of the full

114 Evaluating the Impact of Memory Layout of Tasks on Schedulability

(a) Varying core utilizations

(b) Varying the number of cache colors (or cache size)

Figure 6.6: Schedulability w.r.t core utilization and cache size

cache partitioning approach is almost linear w.r.t the number of cache colors. Moreover, when the

number of cache colors is large (e.g., 64) all approaches have similar results due to lower cache

interference.

6.7 Experimental Evaluation 115

(a) Increasing number of cache sets per cache color

(b) Varying the number of tasks

Figure 6.7: Schedulability w.r.t number of cache sets per color and number of tasks

3) Number of cache sets per cache color:We also performed an experiment by increasing the

number of cache sets per cache color whilst keeping the cache size constant. We varied the size of

one cache color between 1 to 128 cache sets with all other parameters set to default values. The

resulting plot of weighted task set schedulability w.r.t the number of cache sets per cache color is

116 Evaluating the Impact of Memory Layout of Tasks on Schedulability

shown in Figure 6.7a. We observe that when the size of a cache color is smaller all approaches

were able to schedule more task sets. This is mainly because a smaller cache color size results in

a tighter bound on the CRPD/CPRO suffered by the tasks. Whereas, increasing the size of a cache

color decrease the total number of cache colors, potentially increasing the number of shared cache

colors and the CRPD/CPRO suffered by the tasks. This results in decreasing task set schedulability

for all approaches. Note that since the full cache partitioning approach uses the number of cache

sets rather than cache colors, its performance is not affected by the size of a cache color.

4) Number of Tasks: To analyze the performance of all approaches w.r.t the number of tasks,

we varied the number of tasks from 5 to 25 with all other parameters set to the same values

as used in the core utilization experiment. Figure 6.7b shows the result of the experiment. We

observe that schedulability for all approaches decreases as the number of tasks is increased. For

the full cache partitioning approach this decrease in schedulability is due to an increase in intra-

task cache interference, i.e., as the number of tasks increase, less cache colors can be assigned to

each individual task potentially resulting in increasing its intra-task cache interference. For the

other approaches, the reduction in schedulability is due an increase in inter-task cache interference

due to sharing of cache colors between several tasks. However, we observe that the SA-based

cache color assignment with re-sizing still achieves much higher schedulability than all the other

approaches.

6.8 Chapter Summary

In this chapter, we evaluated the impact of memory layout of tasks on schedulability. We showed

that intra- and inter-task cache interference can be interrelated and balancing their respective con-

tribution to tasks WCRT may result in improving task set schedulability. We use a cache coloring

approach to optimize task layout in memory such that the trade-off between intra- and inter-task

cache interference can be balanced. We also showed how the intra- and inter-task cache interfer-

ence can be bounded under a cache coloring approach. Lastly, a simulated annealing algorithm

is proposed to optimize the cache color assignment to tasks by re-allocating and re-sizing the

cache colors assigned to tasks such that the task set's schedulability is achieved. Experiments

were performed by varying different parameters using values from the Mälardalen benchmarks.

Experimental results show that the proposed SA based cache color assignment of tasks dominates

the existing approaches used to optimize task layout in memory.

Part II

Analysis of Single- and Multi-level

Set-associative Caches

117

Chapter 7

CPRO Analysis for Set-associative

Caches

We have seen in the previous chapters that to accurately quantify the inter-task cache interfer-

ence suffered by the tasks it is essential to consider both CRPDs and cache persistence. We also

showed that for tasks scheduled under �xed-priority preemptive scheduling (FPPS), the worst-case

response time (WCRT) analyses that account for cache persistence between jobs along with cache

related preemption delays (CRPDs) dominates the analyses that only consider CRPDs. But, the ap-

proaches presented in Chapter 4 and Chapter 5 to analyze cache persistence (and compute CPROs)

in the context of WCRT analysis can only support direct-mapped caches and may not work for pro-

cessor architectures based onset-associativecaches. This is mainly because in a direct-mapped

cache, each cache set can hold at most one memory block whereas, in a set-associative cache, each

cache set may hold as many memory blocks as there are cacheways(or the cacheassociativity).

Therefore, in case of a cache con�ict between two taskst i andt j , each memory access performed

duringt j 's execution may evict at most one PCB oft i in a direct-mapped cache, while it may lead

to multiple evictions in a set-associative cache. This is known as thecascadingeffect. An example

of such cascading effect is shown in Figure 7.1. We can see that for a direct-mapped cache (see

Figure 7.1a) a single cache con�ict betweent i andt j (i.e., due to preemption oft i by t j) can only

cause one cache miss whereas the same cache con�ict leads to multiple cache misses for a set-

associative cache (see Figure 7.1b). Therefore, for set-associative caches, asoundCPRO estimate

can only be obtained by accounting for the cascading effect which is not considered by the CPRO

analysis presented in the previous chapters that focus on direct-mapped caches. Therefore, in this

work, we present different solutions to analyze cache persistence for set-associative caches and

integrate those solutions in the WCRT analysis of FPPS. The main contributions of this chapter

are as follow:

1. to propose a solution to �nd persistent cache blocks (PCBs) of tasks considering set-associative

caches;

2. to present three different approaches to calculate CPROs on platforms implementing set

119

120 CPRO Analysis for Set-associative Caches

(a) Direct-mapped Cache

(b) Set-associative Cache

Figure 7.1: Example execution of a taskt i (from left to right) considering (a) a direct-mapped
cache with 4 cache sets, i.e.,f S0;S1;S2;S3g and (b) a 4-way set-associative cache having one
cache setS0 using a Least-Recently-Used (LRU) cache replacement policy. The LRU age of a
blockb refers to how many accesses were performed to the cache set in whichb is saved since the
last access tob.

associative caches. These approaches are (1) the PCB-ECB approach, that uses only the set

of PCBs of the task under analysis and the set of ECBs of all other tasks in the system to

evaluate the CPRO, (2) the ResilienceP analysis, that removes some of the pessimism in the

PCB-ECB approach by considering theresilience(see De�nition 3.8) of PCBs, and (3) the

multi-path ResilienceP analysis, that considers the variation in the resilience of PCBs over

different executions of a task in order to have an even tighter CPRO bound.

3. An experimental evaluation showing that our proposed approaches result in up to 22 per-

centage points higher task set schedulability than the state-of-the-art resilience analysis (Alt-

meyer et al., 2010) that only considers CRPDs when analyzing inter-task cache interference

for architectures with set-associative caches.

7.1 Assumptions on the System Model

In addition to the general system model detailed in Chapter 2 and Chapter 4, in this chapter we

make the following assumptions on the system model.

• In this chapter, we focus on single-core processor with a private set-associative single-level

instruction cache (also referred to as L1) using the LRU replacement policy, i.e., on a cache

miss the least recently used memory block (or equivalently the block with the largest LRU-

age) within the targeted cache set is evicted. The number of memory blocks that can be

stored in each cache set is referred to as the number of ways or the associativity of the cache

and is denoted byW. The set of all cache sets is denoted byS.

The list of important symbols used in this chapter is provided in Table 7.1.

7.1 Assumptions on the System Model 121

Table 7.1: List of important symbols used in Chapter 7

Symbol Description

G Task set of sizen

W The number of cache ways or the associativity of the cache

S The set of all cache sets

t i Task with indexi

t i;k kth job of Taskt i

Ci Worst-case execution time of taskt i in isolation

Ti Minimum inter-arrival time of taskt i

Di Relative deadline of taskt i

Ri Worst-case response time of taskt i

PDi Worst-case processing demand of taskt i in isolation

MDi Worst-case memory access demand of taskt i in isolation

MDr
i Residual memory access demand of taskt i in isolation

M̂Di(t) Total memory access demand of taskt i in a time interval of lengtht

hp(i) The set of tasks with higher priority thant i

hep(i) The set of tasks with higher priority thant i including t i , i.e., hep(i) =

hp(i)[t i .
aff(i; j) The set of intermediate tasks (includingt i) that may preemptt i but may

themselves be preempted by some higher priority taskt j .
dmem Time to reload one cache block from the main memory

Bs
m The set of memory blocks that are persistent in a cache sets after the

execution of taskt i

J The maximum number of jobs any taskt j can release in a time interval

of lengtht
jEPj j The number of possible execution paths of taskt j

ECBi The set of evicting cache blocks (ECBs) of taskt i

ECBs
i The set of ECBs of taskt i in a cache sets

UCBi The set of useful cache blocks (UCBs) of taskt i

PCBi The set of persistence cache blocks (PCBs) of taskt i

PCBs
i The set of PCBs of taskt i in a cache sets

Ds
j;i The disturbance all tasks in hep(i) nt j may cause on PCBs of taskt j in

a cache sets
PersistentAgeP(mj) LRU-age of a PCBmj of taskt j at any program point P during the exe-

cution oft j .
P Set of all program points

max-age(mj) The maximum LRU-age of a PCBmj of taskt j over all program points

during the execution oft j .
Continued on next page

122 CPRO Analysis for Set-associative Caches

Table 7.1 – continued from previous page

Symbol Description

resPCB(mj) Resilience of a PCBmj of taskt j

r j ;i CPRO of one job of a higher priority taskt j 2 hp(i) during the response

time of a lower priority taskt i

r̂ j ;i Total CPRO of taskt j in an interval of lengtht while executing during

the response time of taskt i .
r s

j;i CPRO suffered by one job of a higher priority taskt j 2 hp(i) during the

response time of a lower priority taskt i , due to a cache sets, computed

using the PCB-ECB approach.
r set

j;i Total CPRO suffered by one job of a higher priority taskt j 2 hp(i) dur-

ing the response time of a lower priority taskt i under the PCB-ECB

approach.
r res;s

j;i CPRO suffered by one job of a higher priority taskt j 2 hp(i) during the

response time of a lower priority taskt i , due to a cache sets, computed

using the ResilienceP analysis.
r res

j;i Total CPRO suffered by one job of a higher priority taskt j 2 hp(i) dur-

ing the response time of a lower priority taskt i under the ResilienceP

analysis.
r j ;mj (D;J) The maximum number of times any PCBmj of task t j can contribute

to the CPRO oft j in a time interval of lengtht assuming the values of

disturbance suffered byt j , i.e.,D and the number of jobs released byt j ,

i.e.,J, are known.
r M� res;s

j;i CPRO suffered by one job of a higher priority taskt j 2 hp(i) during the

response time of a lower priority taskt i , due to a cache sets, computed

using the multi-path ResilienceP analysis.
r M� res

j;i Total CPRO suffered by one job of a higher priority taskt j 2 hp(i) dur-

ing the response time of a lower priority taskt i under the multi-path

ResilienceP analysis.

7.2 Finding PCBs for set-associative caches

For direct-mapped caches, determining the set of PCBs, i.e.,PCBi , of a taskt i is relatively simple.

as presented in Section 4.5, i.e., a memory blockmi of taskt i belongs toPCBi if it is the only

memory block oft i mapped to a given cache set. However, under set-associative caches, several

memory blocks oft i may be mapped to a single cache set and the presence of a memory block in

cache depends on the LRU-age of that memory block. AW-way set-associative LRU-cache can

hold up toW memory blocks in each cache set and the LRU-age of each memory block can be

between 0 andW � 1 (respectively representing the most-recently and the least-recently accessed

7.2 Finding PCBs for set-associative caches 123

memory block in the cache set). Given a program pointP, if the LRU-age of a memory block at

P is greater than or equal toW then an access to that memory block atP will be a cache miss, i.e.,

the memory block is not in the cache anymore. We can leverage this information to �nd PCBs of a

taskt i under a set-associative cache. By de�nition, once loaded into the cache by taskt i all PCBs

of t i will not be evicted or invalidated byt i while executing in isolation. Therefore, all memory

blocks used byt i that have an LRU-age less than or equal toW � 1 at every program point P in

t i can be PCBs oft i . However, knowing that PCBs are potentially reused by the same but also

by every next job executed by taskt i , using only one job execution oft i to bound the maximum

LRU-age of PCBs may not be suf�cient. To illustrate this last property, consider the control-�ow

graph (CFG) and mapping of the memory blocks of two successive jobs of taskt i (i.e., t i;1 and

t i;2) shown in Figure 7.2. In that example, all memory blocks, i.e.,m1, m2, m3, andm4, used by

t i map to the same cache sets in a 4-way set-associative cache. We can see in Figure 7.2a that

when considering only one job oft i , i.e., t i;1, the maximum LRU-age, i.e., the maximum number

of distinct accesses between two references to a memory block, of memory blocksm1, m2, m3,

andm4 is 3, 2, 1, and 0 respectively (see Section 3.2.2 for details on the computation of maximum

LRU-age of memory blocks). However, if we consider the execution sequencet i;1 followed byt i;2,

we can see that the maximum LRU-age of all the memory blocks is 3. Note that underestimating

the maximum LRU-age of memory blocks may lead to false positives, i.e., a memory block may

be categorized as a PCB (i.e., LRU-age� W � 1 over the execution of one job) while it is not

(i.e., LRU-age> W � 1 over the execution of a sequence of jobs). Therefore, in order to soundly

estimate the set of PCBs of a taskt i , it is important to calculate the maximum LRU-age of all

memory blocks used byt i after any execution sequence of jobs oft i (in isolation). This can be

done by assuming thatt i is cyclic, i.e., a loop is assumed between the end point E and start point S

of t i (see Figure 7.2b). The cyclic assumption ensures that the maximal number of different cache

accesses between the last use of a memory blockmi in one job oft i and the �rst access ofmi in

the next job oft i are considered when determining the maximum LRU-age ofmi .

Formally, the analysis to �nd PCBs of a taskt i is performed as follows:

1. Apply the standardpersistenceanalysis (Theiling et al., 2000; Cullmann, 2013) on the code

of taskt i to determine the set of memory blocksBs
m that are persistent in each cache sets

at the end oft i . The Persistence analysis determines if a memory block will not be evicted

after it has been loaded in the cache, i.e., the �rst reference to that memory block may result

in a cache miss but all subsequent references to that memory block will be cache hits (see

Section 3.1.3 for a detailed description on the persistence analysis). A memory blockmi is

persistent in a cache sets if its LRU-age ins is less than or equal toW � 1 at the end oft i 's

execution.

2. Apply the persistence analysis again (i.e., to account for the cyclic assumption) ont i assum-

ing that each cache setsalready contains theBs
m memory blocks at the start oft i 's execution

and that each of those blocks has its maximum LRU-age derived in step 1. All memory

blocks inBs
m that are in everyAbstract Cache State(ACS) (see De�nition 3.1)) of the sec-

124 CPRO Analysis for Set-associative Caches

(a) (b)

Figure 7.2: Maximum LRU-age of memory blocks of taskt i (a) over the execution of two jobs of
t i , and (b) under the assumption thatt i is cyclic

ond persistence analysis (i.e, memory block with LRU-age� W � 1 in all ACSs) are PCBs

of t i in cache sets and are denoted byPCBs
i . The �nal set of PCBs of taskt i is then given

by

PCBi =
[

s2S

PCBs
i (7.1)

7.3 CPRO Analysis for Set-Associative Caches

In this section, we present two approaches for the calculation of the CPRO for set-associative

caches, namely, the PCB-ECB approach and the ResilienceP analysis.

7.3.1 PCB-ECB Approach

As we have previously explained in Chapter 4 and Chapter 5, for direct-mapped caches, the CPRO

can be computed by using the intersection between the set of PCBs of the task under analysis and

the set of ECBs of all other tasks that may evict PCBs of that task. For example, under the CPRO-

union approach (i.e., Equation (4.5)) presented in Section 4.3, the CPROr j ;i one job of a higher

priority taskt j 2 hp(i) may suffer while executing during the response time of a lower priority

taskt i is computed using the set of PCBs of taskt j , i.e., PCBj , the set of ECBs of all tasks in

hep(i) nt j , i.e.,
S

8t k2hep(i)nt j
ECBk, anddmemwhich is the time required to reload one PCB from

the main memory (see Theorem 4.1, for a formal proof of Equation (4.5)). The bound resulting

from Equation (4.5) is sound for a direct-mapped cache where each ECB of tasks in hep(i) n t j

can evict at most one PCB oft j . However, using Equation (4.5) to calculate the CPRO oft j under

a set-associative cache may result in underestimating the CPRO oft j due to the cascading effect

7.3 CPRO Analysis for Set-Associative Caches 125

mentioned earlier using Figure 7.1, i.e., several/all PCBs of taskt j may be evicted due to a single

ECB of another task mapped to the same cache set. Considering that in a set-associative cache,

each cache setscan be analyzed independently, a sound estimate of the CPRO suffered by one job

of taskt j due to a cache sets2 Scan be obtained by using the two following properties:

1. PCBs of taskt j mapped in cache sets may be evicted and hence participate to the CPRO

of t j during the response time of another taskt i , only if one or more ECB(s) of tasks in

hep(i) n t j are mapped to the same cache sets. To formally characterize the impact of

ECB(s) of tasks in hep(i) nt j on PCBs of taskt j in a cache sets, we de�ne the notion of

Disturbance, i.e.,

De�nition 7.1 (Disturbance). The disturbance suffered by a taskt i on a cache set s due to

another set of tasksT is de�ned as the total number of ECBs of tasks inT that are mapped

to the cache set s. The disturbance due toT is thus the maximum number of memory blocks

of tasks inT that compete witht i for space in cache set s.

Based on the above de�nition, PCBs of taskt j mapped in cache sets can be evicted and

hence participate to the CPRO oft j , only if the disturbance taskt j may suffer due to all

tasks in hep(i) nt j in s is greater than or equal to one.

2. The participation of a cache sets to the CPRO oft j is upper bounded by the number of

PCBs oft j in that cache set multiplied bydmem, i.e.,dmem� j PCBs
j j.

Therefore, the CPRO one job of taskt j may suffer due to cache sets is upper bounded byr set;s
j;i ,

where

r set;s
j;i = dmem�

8
<

:
jPCBs

j j if Ds
j;i � 1

0 otherwise
(7.2)

whereDs
j;i is the disturbance all tasks in hep(i) n t j may cause on PCBs oft j in a cache sets.

By de�nition, the maximum disturbance taskt j may suffer due to all tasks in hep(i) nt j is upper

bounded byå 8t k2hep(i)nt j
jECBs

kj, i.e., the total number of ECBs of tasks in hep(i) nt j mapped to

cache sets. Therefore,Ds
j;i � å 8t k2hep(i)nt j

jECBs
kj. The rationale of using ECBs of all tasks in

hep(i) nt j to boundDs
j;i is to account for nested/multiple execution of tasks in hep(i) nt j between

two jobs of taskt j . Since, in the worst-case all tasks in hep(i) n t j may sequentially execute

between two jobs oft j , the cumulative impact of tasks in hep(i) n t j on PCBs oft j is upper

bounded byå 8t k2hep(i)nt j
jECBs

kj.

Note that Equation (7.2) accounts for the cascading effect by considering that a single ECB of

tasks in hep(i) nt j mapped to a cache sets may evict all PCBs oft j in that cache set.

The total CPRO one job oft j may suffer during the response time oft i is given by

r set
j;i = å

8s2S
r set;s

j;i (7.3)

126 CPRO Analysis for Set-associative Caches

7.3.2 ResilienceP Analysis

The PCB-ECB approach presented above assumes that if one ECB of any task in hep(i) n t j is

mapped to a cache sets then all the PCBs oft j in s will be evicted. This assumption is safe but

very pessimistic. To illustrate, consider the example depicted in Figure 7.3. It shows a sequence

Figure 7.3: Example scenario to highlight the pessimism in the PCB-ECB approach

of cache references during the execution of a taskt j (from left to right) assuming thatt j has 4

PCBs in cache sets, i.e.,PCBs
j = f a;b;c;dg. We also assume that the value of disturbanceDs

j;i is

equal to 1, i.e., only one ECB of tasks in hep(i) nt j is mapped to cache sets. UsingjPCBs
j j = 4

andDs
j;i = 1 in Equation (7.2) (i.e., the PCB-ECB approach) the CPRO oft j due to cache sets is

calculated to be 4� dmem. However, we can see in Figure 7.3 that only one cache reference oft j

will be a miss after the execution of tasks in hep(i) nt j . Therefore, the actual CPRO oft j due to

cache sets is only 1� dmem.

The ResilienceP analysis removes excessive pessimism in the PCB-ECB approach by �nding

PCBs of taskt j that may remain cached (and therefore does not contribute to the CPRO) even

after the execution of tasks in hep(i) n t j thanks to their resilience. Based on the de�nition of

resilience, i.e., De�nition 3.8, the resilience of a PCBmj of taskt j is given by the maximum value

of disturbanceDs
j;i thatmj can endure before being evicted from the cache due to the execution of

tasks in hep(i) nt j .

As already explained in Chapter 3 (Section 3.2.2), the resilience-analysis proposed in (Alt-

meyer et al., 2010) can be used to determine the resilience of all memory blocks used by a taskt j ,

at every program point P during the execution oft j . However, using the state-of-the-art resilience-

analysis (Altmeyer et al., 2010) to determine the resilience of PCBs may result in overestimating

the resilience of PCBs. This is mainly because the resilience-analysis (Altmeyer et al., 2010) was

proposed to calculate the resilience of UCBs instead of PCBs. By de�nition, UCBs of a taskt j

may only be reused during the same job execution oft j and hence it is suf�cient to consider the

execution of only one job oft j when bounding the maximum LRU-age of its UCBs. However,

PCBs are different from UCBs considering that PCBs may be reused during the execution of the

same job and/or any next job oft j . Therefore, to have a sound estimate of the resilience of PCBs

of t j it is necessary to calculate the maximum LRU-age of PCBs after any execution sequence of

jobs oft j . See Figure 7.2 that shows that considering only one job of taskt i may result in under-

estimating the maximum LRU-age (i.e., overestimating the resilience) of memory blocksm2, m3

andm4.

The ResilienceP analysis uses the approach described in Section 7.2 to determine the resilience

of PCBs of each task. LetPersistentAgeP(mj) denote the LRU-age of a PCBmj at any program

7.4 Multi-path ResilienceP Analysis 127

point P during the execution of taskt j resulting from the analysis detailed in Section 7.2. Then,

the maximum LRU-agemax-age(mj) of mj is calculated by maximizingPersistentAgeP(mj) over

all program points during the execution oft j , i.e.,

max-age(mj) = max
8P2P

PersistentAgeP(mj) (7.4)

whereP is the set of all program points. Consequently, the resilience of PCBmj is then given by

resPCB(mj) = (W � 1) � max-age(mj).

Therefore, the ResilienceP analysis upper bounds the CPRO that may be suffered by one job

of taskt j due to cache setsby r res;s
j;i , wherer res;s

j;i is computed as follows

r res;s
j;i = dmem�

�
�
�PCBs

j n
�

mj jresPCB(mj) � Ds
j;i

	 �
�
� (7.5)

whereresPCB(mj) is the resilience of a PCBmj 2 PCBs
j andDs

j;i is the maximum disturbance all

tasks in hep(i) nt j may cause to a cache sets.

Note that Equation (7.5) excludes PCBs oft j that remain cached after the execution of tasks

in hep(i) n t j (i.e., those for whichresPCB(mj) � Ds
j;i) from the CPRO. Therefore, it provides a

tighter bound on the CPRO than the PCB-ECB approach.

The total CPRO of one job of taskt j executing during the response time of another taskt i is

thus bounded by

r res
j;i = å

8s2S
r res;s

i; j (7.6)

Finally, knowing from Lemma 4.2 that in a time interval of lengtht at most
l

t
Tj

m
� 1 jobs of

t j may suffer CPRO. Therefore, the total CPRO of taskt j in a time interval of lengtht can be

bounded byr̂ j ;i(t) (i.e., given by Equation (4.6)), wherer j ;i can be calculated either using the

PCB-ECB approach or the ResilienceP analysis (i.e., by using Equation (7.3) or Equation (7.6)).

7.4 Multi-path ResilienceP Analysis

The ResilienceP analysis always considers the worst-case (i.e., minimum) resilience for every

PCB and for every job oft j that may execute in a time interval of lengtht. This assumption is

exact in the case wheret j has only a single execution path as shown in Figure 7.2b. However, ift j

has multiple execution paths, the resilience of PCBs may vary depending on the actual execution

paths taken by two successive jobs oft j . Therefore, always considering the minimum resilience

of PCBs over all job executions oft j may overestimate the total CPROt j may suffer. To illustrate

this, Figure 7.4a shows the CFG of a taskt j with two execution paths and four possible execution

�ows between two jobs oft j , i.e., p1 ! p2, p2 ! p1, p1 ! p1 andp2 ! p2. The cache content

along each execution �ow is also shown in Fig. 7.4a. We assume that all memory blocks oft j

exceptm0 andm5 map to the same cache setsof a 4-way set-associative cache. For simplicity, we

only focus on PCBm1.

128 CPRO Analysis for Set-associative Caches

(a) Variation in the resilience of PCBs of taskt j

(b) Different job executions of taskt j and taskt k

Figure 7.4: Highlighting the pessimism in the ResilienceP analysis

We can see in Figure 7.4a that the resilience ofm1 is minimum, i.e.,resPCB(m1) = 0, if the

�rst job of t j follows path p1 and the next job follows pathp2. Now consider the example

schedule shown in Figure 7.4b showing four jobs oft j executed together with three jobs of a task

t k 2 hep(i) nt j such thatECBs
k = f mxg, i.e,Ds

j;k = 1. Figure 7.4b shows the contents of cache set

s after the execution of every job of taskt j and taskt k.

Since the minimum resilience ofm1 is 0 andDs
j;k > resPCB(m1), the ResilienceP analysis

(i.e., Equation (7.5)) implies that every timet k preemptst j or executes between two subsequent

jobs of t j , m1 will be evicted. This results in a CPRO equal to 3� dmem. However, we can see in

Figure 7.4b that this is not true. In fact even when we maximize the number of jobs oft j following

the execution �ow with the minimum resilience (i.e.,p1 ! p2), m2 is evicted and reloaded only

two times resulting in a CPRO of 2� dmem. The reason behind this result is that if the �rst two

jobs of t j execute according to the execution �owp1 ! p2, then the second and third jobs oft j

can either follow the execution �owp2 ! p1 or p2 ! p2 In both cases, the actual resilience ofm1

7.4 Multi-path ResilienceP Analysis 129

Table 7.2: CPRO-table for every PCBmj of taskt j

Number of jobs oft j (J)

2 3 :::
l

t
Tj

m

1 r j ;mj (1;2) r j ;mj (1;3) ::: r j ;mj (1;
l

t
Tj

m
)

2 r j ;mj (2;2) r i; j (2;3) ::: r j ;mj (2;
l

t
Tj

m
)

D
is

tu
rb

an
ce

D

... ::: ::: ::: :::

� W 1 2 :::
l

t
Tj

m
� 1

is equal to 1 (instead of 0 as assumed by the ResilienceP analysis).

The multi-path ResilienceP analysis reduces the pessimism of the ResilienceP analysis by

considering the variation in the resilience of PCBs across different job execution �ows of a same

taskt j . It computes the total CPRO taskt j may suffer in a time interval of lengtht by �rst creating

a CPRO-table (See Table 7.2) for all PCBs oft j in each cache set. The CPRO-table determines

how many times each PCBmj 2 PCBs
j can be evicted in an interval of lengtht considering a given

disturbanceD and the maximum number of jobsJ released byt j in the interval of lengtht. Given

the values ofD andJ, one entry in Table 7.2 tells us how many times PCBmj may be evicted and

must therefore be reloaded.

7.4.1 Building the CPRO-table

In this subsection we discuss how a CPRO-table can be built for PCBs.

First, we make use of a couple of simple properties to bound the size of that table:

1. It is proved in Lemma 4.2 that if a taskt j releasesJ jobs in a time interval of lengtht, the

maximum number of times each PCBmj 2 PCBs
j can be evicted is upper bounded byJ � 1.

2. If the disturbanceD suffered by a PCBmj is greater than or equal to the number of waysW

in the cache (i.e.,D � W) then the entire cache setswill be �lled by the ECBs of disturbing

tasks and PCBmj will be evicted after every job execution i.e., it will be evictedJ� 1 times.

We use that information to �ll all the CPRO-table entries such thatD � W (see Table 7.2).

The remaining entries (notedr j ;mj (D;J)) are calculated using Algorithm 7.1. Algorithm 7.1

uses the set of all possible execution pathsEPj of taskt j and the maximum lengtht of the interval

in which its PCBmj may be evicted as input. It then �lls row-wise all entries in Table 7.2. The

function PathsPermutations(�) at line 1 returns a set that contains all possible executions

paths combinations between two jobs oft j . Given that taskt j hasjEPj j possible execution paths,

the number of possible execution �ows between two jobs oft j is given byFlows, where the size

of Flowsis 2jEPj j .

The external loop (lines 2 to 17) is used to iterate over all disturbance valuesD between 1

andW � 1 (all table entries forD � W are already �lled). As previously discussed, the resilience

130 CPRO Analysis for Set-associative Caches

Algorithm 7.1 Building the CPRO-table for PCBmj of taskt j

Input: Interval lengtht; PCBmj ; Set of all possible execution pathsEPj of t j .
Output: All r j ;mj (D;J) entries in Table 7.2.

1: Flows:= PathsPermutations(t j ; jEPj j)
2: for D := 1 toW � 1 do
3: PossibleFlows:= FindPathsCombinations(mj , Flows, D)
4: L := FindLongestFlow(PossiblePaths)

5: for J := 2 to
l

t
Tj

m
do

6: if jPossibleFlowsj = 0 then
7: r j ;mj (D;J) := 0;
8: else
9: MaxCPRO:= J � 1

10: if L � MaxCPROthen
11: r j ;mj (D;J) := MaxCPRO;
12: else
13: r j ;mj (D;J) := MaxCPRO�

� J
L+ 1

�
;

14: end if
15: end if
16: end for
17: end for

of a PCBmj may vary depending on the speci�c combination of execution paths taken by two

successive jobs oft j (see Figure 7.4a). Therefore, the functionFindPathsCombinations(�)

(line 3) returns the set of paths combinations of two successive jobs oft j for which the resilience

of mj is less thanD. By the de�nition of resilience, the memory blockmj may be evicted only

for those paths combinations. FunctionFindLongestFlow(�) then generates (at line 4) the

longest execution �ow composed of path combinations inPossibleFlows. For example, assuming

PossibleFlowscontains the three paths combinationsp1 ! p2, p3 ! p1 andp3 ! p2. The longest

execution �ow that may be generated byFindLongestFlow(�) is p3 ! p1 ! p2. The function

thus returns 2 as the lengthL of that �ow. Note that by de�nition ofPossibleFlows, there exists

a (possibly different) program pointP in each path composing that execution �ow for which the

resilience ofmj is less thanD. Therefore, if the maximum disturbanceD is applied at each of

those program points, thenmj will be evictedL times. Moreover, sinceFindLongestFlow(�)

generates the longest such execution �ow, there cannot be more thanL successive evictions of

mj . The nested loop (lines 5 to 16) is then used to upper bound how many timesmj will be

evicted for every possible value ofJ (note that for sporadic tasks, at most
l

t
Tj

m
jobs of t j may

be released in any interval of lengtht, thusJ �
l

t
Tj

m
). If the set of possible paths combinations

returned by the functionFindPathsCombinations(�) is empty, thenmj cannot be evicted for

the disturbance valueD and hencer j ;mj (D;J) is equal to 0 (line 6). Otherwise, if there exists some

paths combinations for whichmj may be evicted with a disturbanceD, i.e., jPossibleFlowsj > 0,

then two cases must be considered:

1. If L � J � 1, then we know from Lemma 4.2 that the CPRO suffered byJ successive jobs of

a taskt j is upper bounded byJ � 1 and thusr j ;mj (D;J) = J � 1 (line 11).

7.4 Multi-path ResilienceP Analysis 131

Algorithm 7.2 Computing the total CPRO of taskt j in a time interval of lengtht
Input: Interval lengtht; CPRO-table of every PCBmj of taskt j ; DisturbanceDs

j;i for everys2 S
Output: The total CPRO of taskt j in a time interval of lengtht, i.e.,r M� res

i; j (t).

1: J :=
l

t
Tj

m

2: r M� res
i; j (t) := 0

3: for 8s2 Sdo
4: r M� res;s

i; j := 0
5: D := Ds

j;i
6: for 8mj 2 PCBs

j do

7: r M� res;s
i; j := r M� res;s

i; j + r j ;mj (D;J)
8: end for
9: r M� res

i; j (t) := r M� res
i; j (t) + r M� res;s

i; j
10: end for

2. If L < J � 1, then, by the de�nition ofL, mj may be evicted at mostL times in every

execution �ow composed ofL + 1 successive jobs oft j . Therefore, the maximum number

of timesmj may be evicted for a succession ofJ jobs is bounded by(J � 1) �
� J

L+ 1

�
(line

13).

Example 7.1. Consider memory block m1 in Figure 7.4. By applying Algorithm 7.1 with Dsj;k = 1

(i.e., jECBs
kj = 1), L=1 (i.e., the execution �ow p1 ! p2) and J=f 2;3;4g, we getr j ;m1(1;2) = 1,

r j ;m1(1;3) = 1 andr j ;m1(1;4) = 2 which is consistent with the scenario depicted in Figure 7.4b.

7.4.2 Bounding the CPRO

After creating the CPRO-table of every PCB of taskt j using Algorithm 7.1, the total CPRO that

taskt j may suffer in a time interval of lengtht can be bounded using Algorithm 7.2. The inputs

to Algorithm 7.2 are the CPRO-tables of every PCBmj of taskt j , the maximum disturbance task

t j may suffer for everys2 S due to the execution of tasks in hep(i) nt j , i.e.,Ds
j;i , and the length

of time intervalt. The output of Algorithm 7.2 is the total CPRO of taskt j in a time interval of

lengtht denoted byr M� res
i; j (t). Given the lengtht of the time interval,J :=

l
t
Tj

m
upper bounds

the number of jobst j may execute int (line 1). For every cache sets 2 S, the value ofD is set

usingDs
j;i (line 5). Given the values ofD andJ the inner loop (lines 6 to 8) iteratively computes

the CPRO of taskt j in every cache sets2 S, i.e., r M� res;s
i; j , using values from the CPRO-table of

every PCBmj 2 PCBs
j . The outer loop (lines 3 to 10) then sums up the values ofr M� res;s

i; j for all

s2 S to boundr M� res
i; j (t).

132 CPRO Analysis for Set-associative Caches

(a)

(b)

Figure 7.5: Task sets schedulability by varying (a) total task set utilization and (b) the total number
of tasks in a task set

7.5 WCRT Analysis 133

7.5 WCRT Analysis

The WCRT analysis that accounts for both CRPDs and CPROs considering direct-mapped caches

is given by Equation (4.9) and (4.18). The same equations can also be used to calculate the WCRT

Ri of a taskt i when considering set-associative caches; (i) by calculating the CPRO using any

of the approaches presented in Sections 7.3 and 7.4, and (ii) by calculating the CRPD using the

state-of-the-art resilience-analysis (Altmeyer et al., 2010) (i.e., Equation (3.12)). The WCRTRi of

taskt i is then calculated by using simple �xed-point iteration onRi , whereRi is initialized toCi .

In every iteration, the values of CPRO are updated based on the chosen approach. For example, if

multi-path ResilienceP analysis is used, Algorithm 7.2 is executed at every iteration to update the

total CPRO suffered by the tasks based on the CPRO-tables previously built using Algorithm 7.1.

To reduce computation time, the CPRO-table of every PCB of each task can be built only once

by settingt = Dn in Algorithm 7.1, whereDn denote the deadline of the lowest priority taskt n in

the task set. The iteration stops as soon asRi does not evolve anymore orRi > Di (i.e., the task is

deemed unschedulable).

7.6 Experimental Evaluation

In this section, we evaluate how our proposed approaches that account for both cache persistence

(i.e., CPROs) and CRPDs perform in terms of schedulability in comparison to the state-of-the-

art resilience-analysis (Altmeyer et al., 2010) that only considers CRPDs when analyzing set-

associative caches. We performed experiments using synthetic task sets where tasks parameters

Ci , PDi , MDi , UCBi , ECBi andPCBi were taken from Table 5.2. Each task in the task set was

randomly assigned the valuesCi , PDi , MDi , UCBi , ECBi and PCBi of one of the benchmarks

referred in that table. The system was setup to model a MIPS R2000/R3000 architecture assuming

a 8-way set-associative cache with 64 sets, a line size of 32 Bytes (i.e., a total cache size of 16kB)

and a memory reload timedmem= 10ms.

The default number of tasks in a task set was 10 with task utilizations generated using UUni-

fast (Bini and Buttazzo, 2005). Task periods and deadlines were set such thatDi=Ti=Ci=Ui . Task

priorities were assigned in a deadline monotonic order. Furthermore, to evaluate the performance

of the multi-path ResilienceP analysis each task was randomly assigned between 1 to 4 execution

paths.

We performed different experiments by varying the total core utilization, number of tasks,

number of cache ways and memory reload timedmem. A WCRT based schedulability analysis is

performed using the same task sets for all the analyzed approaches.

1. Core Utilizations: In this experiment, we varied the total core utilization from 0.025 to 1

in steps of 0.025 and randomly generated 1000 tasksets at every value of the core utilization.

Figure 7.5a show the number of task sets that were deemed schedulable by all the analyzed ap-

proaches. The plot also show the number of task sets that were deemed schedulable without

considering any CRPD and CPRO (i.e., green line). Note that we only show cropped version of

134 CPRO Analysis for Set-associative Caches

(a) Varying the number of cache ways

(b) Varying memory reload timedmem

Figure 7.6: Weighted schedulability results by varying (a) number of cache waysW and (b) mem-
ory reload timedmem

the plot starting from a utilization of 0.6 as all approaches produce identical results below this

utilization. Figure 7.5a shows that our approaches that also account for cache persistence (i.e.,

7.6 Experimental Evaluation 135

CPROs) along with CRPDs dominate the state-of-the-art resilience-analysis that only consider

CRPDs and does not account for cache persistence. Among the three proposed approaches, the

PCB-ECB approach has the least number of task sets that were deemed schedulable. This is in-

tuitive, since the PCB-ECB approach pessimistically assume that every PCB of a task in a cache

set will be evicted if one or more ECBs of any other task are mapped to the same cache set. This

pessimism is reduced by the ResilienceP analysis by considering the resilience of PCBs which

results in accepting more task sets. Finally, the multi-path ResilienceP analysis was able to sched-

ule even more task sets than the ResilienceP analysis by considering the variation in the resilience

of PCBs over multiple job executions. Our proposed approaches improve task set schedulability

by 6 to 22 percentage points over the state-of-the-art analysis. Note that on an Intel core i-7 pro-

cessor (3.4GHz) the average computation time to generate the plot shown in Figure 7.5a was 210

seconds.

2. Number of Tasks: In this experiment, we varied the total number of tasks in a task set between

5 to 25 in steps of 5 keeping default values of all other parameters. Since we varied both the

number of tasks and core utilizations we have used the weighted schedulability measure de�ned by

Equation (4.20) to plot the results in Figure. 7.5b. We can see in Figure. 7.5b that by increasing the

number of tasks, the total number of task sets that were deemed schedulable by all the approaches

decreases. Indeed, this is due to an increasing number of cache evictions and reloads leading to

higher CRPD and CPRO. However, we can still observe that our approaches always dominate

the state-of-the-art analysis. Note that by increasing the number of tasks, all the three proposed

approaches tend to produce similar results. This is mainly because by increasing the number of

tasks, the number of ECBs of tasks sharing cache space with PCBs of other tasks also increases,

i.e., the disturbance is increased. Therefore, even if PCBs of some tasks have a greater resilience

they might still be evicted due to a higher disturbance.

3. Number of Cache Ways (W):The number of waysW de�nes how many memory blocks can

be mapped to one cache set. We increased the number of cache ways from 2 to 32, keeping default

values for all other parameters. The results are shown in Figure 7.6a. We can see in Figure 7.6a that

by increasing the number of cache ways the total number of schedulable task sets decreases. This

is mainly because we assume that the total cache size is constant hence by increasing the number of

cache ways the number of cache sets decreases. This results in more tasks sharing the same cache

sets which in turns leads to higher CRPD and CPRO. However, we can still see that all the three

proposed approaches dominate the state-of-the-art resilience-analysis. In fact due to lower CPRO,

for a cache associativity of 2 and 4, the performances of our analyses are considerably better. Note

that for all the experiments in this chapter, we assume a sequential layout of tasks in memory (and

in cache), however, task layout optimization techniques, e.g., as proposed in Section 6.6, can also

be used to further improve task set schedulability.

4. Memory Reload Timedmem: we varied the value of memory reload timedmem from 6ms to

16ms in step of 2ms. The results are presented in Figure 7.6b. We can see in Figure 7.6b that for

lower values ofdmemthe difference between the weighted schedulability of our approaches and the

state-of-the-art analysis is signi�cantly higher. This is mainly because for lower values ofdmem

136 CPRO Analysis for Set-associative Caches

the reduction in memory access demand due to cache persistence dominates the CPRO. In fact, we

can see in Figure 7.6b that when the value ofdmemis equal to 6ms, analysis that account for cache

persistence even outperform the “No CRPD and CPRO" analysis. This is mainly because the “No

CRPD and CPRO" analysis does not account for cache persistence and only use the WCET of

tasks to compute the response time.

We also note that fordmem� 12ms the performances of the PCB-ECB approach and the state-

of-the-art analysis are identical. This is due to the excessive pessimism in PCB-ECB approach

which is removed by the ResilienceP (and multi-path ResilienceP) analysis.

Figure 7.7: Performance of ResilienceP and multi-path ResilienceP analysis w.r.t the number of
execution paths

5. Number of execution paths: It is obvious from the results that the multi-path ResilienceP

analysis dominates all other approaches. However, the performance of the multi-path ResilienceP

analysis depends on the number of execution paths of tasks and the resilience of PCBs along those

paths. To evaluate this, we varied the maximum number of execution paths in each task between

1 to 8 and compared the performance of ResilienceP and multi-path ResilienceP analyses. The

results are presented in Figure 7.7. We can see in Figure 7.7 that if tasks are only allowed to have

a single execution path, both ResilienceP and multi-paths ResilienceP analyses produce identical

results. Moreover, for number of execution paths between 2 to 6 the multi-path ResilienceP anal-

ysis tend to produce better results than the ResilienceP analyses. However, for a further increase

in number of paths, the difference between the ResilienceP and multi-paths ResilienceP analy-

ses tend to disappear. The is due to the fact that when the number of paths increase, it becomes

more probable that there exist several execution �ows for which the resilience of the PCBs is low.

The functionFindPathsCombinations(�) of Algorithm 7.1 will then more easily return very

7.7 Chapter Summary 137

long execution �ows with low resilience. This eventually leads to account for the same number of

evictions of PCBs as under the ResilienceP analysis.

7.7 Chapter Summary

In this chapter, we proposed a solution to analyze cache persistence for set-associative caches

in the context of the WCRT analysis of FPPS. We showed how persistent cache blocks of tasks

can be determined when considering set-associative caches. We then presented three different

approaches to calculate the CPRO under set-associative caches. Our �rst analyses, i.e., the PCB-

ECB approach, is very coarse-grain. To improve the analysis performance, we explained how

the resilience of PCBs can be computed and factored in the analysis. Therefore, the resulting

ResilienceP analysis performs considerably better. Lastly, the multi-path ResilienceP analysis

uses the variation in the resilience of PCBs over different job execution �ows to derive an even

tighter CPRO bound. The experimental evaluation shows that our proposed approaches result in

up to 22 percentage point higher task set schedulability than the state-of-the-art analyses.

Chapter 8

Tightening the Bound on Inter-task

Cache Interference for Multilevel

Caches

In Chapter 4-7, we focused on bounding the inter-task cache interference considering only a single-

level cache. However, modern computing platforms usually use a hierarchy of cache memories

which poses additional challenges during the analysis of WCET/WCRT of tasks. These chal-

lenges stem from the computation of intra- and inter-task cache interference for multiple cache

levels and their integration when performing timing analysis of tasks. As previously mentioned in

Section 3.1.4, several different approaches have been proposed in literature to bound the intra-task

cache interference considering multilevel caches (Ferdinand and Wilhelm, 1999; Theiling, 2002;

Hardy and Puaut, 2008; Sondag and Rajan, 2010) however, the literature on the computation of

inter-task cache interference is relatively scarce. In Section 3.2.3, we have brie�y discussed the

only two existing approaches (Chattopadhyay and Roychoudhury, 2014; Zhang and Koutsoukos,

2016) in the state-of-the-art that focus on the computation of inter-task cache interference (more

speci�cally CRPDs). It has been shown in (Chattopadhyay and Roychoudhury, 2014; Zhang and

Koutsoukos, 2016) that when considering multilevel caches, a precise CRPD bound can only be

obtained by accurately quantifying the indirect effect of preemption (see De�nition 3.9) and be-

cause of the indirect effect of preemption, the traditional UCB concept used to analyze CRPD in

single-level caches is hard to use in case of multilevel caches. Consequently, the works in (Chat-

topadhyay and Roychoudhury, 2014; Zhang and Koutsoukos, 2016) introduce the notion of mul-

tilevel UCBs (see De�nition 3.10) and that of useful positive references (see De�nition 3.11) to

compute CRPDs. However, these existing approaches (Chattopadhyay and Roychoudhury, 2014;

Zhang and Koutsoukos, 2016) may still result in generating imprecise CRPD bounds mainly due

to two reasons, i.e.,

• Due to an overestimation in the number of memory blocks that can contribute to the indirect

effect of preemption suffered by a memory block. This overestimation in the indirect effect

of preemption suffered by the tasks may lead to imprecise CRPD bounds.

138

8.1 Assumptions on the System Model 139

• When accounting for CRPD due to a memory block that has multiple references categorized

as L2-hits in the absence of preemption (but may result in L2-misses after preemption), the

existing analysis (Chattopadhyay and Roychoudhury, 2014; Zhang and Koutsoukos, 2016)

assume that all references to that memory block can be impacted due to a single preemption

and therefore contribute to CRPD. This leads to pessimistic CRPD bounds considering that

multiple references to the same memory block may result in L2 cache hits but not all those

references are impacted due to a single preemption and therefore may not contribute to the

CRPD.

Building on the above two points, in this chapter we aim to reduce the pessimism in the compu-

tation of inter-task cache interference for multilevel caches by providing a tighter bound on the

CRPD suffered by the tasks. The main contributions of this chapter are as follows:

1. We de�ne the notion of useful cache blocks (UCBs) for multilevel caches based on the

cache level from which those UCBs may be re-used. We then show how these UCBs can be

determined considering a two-level non-inclusive cache hierarchy;

2. we present a new approach to bound the indirect effect of preemption suffered by memory

blocks. We show that a tighter bound on the indirect effect of preemption can be obtained

by calculating the indirect effect of preemption that can be caused instead of calculating the

indirect effect of preemption that can be suffered due to preemptions;

3. we present a new analysis to compute the CRPD due to memory blocks that were categorized

as L2-hits in the absence of preemption but may become L2-misses due to preemption. Our

approach identi�es how many references to such memory blocks can be impacted due to a

preemption and therefore may contribute to the CRPD;

4. we incorporate the CRPD bounds resulting from our proposed approach into a WCRT based

schedulability analysis and perform an extensive experimental evaluation that compares the

performance of our analysis against the state-of-the-art CRPD analysis presented in (Chat-

topadhyay and Roychoudhury, 2014). The results show that our proposed CRPD analysis

results in up to 20 percentage points higher task set schedulability than the CRPD analysis

in (Chattopadhyay and Roychoudhury, 2014).

8.1 Assumptions on the System Model

In this chapter, we make the following assumptions on the systems model:

• We focus on a single-core processor having two-levelnon-inclusivecache hierarchy (i.e.,

we consider only L1 and L2 caches). Non-inclusive cache hierarchy implies that the content

in the L1 cache may or may not be duplicated in the L2 cache. We only consider instruction

references and assume that both L1 and L2 caches are set-associative and use the Least-

Recently-Used (LRU) cache replacement policy.W1 andW2 respectively denote the number

140 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

of cache ways or cache associativity of L1 and L2 caches. The set of all L1/L2 cache sets is

denoted byS1=S2. The total number of cache sets in the L1 and L2 are given byjS1j andjS2j

respectively. Speci�cally, we focus on the following cache con�guration, i.e.,jS1j � j S2j

andW1 � W2.

• We consider a task setGcomprising ofn sporadic tasksf t 1; t 2; :::t ng. Each taskt i 2 Gis

de�ned using a triplet, i.e.,Ci , Ti andDi . Ci denote the worst-case execution time (WCET)

of taskt i , Ti is its minimum inter-arrival time andDi is the relative deadline of each job of

t i . We assume tasks have constrained deadlines, i.e.,Di � Ti . Ri denote the WCRT oft i .

Furthermore, tasks can be scheduled using any �xed-priority preemptive scheduling (FPPS)

algorithm such as Rate or Deadline Monotonic (Liu and Layland, 1973).

• We assume that the set of all memory blocks accessed by a taskt i during its execution is

given byM i = f m1;i ;m2;i ; :::;mz;ig. For any memory reference, L1 cache is always accessed.

If a memory block is not available in the L1 cache but it is available in the L2 cache (i.e.,

an L1 cache miss but a L2 cache hit), that memory block will be �rst loaded into the L1

cache. The time needed to load that block from L2 cache to L1 cache is given bydL1. If the

required memory block is not present in both L1 and L2 caches (i.e. an L2 cache miss), it

is loaded from the main memory to both cache levels. The time needed to load/reload that

block from the main memory to both cache levels is given bydL1 + dL2, wheredL2 denote

the L2 cache miss penalty.

The list of important symbols used in this chapter is provided in Table 8.1.

Table 8.1: List of important symbols used in Chapter 8

Symbol Description

G Task set of sizen

W1 The number of cache ways or the associativity of the L1 cache

W2 The number of cache ways or the associativity of the L2 cache

S1 The set of all cache sets in the L1 cache

S2 The set of all cache sets in the L2 cache

t i Task with indexi

Ci Worst-case execution time of taskt i in isolation

Ti Minimum inter-arrival time of taskt i

Di Relative deadline of taskt i

Ri Worst-case response time of taskt i

M i Set of all memory blocks accessed by taskt i during its execution

mx;i Any memory blockx used by taskt i during its execution

hp(i) The set of tasks with higher priority thant i

Continued on next page

8.1 Assumptions on the System Model 141

Table 8.1 – continued from previous page

Symbol Description

hep(i) The set of tasks with higher priority thant i including t i , i.e., hep(i) =

hp(i)[t i .
aff(i; j) The set of intermediate tasks (includingt i) that may preemptt i but may

themselves be preempted by some higher priority taskt j .
dL1 L1 cache miss penalty

dL2 L2 cache miss penalty

S Any set in the L1/L2 caches

CUP;1
mx;i Maximum LRU-age of a memory blockmx;i of task t i in the L1 cache

w.r.t a program point P
CUP;2

mx;i Maximum LRU-age of a memory blockmx;i of task t i in the L2 cache

w.r.t a program point P
MayACSe;j;1(S) Set of all memory blocks that may be cached in the L1 cache setSduring

the execution of taskt j

MayACSe;j;2(S) Set of all memory blocks that may be cached in the L2 cache setSduring

the execution of taskt j

Smx;i ;1 Cache set where memory blockmx;i of taskt i is mapped in the L1 cache

Smx;i ;2 Cache set where memory blockmx;i of taskt i is mapped in the L2 cache

ECB
Smx;i ;1

j Set of ECBs of taskt j that map to the same L1 cache set as memory block

mx;i of taskt i

ECB
Smx;i ;2

j Set of ECBs of taskt j that map to the same L2 cache set as memory block

mx;i of taskt i

IDr;P
my;i

Set of memory blocks that contribute to the indirect effect of preemption

suffered by any memory blockmy;i 2 M i (accessed at any program point

r) due to preemption of taskt i by a higher priority taskt j 2 hp(i) at a

preemption point P.
R Set of program locations where a memory blockmy;i 2 M i may be ac-

cessed by taskt i after its preemption by a higher priority taskt j 2 hp(i)

at a preemption point P. All program location inR must be reachable from

the preemption point P.
D f ;r Set of all those memory blocks of taskt i that have at least one reference

categorized as an L1 cache hit starting from the entry node oft i and end-

ing at any program location r.
IDmax;P

my;i
The maximum indirect effect of preemption suffered by any memory

block my;i 2 M i (accessed at any program point r) due to preemption of

taskt i by a higher priority taskt j 2 hp(i) at a preemption point P.
Continued on next page

142 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Table 8.1 – continued from previous page

Symbol Description

CRTP;1
i; j CRPD cost due to all the memory blocks of taskt i that may suffer only

a L1 cache miss penalty due to preemption by a higher priority taskt j 2

hp(i) at a program point P.
CRTP;2

i; j CRPD cost due to all the memory blocks of taskt i that may suffer both L1

and L2 cache miss penalties due to preemption by a higher priority task

t j 2 hp(i) at a program point P.
ICRTP;1

i; j CRPD cost due to �rst access to all the memory references of taskt i that

were L1 cache misses and L2 cache hits in the absence of preemption but

may suffer L2 cache miss penalties due to preemption by a higher priority

taskt j 2 hp(i) at a program point P.
ICRTP;2

i; j CRPD cost due to subsequent accesses (excluding the �rst access) to all

the memory references of taskt i that were L1 cache misses and L2 cache

hits in the absence of preemption but may suffer L2 cache miss penalties

due to preemption by a higher priority taskt j 2 hp(i) at a program point

P.
P Set of all program points in taskt i

P2 Set of all program location of taskt i with L1 cache misses and L2 cache

hits, that are reachable from the preemption point P.
MustAge(my;i ;P; l) Function that returns the LRU-age of a memory blockmy;i in the level-l

cache at any program location P in taskt i . The LRU-age is derived using

the Must-cache analysis (Hardy and Puaut, 2008).
IL2ind Upper bound on the number of L2 cache misses to any memory reference

solely due to the indirect effect of preemption.
UCBP

i;1 Set of L1-UCBs of taskt i at a program point P.

UCBP
i;2 Set of L2-UCBs of taskt i at a program point P.

gH
i;i CRPD cost suffered by taskt i due to a single preemption by any higher

priority taskt j 2 hp(i) when considering a two-level non-inclusive cache

hierarchy. gH
i;i is computed using the CRPD analysis proposed in (Chat-

topadhyay and Roychoudhury, 2014).
IndP

my;i
Set of memory blocks that contribute to the indirect effect of preemption

suffered by any memory blockmy;i 2 M i due to a single preemption of

taskt i by any higher priority taskt j 2 hp(i) at a preemption point P.
FAP

mx;i
Program location where any memory blockmx;i of taskt i is �rst accessed

after the preemption point P.
P1 Set of all program locations between the preemption point P and program

pointFAP
mx;i

Continued on next page

8.2 State-of-the-Art CRPD Analysis for Multilevel Caches (Chattopadhyay and Roychoudhury,
2014) 143

Table 8.1 – continued from previous page

Symbol Description

Indmul;P
my;i

Set of memory blocks that contribute to the indirect effect of preemption

suffered by any memory blockmy;i 2 M i due to multiple preemptions of

taskt i by any higher priority taskt j 2 hp(i) w.r.t a preemption point P.
gP;L1

i; j CRPD cost due to all L1-UCBs of taskt i that are evicted from the L1

cache (but are available in the L2 cache) due a preemption of taskt i by

any higher priority taskt j 2 hp(i) at a preemption point P
gP;L12

i; j CRPD cost due to all L1-UCBs of taskt i that are evicted from both L1

and L2 caches due a preemption of taskt i by any higher priority task

t j 2 hp(i) at a preemption point P
gP;L2

i; j CRPD cost due to all L2-UCBs of taskt i that are evicted from L2 cache

due a preemption of taskt i by any higher priority taskt j 2 hp(i) at a

preemption point P
P2 Set of all program locations with L2 cache hits between the preemption

point P (including P) and end pointeof a taskt i

RP
my;i

Set that contains all program locations after the preemption point P where

a reference to memory blockmy;i is a L2 cache hit
R1;P

my;i First program location after the preemption point P where a reference to

memory blockmy;i is a L2 cache hit
gH

i;i CRPD cost suffered by taskt i due to a single preemption by any higher

priority taskt j 2 hp(i) when considering a two-level non-inclusive cache

hierarchy.gH
i;i is computed using our proposed CRPD analysis.

gH;max
i;i Maximum CRPD cost suffered by taskt i due to a preemption by any

higher priority taskt j 2 hp(i) when considering a two-level non-inclusive

cache hierarchy.

8.2 State-of-the-Art CRPD Analysis for Multilevel Caches (Chattopad-

hyay and Roychoudhury, 2014)

As mentioned previously in Section 3.2.3, there exist only two works in the state-of-the-art (Chat-

topadhyay and Roychoudhury, 2014; Zhang and Koutsoukos, 2016) that focus on the computation

of CRPDs for multilevel caches. However, as we consider a non-inclusive cache hierarchy, we

will brie�y explain the CRPD analysis of Chattopadhyay et al. (Chattopadhyay and Roychoud-

hury, 2014). Chattopadhyay et al. (Chattopadhyay and Roychoudhury, 2014) de�ned the notion

of UCBs for two-level caches (see De�nition 3.10) and used that notion of UCBs to analyze CRPD

for multilevel non-inclusive caches. The sets of UCBs of tasks are computed using the Must-cache

analysis (Theiling, 2002; Hardy and Puaut, 2008) along with a backward �ow analysis. Recall

144 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

that the Must-cache analysis (see Section 3.1.1) determines the set of memory blocks that are in

the cache at any given program point under all circumstances, i.e., the reference to such memory

blocks will always be cache hits w.r.t that program point. The result of the UCB analysis presented

in (Chattopadhyay and Roychoudhury, 2014) is a tupleCUP
mx;i

= (CUP;1
mx;i ;CUP;2

mx;i) that captures the

�xed-point on the maximum LRU-age of a memory blockmx;i of taskt i at a program point P in

both L1 and L2 caches. If memory blockmx;i is not present in L1 cache w.r.t a program point

P,CUP
mx;i

is given by the tuple(¥ ;CUP;2
mx;i), where¥ represent all scenarios wheremx;i may not be

present in the L1 cache, i.e.,CUP;1
mx;i � W1. Similarly, if mx;i is not present in the L2 cache,CUP

mx;i
is

given by(CUP;1
mx;i ;¥). Note that according to the state-of-the-art de�nition of two-level UCBs (i.e.,

De�nition 3.10), any memory blockmx;i of taskt i can only be categorized as a UCB at a program

point P ifCUP
mx;i

6= (¥ ;¥).

To compute the set of ECBs of the preempting task, e.g.,t j , the analysis in (Chattopadhyay

and Roychoudhury, 2014) use the May-cache analysis (Hardy and Puaut, 2008). Recall that the

May-cache analysis (see Section 3.1.2) determines all memory blocks that may be in the cache at

a given program point, i.e., it over-approximate the content in the cache w.r.t a program point. For

any cache setS, the set of ECBs of the preempting taskt j in Sis computed by applying the May-

cache analysis at the end pointe of taskt j . The May-cache state of cache setSat e will always

include all possibly accessed memory blocks byt j in S. The output of the May-cache analysis

w.r.t a cache setSis given by the tupleMayACSe;j(S) = (MayACSe;j;1(S);MayACSe;j;2(S)) , where

MayACSe;j;1(S)=MayACSe;j;2(S) represent the abstract caches state (see De�nition 3.1) of a L1/L2

cache setSw.r.t the end pointeof taskt j . Effectively,MayACSe;j;1(S)=MayACSe;j;2(S) contain all

memory blocks that may be cached in a L1/L2 cache setSduring the execution of taskt j .

Assuming that the mapping of a memory blockmx;i of taskt i in L1(L2) cache is de�ned by

the tupleSmx;i ;1(Smx;i ;2) such thatSmx;i ;1 denote the cache set wheremx;i is mapped in the L1 cache

andSmx;i ;2 denote the cache set wheremx;i is mapped in the L2 cache. Then, the number of ECBs

of a higher priority taskt j 2 hp(i) that may overlap withmx;i in L1(L2) cache are given by

jECB
Smx;i ;1

j j = jMayACSe;j;1(Smx;i ;1)j and (8.1)

jECB
Smx;i ;2

j j = jMayACSe;j;2(Smx;i ;2)j

whereECB
Smx;i ;1

j (ECB
Smx;i ;2

j) is the set of ECBs of taskt j that map to the same L1(L2) cache set as

memory blockmx;i of taskt i .

Using the set of ECBs de�ned by Equation (8.1) the CRPD analysis in (Chattopadhyay and

Roychoudhury, 2014) determines if a memory blockmx;i of taskt i will be evicted from L1(L2)

cache due to preemptions. Effectively, it is assumed thatmx;i can be evicted from the L1(L2)

cache due to a preemption of taskt i by taskt j 2 hp(i) at a program point P, only if the sum of

the maximum LRU-age ofmx;i in L1(L2) cache at P, i.e.,CUP;1
mx;i (CUP;2

mx;i), and the number of ECBs

of t j that may overlap withmx;i in L1(L2) cache, i.e.,jECB
Smx;i ;1

j j(jECB
Smx;i ;2

j j), is greater than or

equal to the associativity of the L1(L2) cache, i.e.,W1(W2). Formally, ifCUP;l
mx;i + jECB

Smx;i ;l

j j � Wl

8.2 State-of-the-Art CRPD Analysis for Multilevel Caches (Chattopadhyay and Roychoudhury,
2014) 145

then memory blockmx;i of t i will be evicted from the level-l cache due to a preemption of taskt i

by any higher priority taskt j 2 hp(i) at a preemption point P.

8.2.1 Calculating the Indirect Effect of Preemption

By de�nition (see De�nition 3.9) indirect effect of preemption is experienced when a memory ref-

erence that was a L1 cache hit in the absence of preemption access the L2 cache after preemption

(e.g., the second reference to memory block A during the preempted execution of taskt i shown in

Figure 3.6). Due to this extra reference to the L2 cache, the amount of intra-task cache con�icts

generated in the L2 cache may increase after preemption. This increase in intra-task L2 cache con-

�icts may result in generating L2 cache misses for memory references that were categorized as L2

cache hits in the absence of preemption (e.g., the second reference to memory blockm in the pre-

empted execution of taskt i shown in Figure 3.6). Consequently, it can be stated the indirect effect

of preemption is suffered by all those memory blocks that may be accessed from the L2 cache after

preemption. Under the CRPD analysis presented in (Chattopadhyay and Roychoudhury, 2014),

the indirect effect of preemption any memory blockmy;i 2 M i (accessed at any program point r)

can suffer due to preemption of taskt i by a higher priority taskt j 2 hp(i) at a preemption point

P is given byjIDr;P
my;i

j, whereIDr;P
my;i

is a set comprising of all memory blocksmx;i 2 M i that satisfy

the following constraint, i.e.,

IDr;P
my;i

=
n

mx;i jmx;i 6= my;i ^ mx;i 2 D f ;r ^ (Smx;i ;2 = Smy;i ;2) ^ CUP
mx;i

6= (¥ ;¥) ^ CUP;1
mx;i

+ jECB
Smx;i ;1

j j > W1

o

(8.2)

Equation (8.2) states that any memory blockmx;i 2 M i can cause an indirect effect of preemption

on any other memory blockmy;i 2 M i accessed at any program point r after preemption, ifmx;i

satisfy all four conditions in Equation (8.2). These conditions are explained as follows:

• First condition, i.e.,mx;i 6= my;i , implies that the same memory blocks can not cause an

indirect effect of preemption on each other, i.e., ifmx;i = my;i and the reference tomx;i was

a L1 cache hit in the non-preempted execution oft i but the same reference becomes a L1

cache miss after preemption oft i by t j . Then,mx;i can be reloaded either from the L2 cache

or from the main memory. However, in both cases the state of L1/L2 cache w.r.tmx;i will

be the same, i.e.,mx;i will be the youngest element in both L1 and L2 cache after the reload

from L2 cache or main memory. Therefore, ifmx;i = my;i , my;i can not suffer an indirect

effect of preemption due tomx;i .

• The second condition, i.e.,mx;i 2 D f ;r , implied thatmx;i can only cause an indirect effect of

preemption onmy;i , i.e., increasing the LRU-age ofmy;i in L2 cache, ifmx;i 2 D f ;r . Where

D f ;r is a set of all those memory blocks; (i) that must be accessed along some path starting

from the entry node oft i and ending at r, and (ii) that must have at least one reference

categorized as a L1 cache hit (by the intra-task cache analysis) in the absence of preemption

and that reference must be reachable from program point r. Effectively,D f ;r includes all

memory blocks of taskt i that have at least one reference categorized as a L1 cache hit along

146 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

any execution path oft i starting from the entry node oft i and ending at r. In (Chattopadhyay

and Roychoudhury, 2014)D f ;r is computed using a forward-�ow analysis (along with the

Must-cache analysis (Theiling, 2002)) which starts from the entry point of taskt i and ends

at r.

• Third condition, i.e.,Smx;i ;2 = Smy;i ;2, implies that any memory blockmx;i 2 M i can only

cause an indirect effect of preemption on any other memory blockmy;i 2 M i if both mx;i

andmy;i are mapped to the same L2 cache set. This is intuitive, since each cache set of

a set-associative cache can be analyzed independently. Therefore,my;i can only suffer the

indirect effect of preemption from all memory blocks that are mapped to the same L2 cache

set asmy;i .

• CUP
mx;i

6= (¥ ;¥) implies that formx;i to cause an indirect effect after a preemption at P,mx;i

must be a UCB at P. The last condition, i.e.,CUP;1
mx;i + jECB

Smx;i ;1

j j > W1, states that formx;i

to cause an indirect effect of preemption onmy;i , mx;i must be evicted from the L1 cache

due to preemption at P by the higher priority taskt j . If mx;i is evicted from the L1 due to

preemption at P, the �rst access tomx;i after preemption will result in a L1 miss. Hence,mx;i

will be accessed either from L2 or is reloaded from the main memory. In both cases,mx;i

will cause an indirect effect on all memory blocks (includingmy;i) that map to the same L2

cache set asmx;i . Finally, the setIDr;P
my;i

contains all memory blocksmx;i 2 M i that satisfy all

the above mentioned conditions.

Considering that a memory blockmy;i can be accessed at several different program locations (i.e.,

r) that are reachable from the preemption point P, the worst-case indirect effect of preemption

thatmy;i can suffer is computed by maximizing Equation (8.2) over all program locations where

my;i may be accessed and are reachable from the preemption point P. LetR denote the set of all

such program locations then, the worst-case indirect effectmy;i may suffer due to a preemption at

program point P is given byIDmax
my;i ;P, where

IDmax;P
my;i

= max
8r2R

jIDr;P
my;i

j (8.3)

Example 8.1. To demonstrate how the indirect effect of preemption is computed for the CRPD

analysis of (Chattopadhyay and Roychoudhury, 2014), let us use Equation(8.2) to calculate the

indirect effect of preemption suffered by memory block m, i.e., IDr;P
m , for the execution scenario

shown in Figure 3.6. We have Df ;r = f Ag and memory block A satisfy all constraints in Equa-

tion (8.2) in case of a preemption at P. Therefore, we have IDr;P
m = f Ag and IDmax;P

m = 1.

More details on the formulation of Equation (8.2) and (8.3) can be found in (Chattopadhyay

and Roychoudhury, 2014).

8.2 State-of-the-Art CRPD Analysis for Multilevel Caches (Chattopadhyay and Roychoudhury,
2014) 147

8.2.2 CRPD Computation

Under the analysis presented in (Chattopadhyay and Roychoudhury, 2014), the CRPD taskt i may

suffer due to a single preemption by a higher priority taskt j 2 hp(i) at any arbitrary preemption

point P comprises of four components, i.e.,CRTP;1
i; j , CRTP;2

i; j , ICRTP;1
i; j , andICRTP;2

i; j . CRTP;1
i; j cap-

tures the CRPD due to all those memory blocks oft i that are evicted from the L1 cache due to

preemption byt j at P but may still be available in the L2 cache, i.e.,

CRTP;1
i; j = dL1 � j M i;L1j (8.4)

whereM i;L1 is the set of all memory blocks inM i that might be L1 cache hits in the absence of

preemption, but may suffer L1 miss penalties after preemption, i.e.,

M i;L1 =
n

mx;i jCUP
mx;i

6= (¥ ;¥) ^ CUP;1
mx;i

+ jECB
Smx;i ;1

j j � W1 ^ CUP;2
mx;i

+ jECB
Smx;i ;2

j j + IDmax;P
mx;i

< W2

o

(8.5)

Similarly, CRTP;2
i; j accounts for the CRPD due to all those memory blocks oft i that are evicted

from both L1 and L2 caches due to preemption, i.e.,

CRTP;2
i; j = (dL1 + dL2) � j M i;L1L2j (8.6)

where

M i;L1L2 =
n

mx;i jCUP
mx;i

6= (¥ ;¥) ^ CUP;1
mx;i

+ jECB
Smx;i ;1

j j � W1^ CUP;2
mx;i

+ jECB
Smx;i ;2

j j + IDmax;P
mx;i

� W2

o

(8.7)

By the de�nition of UCBs provided in (Chattopadhyay and Roychoudhury, 2014) (De�nition 3.10),

all memory blocks inM i that are L2 cache hits in the absence of preemption are not categorized as

UCBs. Therefore, to account for the CRPD due to all those memory blocks, the analysis in (Chat-

topadhyay and Roychoudhury, 2014) checks all program locations with memory references that

were L2 cache hits in the absence of preemption but may become L2 cache misses due to preemp-

tion. The set of all such program location of taskt i that are reachable from the preemption point

P is denoted byP2.

The CRPD analysis in (Chattopadhyay and Roychoudhury, 2014) assume that any reference

to a memory blockmy;i 2 M i at any program pointr 2 P2, can suffer multiple L2 cache misses due

to preemptions. The �rst reference tomy;i after preemption may suffer a L2 cache miss due to the

combined affect of the preempting task, i.e., due to ECBs of the preempting taskt j that map to

the same cache set asmy;i given byjECB
Smy;i ;2

j j, and the indirect effect of preemption suffered by

my;i at that program pointr 2 P2, i.e.,jIDr;P
my;i

j. Consequently,ICRTP;1
i; j captures the resulting CRPD

cost for the �rst reference to memory blockmy;i after preemption, i.e.,

ICRTP;1
i; j = å

r2P2

8
<

:
0 if MustAge(my;i ; r;2)+ jECB

Smy;i ;2

j j + jIDr;P
my;i

j < W2

dL2 otherwise.
(8.8)

148 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

whereMustAge(my;i ; r;2) is the LRU-age of memory blockmy;i in the L2 cache immediately before

the program pointr 2 P2 and is computed using the Must-cache analysis (Hardy and Puaut, 2008).

The CRPD analysis in (Chattopadhyay and Roychoudhury, 2014) assume that the same memory

block, i.e.,my;i , can also be evicted solely due to the indirect effect of preemption. Consequently,

ICRTP;2
i; j captures the CRPD cost due to references tomy;i that may suffer an L2 cache miss penalty

after preemption only due to the indirect effect of preemption, whereICRTP;2
i; j is given as

ICRTP;2
i; j = IL2ind � å

r2P2

8
<

:
0 if MustAge(my;i ; r;2)+ jIDr;P

my;i
j < W2

dL2 otherwise.
(8.9)

In Equation (8.9),IL2ind denotes an upper bound on the number of L2 cache misses to any memory

reference solely due to the indirect effect of preemption. It is proved in (Chattopadhyay and

Roychoudhury, 2014) that if the cache con�guration is such thatjS1j � j S2j andW1 � W2 then the

value ofIL2ind is upper bounded by 1, i.e.,IL2ind � 1.

Finally, the worst-case CRPD suffered by taskt i due to a single preemption by taskt j is given

by maximizing Equation (8.4)-(8.9) over the set of all program pointP, i.e.,

gH
i; j = max

P2P

�
CRTP;1

i; j + CRTP;2
i; j + ICRTP;1

i; j + ICRTP;2
i; j

�
(8.10)

Readers are direct to (Chattopadhyay and Roychoudhury, 2014) for details on the formulation of

Equation (8.1)-(8.10).

8.3 Multilevel Useful Cache Blocks

The state-of-the-art de�nition of UCBs for two-level caches (i.e., De�nition 3.10) assume that any

memory blockmx;i of taskt i can only be categorized as a UCB at a program point P, ifmx;i is not

evicted from both L1 and L2 caches before being reused at a later program point Q. However, con-

sidering that multilevel non-inclusive caches do not strictly enforce content inclusion, it is likely

that memory blockmx;i can be available in only one cache level (e.g., L1 or L2) at program point Q

and hence will be re-used from that cache level. For example, in Figure 3.6 both memory blocks

A and m are cached in L1 and L2 at program point P, however, only memory block A remains

cached in both L1 and L2 before its next reuse. Therefore, by De�nition 3.10 only memory block

A will be categorized as a UCB at program point P even though memory blockm is only evicted

from L1 cache and is later reused from the L2 cache.

In a non-inclusive multilevel cache, a memory block can be available in any of the cache levels.

Therefore, using this insight, we can re-de�ne the notion of UCBs for multilevel caches based on

the cache level from which a memory block might be reused. For example, in a two-level cache a

memory blockmx;i can be re-used either from L1 or L2 cache (i.e., L1 or L2 cache hit). Therefore,

mx;i can be categorized as a L1- or L2-UCB. Formally, for a cache with two levels, UCBs can be

categorized into:

8.3 Multilevel Useful Cache Blocks 149

De�nition 8.1 (L1-Useful Cache Blocks (L1-UCBs):). A memory block mx;i of taskt i is a L1-UCB

w.r.t a program point P if (i) mx;i is cached in L1 at P and (ii) mx;i is reused at a program point

Q that must be reachable from P without eviction of mx;i from the L1 cache, i.e., the reference to

mx;i at program point Q should be categorized as a L1 hit. The set of memory blocks of taskt i

categorized as L1-UCBs w.r.t a program point P is given by UCBP
i;1.

De�nition 8.2 (L2-Useful Cache Blocks (L2-UCBs):). A memory block my;i of taskt i is a L2-UCB

at program point P if (i) my;i is cached at P in L2 and (ii) my;i is reused at a program point Q that

must be reachable from P without eviction of my;i from the L2 cache, i.e., the reference to my;i at

program point Q is categorized as a L2 cache hit. The set of memory blocks of taskt i categorized

as L2-UCBs w.r.t a program point P is denoted by UCBP
i;2.

Based on the above de�nitions, a memory block can be both a L1-UCB and a L2-UCB w.r.t a

program point P, i.e., the reference to that memory block at any program point Q that is reachable

from P can be a cache hit in both L1 and L2 caches. However, in this case, that memory block

will only be considered as a L1-UCB as it will always be accessed from the L1 cache during non-

preempted execution of a task. Note that the above de�nitions of UCBs can also be generalized to

l -level caches.

It is argued in the existing works (Chattopadhyay and Roychoudhury, 2014; Zhang and Kout-

soukos, 2016) that the concept of UCBs is dif�cult to use for the analysis of CRPDs for multilevel

cache. However, as we later show in Section 8.5, by categorizing UCBs based on the cache level

from which they might be re-used, the UCB concept can be used to compute CRPD for multilevel

caches.

8.3.1 Finding L1/L2-UCBs

The set of L1-UCBs and L2-UCBs of a taskt i at a program point P can be determined by using the

Must-cache analysis (Hardy and Puaut, 2008) along with a backward �ow analysis as proposed

in (Chattopadhyay and Roychoudhury, 2014). As mentioned earlier, the result of the UCB analysis

in (Chattopadhyay and Roychoudhury, 2014) is a tupleCUP
mx;i

= (CUP;1
mx;i ;CUP;2

mx;i) that captures the

�xed-point on the maximum LRU-age of a memory blockmx;i of task t i at a program point P.

Consequently, the set of L1-UCBs of a taskt i at a program point P can be computed using the

following expression

UCBP
i;1 =

n
mx;i jmx;i 2 M i ^

��
CUP;1

mx;i
6= ¥ ^ CUP;2

mx;i
6= ¥

�
_

�
CUP;1

mx;i
6= ¥ ^ CUP;2

mx;i
= ¥

��o

(8.11)

Equation (8.11) implies that given a program point P, all memory blocksmx;i 2 M i with a maxi-

mum LRU-age in L16= ¥ are L1-UCBs oft i w.r.t P.

Similarly, the set of L2-UCBs of taskt i at a program point P can be computed as follows

UCBP
i;2 =

n
my;i jmy;i 2 M i ^

�
CUP;1

my;i
= ¥ ^ CUP;2

my;i
6= ¥

�o
(8.12)

150 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Equation (8.12) implies that any memory blockmy;i 2 M i is a L2-UCBs at a program point P, if

my;i may be evicted from L1 along some path reachable from P, i.e.,CUP;1
my;i = ¥ , but it remains

cached in L2, i.e.,CUP;2
my;i 6= ¥ . Similarly, to compute the number of ECBs of a higher priority task

t j 2 hp(i) that may map to the same L1(L2) cache set as the L1/L2-UCBs of taskt i , we will also

use the May-cache analysis (Hardy and Puaut, 2008), i.e., Equation (8.1).

8.4 Tightening the Bound on the Indirect Effect of Preemption

The state-of-the-art approach to calculate the indirect effect of preemption (i.e., Equation. (8.2))

provides a sound estimate on the indirect effect of preemption that can be suffered by the memory

blocks. However, that approach may result in overestimating the indirect effect of preemption.

This overestimation is due to an over-approximation on the set of memory blocks that can cause

the indirect effect of preemption. To illustrate consider the following example:

Example 8.2. Figure 8.1 shows a sequence of memory reference (from left to right) during non-

preempted (top) and preempted (bottom) execution of taskt i . We assume that L1 and L2 are

two-way set-associative LRU-caches, i.e., W1 = W2 = 2. All memory blocks used by taskt i , i.e.,

A, B and m, are mapped to the same L1 and L2 cache set. For clarity, we only focus on the

computation of indirect effect of preemption suffered by memory block m due to preemption at

program point P. We can see in Figure 8.1 that the second reference to memory block m is a

Figure 8.1: Highlighting the pessimism in the calculation of indirect effect of preemption by (Chat-
topadhyay and Roychoudhury, 2014).

8.4 Tightening the Bound on the Indirect Effect of Preemption 151

L2-hit in both non-preempted and preempted execution oft i . However, if we use analysis of

(Chattopadhyay and Roychoudhury, 2014) to calculate the indirect effect of preemption that can

be suffered by memory block m due to a preemption at P, we will get Df ;r1 = D f ;r2 = f A;Bg

w.r.t program locations r1 and r2 where m is accessed after preemption. Moreover, both memory

blocks A and B satisfy all constraints in Equation(8.2), i.e., (i) A and B are UCBs at program

point P; (ii) both A and B will be evicted from L1 (and L2) cache due to preemption at program

point P by a higher priority taskt j 2 hp(i) and (iii) both A and B map to the same L2 cache

set as m. Therefore, the analysis in (Chattopadhyay and Roychoudhury, 2014) will conclude

that both memory blocks A and B can cause an indirect effect of preemption on memory block

m, i.e., IDr1;P
m = IDr2;P

m = f A;Bg and IDmax;P
m = 2 (by using Equation(8.2) and (8.3)) after a

preemption at P. Consequently, if we use this bound on the indirect effect of preemption of m in

Equation(8.9), it results that m will be evicted from L2 solely due to indirect effect of preemption,

i.e., MustAge(m;r2;2) + jIDr2;P
m j = 2+ 2 > W2. However, we can see in Figure 8.1 that this does

not happen. In fact, the second reference to memory block m remains a L2 cache hit even after

preemption because m will not suffer any indirect effect of preemption.

Example 8.2 shows that overestimating the indirect effect of preemption may lead to pes-

simistic CRPD values. Therefore, we propose an improved analysis that computes a tighter bound

on the indirect effect of preemption using Algorithm 8.1. Instead of calculating the indirect effect

of preemption that can be suffered by memory blocks, Algorithm 8.1 bounds the indirect effect

that can be caused by memory blocks as a result of a preemption. We prove the correctness of

Algorithm 8.1 using the following Lemma

Algorithm 8.1 Calculating the indirect effect of preemption caused due to preemption of taskt i

by t j at a program point P
Output: The indirect effect of preemption suffered by every memory blockmy;i 2 M i due to preemption

at program point P, i.e.,IndP
my;i

.

1: for 8my;i 2 M i do
2: IndP

my;i
:= /0

3: end for
4: for 8mx;i 2 UCBP

i;1 do

5: if CUP;1
mx;i + jECB

Smx;i ;1

j j � W1 then
6: FAP

mx;i
:= GetFirstAccess(mx;i ;P)

7: for 8my;i 2 M i nmx;i do
8: if ((MustAge(my;i ;FAP

mx;i
;2) 6= ¥) ^ (Smy;i ;2 == Smx;i ;2) ^

((MustAge(mx;i ;FAP
mx;i

;2) = ¥) _ (MustAge(mx;i ;FAP
mx;i

;2) > MustAge(my;i ;FAP
mx;i

;2)))) then

9: IndP
my;i

:= IndP
my;i

[mx;i ;
10: end if
11: end for
12: end if
13: end for

Lemma 8.1. The indirect effect suffered by any memory block my;i 2 M i of taskt i due to a preemp-

tion at any program point P is upper bounded byjIndP
my;i

j, where IndPmy;i
is a set of memory blocks

that can cause the indirect effect of preemption on my;i and is computed using Algorithm 8.1.

152 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Proof. (1). By the de�nition of indirect effect of preemption (i.e., De�nition 3.9), it can be caused

by only those memory blocks that are used from the L1 cache in the absence of preemption (i.e.,

L1-UCBs) but may be accessed from the L2 or the main memory after preemption. Therefore, for

any preemption point P, the set of memory blocks that may cause an indirect effect of preemption

on any memory blockmy;i 2 M i is upper bounded by the set of L1-UCBs oft i at that preemption

point P, i.e.,UCBP
i;1. Consequently, the external loop in Algorithm 8.1 (i.e., lines 4 to 13) iterates

over all memory blocksmx;i 2 UCBP
i;1.

(2). Any L1-UCB mx;i 2 UCBP
i;1 can cause an indirect effect of preemption on any other memory

block my;i 2 M i due to preemption at a program point P only ifmx;i is evicted from the L1 cache

due to that preemption, i.e.,CUP;1
mx;i + jECB

Smx;i ;1

j j > W1. In Algorithm 8.1 line 5 checks this condi-

tion for all L1-UCBs inUCBP
i;1.

(3). For any memory blockmx;i that is a L1-UCB at P the �rst reachable references tomx;i af-

ter P (e.g., at program locationFAP
mx;i

computed using functionGetFirstAccess(mx;i ;P) in Algo-

rithm 8.1) determines whethermx;i is evicted from the L1 cache or not and hence it may or may

not contribute to the indirect effect of other memory blocks. Ifmx;i is evicted from the L1 cache

due to preemption (i.e.,(2) holds) then the �rst access tomx;i after P, i.e., atFAP
mx;i

, can either be a

L2 cache hit or a L2 cache miss. However, in both cases an access tomx;i at program pointFAP
mx;i

may generate an indirect effect on all memory blocks that are in L2 cache atFAP
mx;i

, i.e., reloading

mx;i from the main memory or from the L2 cache may increase the LRU-age of memory blocks

that are already in L2 cache at program pointFAP
mx;i

.

(4). Sincemx;i can cause an indirect effect of preemption on only those memory blocks that are in

the L2 cache at program pointFAP
mx;i

. The nested loop in Algorithm 8.1 (lines 7 to 11) determines

all memory blocksmy;i 2 M i nmx;i that can suffer indirect effect of preemption due tomx;i . The

computation is based on four conditions that are explained as follows:

(4.1). mx;i can only cause an indirect effect of preemption on any other memory blockmy;i 2

M i nmx;i if my;i is in the L2 cache at program pointFAP
mx;i

. This is determined using the Must-

age (Hardy and Puaut, 2008) ofmy;i at program pointFAP
mx;i

, i.e.,my;i can only suffer an indirect

effect of preemption due tomx;i if (MustAge(my;i ;FAP
mx;i

;2) 6= ¥).

(4.2). mx;i can cause an indirect effect of preemption onmy;i if both mx;i andmy;i map to the same

L2 cache set, i.e.,Smx;i ;2 == Smy;i ;2.

(4.3). If the access tomx;i at program pointFAP
mx;i

is a L2 cache miss, i.e.,MustAge(mx;i ;FAP
mx;i

;2) =

¥ , thenmx;i will be reloaded from the main memory to both L2 and L1 caches. This will increase

the LRU-age of all existing memory blocks in the L2 cache includingmy;i . Hence,my;i will suffer

an indirect effect of preemption due tomx;i .

(4.4). But, if the access tomx;i at program pointFAP
mx;i

is a L2 cache hit, thenmx;i will be reloaded

from L2 to L1 cache. Moreover, in this case an access tomx;i can only change the LRU-ages of

memory blocks that are younger thanmx;i in the L2 cache. So,my;i can only suffer an indirect

effect of preemption frommx;i if MustAge(mx;i ;FAP
mx;i

;2) > MustAge(my;i ;FAP
mx;i

;2) holds. Note

that(4.3)and(4.4)are mutually exclusive, therefore only one of them needs to be true formx;i to

cause an indirect effect of preemption onmy;i .

8.4 Tightening the Bound on the Indirect Effect of Preemption 153

Finally, if all the above conditions hold for any memory blockmy;i 2 M i nmx;i , mx;i will be

added to the set of memory blocks that can cause an indirect effect of preemption onmy;i , i.e.,

IndP
my;i

[mx;i . Consequently, the cardinality of the setIndP
my;i

upper bounds the indirect effect that

can be suffered by any memory blockmy;i 2 M i due to preemption at any program point P.

Example 8.3. Using Algorithm 8.1 to calculate the indirect effect of preemption of memory block

m in Figure 8.1, we can see that both memory blocks A and B are L1-UCBs at P, i.e.,f A;Bg 2

UCBP
i;1. Also, both A and B will be evicted from L1 due to preemption and also map to the same

L2 cache set as memory block m. However, m is not in the L2 at the �rst access of memory block

A (and B) after preemption point P, i.e., MustAge(m;FAP
A;2) = ¥ (and MustAge(m;FAP

B;2) = ¥).

Therefore, m will not suffer any indirect effect due to eviction of A and B at preemption point P,

i.e., jIndP
mj = 0.

8.4.1 Handling Nested/Multiple Preemptions

Algorithm 8.1 computes the indirect effect of preemption that may be suffered by memory blocks

of taskt i due to a single preemption by a higher priority taskt j 2 hp(i). However, in reality,t i

can be preempted several times by the same task or by different tasks during its execution. It has

been shown in the state-of-the-art CRPD analysis for single-level set-associative caches (Altmeyer

et al., 2010) that multiple preemptions of taskt i by the same task, e.g.,t j , does not pose any

additional challenges in the computation of CRPD for single-level caches. This is mainly because

the May-cache analysis (Theiling et al., 2000) used to compute the set of ECBs of taskt j that may

overlap with the set of UCBs of taskt i in the L1 cache, over-approximate the set of ECBs oft j ,

i.e., even if certain memory blocks may not be accessed in one job execution oft j they do appear

in the set of ECBs. Therefore, the contribution every preemption byt j can make to the CRPD of

t i can be analyzed independently. Similarly, it is also shown in (Altmeyer et al., 2010; Altmeyer,

2013) that in case of multiple preemption of taskt i by different tasks in hp(i), the CRPD cost can

be computed by simulating nested preemptions, i.e., when computing the CRPD due to a single

preemption of taskt i by any higher priority taskt j 2 hp(i), it is assumed thatt j has itself already

been preempted by all higher priority tasks in hp(j). Consequently, the analysis in (Altmeyer

et al., 2010; Altmeyer, 2013) that accounts for multiple preemptions, use the union of set of ECBs

of all tasks in hep(j), i.e., j
S

8h2hep(j) ECB
Smx;i ;1

h j, instead of only using the set of ECBs of taskt j ,

i.e.,jECB
Smx;i ;1

j j, when computing the CRPD due to a single preemption of taskt i by any higher

priority taskt j 2 hp(i).

However, when computing CPRD for multilevel caches in the presence of multiple preemp-

tions, only simulating nested preemptions of tasks, i.e., using the union of ECBs of the preempting

tasks, may not be enough. This is mainly due to the indirect effect of preemption that exists in

multilevel caches, i.e., multiple preemptions by the same or different task(s) may “collaborate"

to cause more indirect effect than they would in “isolation". To illustrate this point, consider the

example given below:

154 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Example 8.4. Figure 8.2 shows a sequence of memory references during the execution of a taskt i

considering different preemption scenarios. We assume that L1 and L2 are 4-way set-associative

LRU caches and all memory blocks used by taskt i and the preempting task, e.g.,t j , map to the

same L1 and L2 cache set. Note that we only focus on computing the indirect effect of preemption

that can be suffered by memory block m due to preemptions at program points P1 and P2.

During the non-preempted execution oft i (see Figure 8.2a), �rst reference to memory block A

after P1 and the �rst reference to memory block B after P2 are L1 cache hits. Moreover, the second

reference to memory block m is also a L2 cache hit. We assume that taskt i can be preempted by

a higher priority taskt j 2 hp(i) at program points P1 and P2 such thatt j only has one L1 cache

con�ict with t i , i.e., t j only loads ECB X in the L1 cache. When considering preemptions oft i by

t j at P1 and P2 independently or in isolation (see Figure 8.2b), we can see that by just considering

the preemption at P1, only the �rst reference to memory block A will be impacted and it will result

in a L1 cache miss (but a L2 cache hit). Similarly, a preemption at P2 in isolation can only impact

the �rst reference to memory block B after P2 which results in a L2 cache miss. Furthermore,

since both preemptions, i.e., at P1 and P2, can only evict one L1-UCB, the maximum indirect effect

(computed using Algorithm 8.1) that memory block m may suffer due to a preemption at P1 or P2

will be 1. Consequently, we can see in Figure 8.2b that the second reference to memory block m

will remain a L2 cache hit when considering both preemptions in isolation.

However, when considering consecutive preemptions of taskt i by taskt j (see Figure 8.2c) we

can see that the preemption at program point P1 can collaborate with the preemption at P2. This

collaboration generates an indirect effect of 2 on memory block m which results in the eviction of

memory block m from the L2 cache after a preemption at P2 as shown in Figure 8.2c.

Example 8.4 shows that Algorithm 8.1 may underestimate the indirect effect of preemption

suffered by memory blocks in the presence of multiple preemptions. This is mainly because when

using Algorithm 8.1, the indirect effect of preemption that can be caused at a preemption point

P is upper bounded by the number of L1-UCBs of tasks that may be evicted from the L1 cache

only due to preemption at P. However, as we just demonstrated in Example 8.4, two consecutive

accesses to the memory block under analysis, i.e., the memory block for which the indirect effect

is being computed (e.g.,m in Figure 8.2), may enclose two or more preemption points (e.g.,

P1 andP2 in Figure 8.2) and all L1-UCBs that be may be evicted due to preemptions between

those preemption points may contribute to the indirect effect suffered by the memory block under

analysis. Therefore, to have a sound estimate on the indirect effect that can be caused due to

multiple preemptions w.r.t a program point P, we need to consider all L1-UCBs that may be evicted

from the L1 cache between the preemption point under analysis, e.g., P and the program point

where the memory block under analysis is �rst accessed after P, e.g.,r. For example, ifmy;i is the

memory block under analysis which is accessed at any program pointr after the preemption point

P. Then, the indirect effect of preemption thatmy;i can suffer due to one or more preemptions by

any higher priority taskt j 2 hp(i) at P is upper bounded by the maximum number of L1-UCBs of

taskt i that may be evicted from the L1 cache between program points P andr. To compute the

indirect effect of preemption in the presence of multiple preemptions we propose Algorithm 8.2

8.4 Tightening the Bound on the Indirect Effect of Preemption 155

(a) Non-Preempted Execution oft i .

(b) Isolated Preemptions oft i by t j at program pointP1 andP2.

(c) Combined Preemptions oft i by t j at program pointP1 andP2

Figure 8.2: Multiple preemption scenarios with collaborating and isolated preemptions. The indi-
rect effect of preemption suffered by memory blockm due to consecutive preemptions, i.e., atP1

andP2, is higher than the indirect effect caused by individual preemptions.

which is an inclusive version of Algorithm 8.1. The major difference between Algorithm 8.1

and 8.2 is the functionGetProgamPoints(P;FAP
my;i

) that computesP1 (line 4), which is the set of

all program locationsP
0
(including P) that are between the preemption point under analysis, i.e., P,

and the program point where memory blockmy;i is �rst accessed after P, i.e.,FAP
my;i

. Algorithm 8.2

then computes the indirect effect of preemption for all program locationsP
0
2 P1 using the exact

same steps as used in Algorithm 8.1. Note that the additional conditionmx;i =2 Indmul;P
my;i ensures

that every memory blockmx;i that is a L1-UCB at any program point between P andFAP
my;i

and is

evicted from the L1 cache due to preemption, will only contribute once to the indirect effect of

preemption of memory blockmy;i . This is mainly because, if an access to a memory blockmx;i at

any program location inP1 results in a L1 cache miss then,mx;i will be reloaded in the L1 cache

from the L2 cache or from the main memory. In both cases,mx;i will become the youngest element

in the L1 and L2 caches and therefore can not cause any more indirect effect of preemption on

memory blockmy;i that has higher LRU-age in the L2 cache thanmx;i .

Finally, the indirect effect of preemption that can be suffered by a memory blockmy;i 2 M i due

to one or more preemptions by a higher priority taskt j 2 hp(i) is bounded byjIndmul;P
my;i j, where

Indmul;P
my;i is a set that contains all memory blocks that can cause an indirect effect of preemption on

my;i even in the presence of multiple preemptions.

156 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Algorithm 8.2 Calculating the indirect effect of preemption that can be suffered by all memory
blocks used by taskt i when considering multiple preemptions by higher priority tasks in2 hp(i)
w.r.t preemption point P

Output: Upper bound on indirect effect of preemption suffered by everymy;i 2 M i w.r.t a pre-
emption point P, when considering multiple preemptions by a higher priority taskt j 2 hp(i), i.e.,

jIndmul;P
my;i j.

1: for 8my;i 2 M i nmx;i do

2: Indmul;P
my;i := /0

3: FAP
my;i

:= GetFirstAccess(my;i ;P)

4: P1 := GetProgamPoints(P;FAP
my;i

)

5: for 8P
0
2 P1 do

6: for 8mx;i 2 UCBP
0

i;1 do

7: if (CUP
0
;1

mx;i + j
S

8h2hep(j) ECB
Smx;i ;1

h j > W1) ^ (mx;i =2 Indmul;P
my;i) then

8: FAP
0

mx;i
:= GetFirstAccess(mx;i ;P

0
)

9: if ((MustAge(my;i ;FAP
0

mx;i
;2) 6= ¥) ^ (Smy;i ;2 == Smx;i ;2) ^

((MustAge(mx;i ;FAP
0

mx;i
;2) = ¥) _ (MustAge(mx;i ;FAP

0

mx;i
;2) > MustAge(my;i ;FAP

0

mx;i
;2)))) then

10: Indmul;P
my;i := Indmul;P

my;i [mx;i ;
11: end if
12: end if
13: end for
14: end for
15: end for

8.5 Improved CRPD Analysis for Multilevel caches

In this section, we will demonstrate how the notion of multilevel UCBs, i.e., L1-UCBs and L2-

UCBs, can be used to compute the CRPD for multilevel non-inclusive caches.

8.5.1 CRPD due to Eviction of L1-UCBs

L1-UCBs of a taskt i can be evicted from the L1 cache only due to a direct preemption by any

higher priority taskt j 2 hp(i). This is mainly because the L1 cache is always accessed by the tasks

so the amount of intra-task cache interference that can be suffered by any memory block stored

in the L1 cache will not be changed due to preemptions. However, when analyzing the L2 cache

con�icts to a L1-UCBsmx;i of taskt i both the direct effect of preemption, i.e., ECBs of higher

priority tasks, and the indirect effect of preemption suffered bymx;i must be considered. This is

mainly because the indirect effect of preemption is only suffered by memory blocks that may be

accessed from the L2 cache only during the preempted execution of tasks.

To compute the CRPD due to eviction of L1-UCBs of taskt i as a result of a preemption by

any higher priority taskt j 2 hp(i) at any arbitrary program point P, we use a similar approach as

presented in (Chattopadhyay and Roychoudhury, 2014) (i.e., Eq. (8.4) and (8.6)). L1-UCBs of

taskt i can be evicted from the L1 cache because of a preemption but may still be available in the

L2 cache. We usegP;L1
i; j to denote the CRPD cost due to all those L1-UCBs of taskt i , wheregP;L1

i; j

8.5 Improved CRPD Analysis for Multilevel caches 157

is computed as follows:

gP;L1
i; j = dL1 �

�
� � mx;i jmx;i 2 UCBP

i;1 ^ CUP;1
mx;i

+ j
[

h2hep(j)

ECB
Smx;i ;1

h j � W1^

CUP;2
mx;i

+ j
[

h2hep(j)

ECB
Smx;i ;2

h j + Indmul;P
mx;i

< W2
	 �

�
(8.13)

Note that when computing the L2 cache con�icts to a memory blockmx;i 2 UCBP
1;i , Equation (8.13)

also considers the indirect effect of preemption that may be suffered bymx;i , i.e.,Indmul;P
mx;i , which is

computed using Algorithm. 8.2. The union of set of ECBs of all tasks in hep(j) is used to account

for nested/multiple preemptions of taskt i by tasks in hp(i).

Similarly, some L1-UCBs of taskt i might be evicted from both L1 and L2 caches due to

preemptions. We usegP;L12
i; j to denote the CRPD cost due to all those L1-UCBs of taskt i , where

gP;L12
i; j is computed as follows:

gP;L12
i; j = (dL1 + dL2) �

�
� � mx;i jmx;i 2 UCBP

i;1 ^ CUP;1
mx;i

+ j
[

h2hep(j)

ECB
Smx;i ;1

h j � W1^

CUP;2
mx;i

+ j
[

h2hep(j)

ECB
Smx;i ;2

h j + Indmul;P
mx;i

� W2
	 �

�
(8.14)

8.5.2 CRPD due to Eviction of L2-UCBs

All memory blocks used by taskt i with one or more memory references categorized as L2 cache

hits in the absence of preemption, i.e., L2-UCBs oft i (see De�nition 8.2), may be evicted from the

L2 cache; (i) directly due to preemptions by the preempting tasks in hp(i) or (ii) due to the indirect

effect of preemption or (iii) due to a combination of both (i) and (ii). However, before presenting

our analysis to compute the CRPD due to evictions of L2-UCBs of tasks, we highlight a source

of pessimism in the existing analysis (Chattopadhyay and Roychoudhury, 2014). The pessimism

lies in the use of Equation (8.8) and (8.9) that are used by the analysis in (Chattopadhyay and

Roychoudhury, 2014) to compute the CRPD due to memory references that were L2 cache hits

in the absence of preemption but may become L2 cache misses after the preemption. When cal-

culating the CRPD due to a memory reference, e.g., to a memory blockmy;i of taskt i , that was

a L2 cache hit in the absence of preemption but may result in a L2 cache miss after preemption,

the analysis in (Chattopadhyay and Roychoudhury, 2014) assume that each reference to memory

block my;i after preemption may suffer up to two L2 misses after preemption, i.e., by using both

Equation (8.8) and (8.9) to check for the eviction of same memory reference. However, this is not

true, as we demonstrate using the following example.

Example 8.5. We calculate the CRPD costs ICRTP;1
i; j and ICRTP;2

i; j , i.e., using Equation(8.8)

and (8.9), for the example scenario shown in Figure 8.3. We have W1 = 2 and W2 = 3 and we

assume that all memory blocks used by taskt i , i.e., A,B,C,D and m, map to the same L1/L2 cache

set. We can see in Figure 8.3 that three references to memory block m are L2 cache hits in the

158 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

non-preempted execution of taskt i , i.e., at program points r1, r2 and r3. Therefore, the set of pro-

gram locations with L2 cache hits w.r.t to a program point P, i.e.,P2, is given byP2 = f r1; r2; r3g.

The Must-age of m at r1, r2 and r3 is computed to be MustAge(m;r1;2) = MustAge(m;r2;2) =

MustAge(m;r3;2) = 2. The number of ECBs of the preempting task, i.e.,t j , that map the same L2

cache set as m are given byjECBSm;2
j j = 2. Using Equation(8.2) to calculate the indirect effect of

preemption suffered by m at r1, r2 and r3 we getjIDr1;P
m j = 0 andjIDr2;P

m j = jIDr3;P
m j = 1. Moreover,

since we haveS1 � S2 and W1 � W2 we set IL2ind = 1 in Equation(8.9). Now using all these values

in Equation(8.8), we have MustAge(m;r;2)+ jECBSm;2
j j + jIDr;P

m j > W2 for every r2 P2. Hence, the

resulting value of ICRTP;1
i; j will be 3� dL2. Similarly, using the values of Must-age and the indirect

effect of preemption of m in Equation(8.9)we have MustAge(m;r;2) + jIDr;P
m j > W2 for r2 and r3

in P2. Therefore, the resulting value of ICRTP;2 will be 2� dL2. Consequently, the total CRPD

cost due to L2 cache misses resulting from preemption is calculated to be ICRTP;1
i; j + ICRTP;2

i; j =

(3+ 2) � dL2 = 5� dL2. However, we can see from the preempted execution scenario shown in

Figure 8.3 that this bound on the CRPD is very pessimistic and the actual CRPD cost due to all

references to memory block m after preemption is only2� dL2.

Figure 8.3: Example scenario to demonstrate the pessimism of (Chattopadhyay and Roychoud-
hury, 2014) when calculating the CRPD due to L2 cache misses resulting from preemption.

There are two main reasons why the analysis of (Chattopadhyay and Roychoudhury, 2014)

overestimates the CRPD due to L2 cache misses resulting from preemptions; (1) the analysis does

not differentiate between memory references that may be accessed inside a loop and the memory

references that are not in a loop, i.e., the same memory reference may lead to more than one cache

miss only if it is accessed in a loop, and (2) the analysis assume that all memory references that

were L2 cache hit during non-preempted execution of a task may be impacted both directly and

indirectly due to preemptions, i.e., it evaluates Equation (8.8) and (8.9) for all program locations

with L2 cache hits. Although, it is true that multiple references to the same memory block (e.g.,

8.5 Improved CRPD Analysis for Multilevel caches 159

memory blockm in Figure 8.3) may result in a L2 cache hit, not all those references can be

impacted directly/indirectly due to preemptions.

To reduce the pessimism in the existing analysis (Chattopadhyay and Roychoudhury, 2014),

we will focus on bounding the number of references to memory blocks that may be impacted

directly/indirectly due to preemption. We start by computing the set of L2-UCBs of a taskt i w.r.t

a program point P, i.e.,UCBP
i;2. UCBP

i;2 is the set of memory blocks that have at least one reference

categorized as a L2 cache hit, starting from the program point under analysis, i.e., P, until the end

pointeof taskt i . Formally,

UCBP
i;2 =

[

8r2P2

UCBr
i;2 (8.15)

whereP2 is the set of all program locations between P andewith L2 cache hits.

Let UCBP
i;2 = f m1;i ;m2;i ;m3;i ; :::;mn;ig be the result of Equation (8.15), then for every memory

block my;i in UCBP
i;2 we de�ne a setRP

my;i
that contains all program locations after the preemption

point P where a reference tomy;i is a L2 cache hit, i.e.,RP
my;i

= f R1;P
my;i ;R

2;P
my;i ; :::;R

k;P
my;i g. Effectively,

any memory blockmy;i can have up tok accesses classi�ed as L2 cache hits w.r.t a program point

P. The rationale of de�ningRP
my;i

is to investigate how many references to memory blockmy;i

can be impacted directly or indirectly due to preemptions and therefore may contribute to CRPD.

According to the CRPD analysis in (Chattopadhyay and Roychoudhury, 2014) all references to

a memory blockmy;i 2 UCBP
i;2 of task t i can be impacted both directly and indirectly due to a

preemption by a higher priority taskt j 2 hp(i) at a program point P. However, this is not true,

in fact for any memory blockmy;i 2 UCBP
i;2 it is only the �rst reference tomy;i after preemption,

i.e., atR1;P
my;i , that can be directly impacted due to a preemption. All subsequent references tomy;i

after program pointR1;P
my;i , i.e., atf R2;P

my;i ; :::;R
k;P
my;i g, can only be impacted due to the indirect effect of

preemption.

Lemma 8.2. For any memory block my;i 2 UCBP
i;2, it is only the �rst reference to my;i after the

preemption point P, i.e., at program point R1;P
my;i , that can be directly impacted due to preemption.

All subsequent references to my;i after R1;P
my;i , i.e., atf R2;P

my;i ; :::;R
k;P
my;i g, can only be impacted due to

the indirect effect of preemption suffered by my;i .

Proof. By de�nition if my;i 2 UCBP
i;2 then the reference to memory blockmy;i at program point

R1;P
my;i will be a L2 cache hit during the non-preempted execution of taskt i , i.e., after an access to

my;i atR1;P
my;i , my;i will be the youngest element in both L1 and L2 caches. Now, after the preemption

at program point P, the access tomy;i at R1;P
my;i may result in a L2 cache hit/miss. If the reference

to my;i at R1;P
my;i is a L2 cache hit after preemption, the sate of the L1 and L2 caches w.r.tmy;i will

remain the same as in case of the non-preempted execution, i.e.,my;i will be the youngest element

in both L1 and L2 caches afterR1;P
my;i . Similarly, even when the reference tomy;i at R1;P

my;i results in

a L2 cache miss after preemption,my;i will be reloaded from the main memory into both L1 and

L2 caches atR1;P
my;i . This will again makemy;i the youngest element in both L1 and L2 caches after

program pointR1;P
my;i . Therefore, the direct impact of preemption onmy;i will be neutralized after

a L2 cache hit/miss atR1;P
my;i and all subsequent references tomy;i can only be impacted due to the

indirect effect of preemption suffered bymy;i .

160 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Using Lemma 8.2 we can compute the CRPD cost taskt i may endure due to the eviction

of one of it's L2-UCB, e.g.,my;i 2 UCBP
i;2, resulting from a preemption by any higher priority

task t j 2 hp(i) at a program point P. We use two equations to compute that CRPD cost, i.e.,

Equation (8.16) and (8.17). Equation (8.16) computes the CRPD cost due to the �rst reference to

memory blockmy;i 2 UCBP
i;2 after the preemption point P, i.e.,

8
<

:
0 if MustAge(my;i ;R

1;P
my;i ;2)+ j

S
h2hep(j) ECB

Smy;i ;2

h j + jIndmul;P
my;i j < W2

dL2 otherwise.
(8.16)

Similarly, the CRPD cost due to all subsequent reference to memory blockmy;i 2 UCBP
i;2 after the

program pointR1;P
my;i can be calculated as follows

å
8r2RP

my;inR1;P
my;i

8
<

:
0 if MustAge(my;i ; r;2)+ jIndmul;P

my;i j < W2

dL2 otherwise.
(8.17)

It is straightforward to see that if any reference to a memory blockmy;i 2 UCBP
i;2 is not in a

loop, it can contribute only once to the CRPD. However, the problem emerges when one or more

references to memory blockmy;i are inside a loop, in which case we need to bound how many

times each reference tomy;i can contribute to the CRPD.

Lemma 8.3. Any reference to a memory block my;i 2 UCBP
i;2 which is inside a loop, e.g., Ref(my;i),

can contribute at most two L2 cache misses to the CRPD suffered by taskt i due to preemption at

a program point P.

Proof. Any reference to a memory blockmy;i 2 UCBP
i;2 which is inside a loop, e.g.,Ref(my;i), can

be classi�ed as a L2 cache hit in the absence of preemption w.r.t a program point P under two

conditions; (1) if there are fewer thanW2 con�icting L2 memory blocks accessed between two

references tomy;i w.r.t to program point P and (2) if at leastW2 con�icting L2 memory blocks are

accessed between two access tomy;i w.r.t program point P, however there exist at least one memory

reference which is a L1 cache hit, i.e., it does not generate an L2 cache con�ict tomy;i . If (1) is true,

then the referenceRef(my;i) can only become a L2 cache miss after preemption ifmy;i is directly

evicted due to preemption at P andRef(my;i) can suffer at most one L2 miss after preemption. Also,

if (2) holds then the referenceRef(my;i) may also become a L2 miss after preemption due to the

indirect effect of preemption caused by memory references that were L1 cache hits in the absence

of preemption but may access the L2 after preemption. However, it is proved in (Chattopadhyay

and Roychoudhury, 2014) that if the cache con�guration is such thatjS1j � j S2j andW1 � W2, then

any memory reference that was a L2 cache hit in the absence of preemption, e.g.,Ref(my;i), can

lead to at most one L2 miss due to the indirect effect after preemption. Knowing thatRef(my;i) is

in a loop so both (1) and (2) can be true along different paths reachable toRef(my;i). Therefore,

we can deduce that if referenceRef(my;i) is inside a loop, it may cause up to two L2 cache misses

after preemption. The lemma follows.

8.5 Improved CRPD Analysis for Multilevel caches 161

We also know from Lemma 8.2 that after a preemption at a program point P, it is only the �rst

reference to memory blockmy;i , i.e., at program pointR1;P
my;i , that can be directly impacted due to

preemption. This leads to the following Lemma

Lemma 8.4. Any reference to a memory block my;i 2 UCBP
i;2 which is inside a loop, i.e., Ref(my;i),

can cause up to two L2 cache misses after a preemption at any program point P only when

Ref(my;i) is the �rst reference to my;i after P, i.e., at R1;P
my;i .

Proof. We prove this lemma by contradiction. Let us assume there exist a memory reference to

my;i , i.e., R̂ef(my;i), which is inside a loop and can cause up to two L2 cache misses after the

preemption at P butR̂ef(my;i) is not the �rst reference tomy;i after the preemption point P, i.e.,

R̂ef(my;i) is performed atRx;P
my;i 6= R1;P

my;i .

For R̂ef(my;i) to cause two L2 cache misses after the preemption at P, there must be at least

two paths reachable tôRef(my;i) after P wheremy;i will be evicted either directly or indirectly.

However, we know from Lemma 8.2 that it is only the �rst reference ofmy;i after preemption,

i.e., atR1;P
my;i , that can cause an L2 cache miss directly due to a preemption at P and all subsequent

references tomy;i after the program pointR1;P
my;i can only be evicted from the L2 cache due to the

indirect effect of preemption. Moreover, it is proved in (Chattopadhyay and Roychoudhury, 2014)

that any reference to a memory blockmy;i can lead to at most one L2 miss solely due to the indirect

effect of preemption. Therefore, if̂Ref(my;i) is not the �rst reference tomy;i after preemption it can

cause at most one L2 cache miss due to the indirect effect of preemption suffered bymy;i . Hence,

we reach a contradiction.

Finally, by using Lemmas 8.2, 8.3 and 8.4 we can bound the maximum number of times any

memory blockmy;i 2 UCBP
i;2 can contribute to the CRPD suffered by taskt i due to a preemption

by any higher priority taskt j 2 hp(i) at an arbitrary program point P.

Lemma 8.5. The contribution of a memory block my;i 2 UCBP
i;2 to the CRPD suffered by taskt i

due to a preemption by any higher priority taskt j 2 hp(i) at an arbitrary program point P is upper

bounded bymin(k; jIndmul;P
my;i j + 1) � dL2. Where k is the cardinality of the setRP

my;i
.

Proof. We prove that for a memory blockmy;i 2 UCBP
i;2 bothk andIndmul;P

my;i + 1 are upper bounds

on the number of additional L2 cache misses that can be generated due to preemption at a program

point P. Therefore, min(k; jIndmul;P
my;i j + 1) � dL2 upper bounds the contribution ofmy;i to the CRPD

suffered by taskt i at a program point P.

If memory blockmy;i hask memory references classi�ed as L2 cache hits in the absence of

preemption after the program point P, then, in the worst-case allk references tomy;i may result in

L2 cache misses due to preemption at P. Considering that the penalty of a single L2 cache miss

is dL2, therefore, the productk � dL2 upper bounds the contribution ofmy;i to the CRPD due to

preemption at a program point P.

From Lemma 8.2, we know that only the �rst reference to memory blockmy;i after preemption

may result in a L2 cache miss directly due to preemption and all subsequent reference tomy;i after

the �rst reference can result in a L2 cache miss only due to indirect effect of preemption. We

162 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

also know thatjIndmul;P
my;i j is an upper bound on the number of memory blocks that can cause an

indirect effect of preemption onmy;i after a preemption at P. So, the worst-case scenario is when

each memory block inIndmul;P
my;i is accessed between every two references tomy;i and every access

to a memory block inIndmul;P
my;i leads to a L2 cache miss formy;i . Consequently,my;i can suffer up

to jIndmul;P
my;i j L2 cache misses due to the indirect effect of preemption caused by memory blocks in

Indmul;P
my;i . Moreover, from Lemma 8.4, we know that if the �rst reference to memory blockmy;i after

preemption is in a loop we can have one additional L2 cache miss after preemption. Consequently,

a total ofjIndmul;P
my;i j + 1 L2 cache misses can be generated for memory blockmy;i 2 UCBP

i;2 after the

preemption at P. Therefore,(jIndP
my;i

j + 1) � dL2 is also an upper bound on the contribution ofmy;i

to the CRPD suffered by taskt i due to a preemption at program point P. The lemma follows.

8.5.2.1 CRPD Computation

We now show how to compute the total CRPD cost that taskt i may bear due to all its L2-UCBs

in UCBP
i;2 that may be evicted from the L2 cache due a preemption at program point P by any

higher priority taskt j 2 hp(i). We use Algorithm 8.3 to calculate that CRPD cost. The working of

Algorithm 8.3 is explained as follows: The output of Algorithm 8.3 is the maximum CRPD cost,

i.e., denoted bygP;L2
i; j , that can be suffered by taskt i due to eviction of all its L2-UCBs inUCBP

i;2.

gP;L2
i; j is computed by �rst computing the CRPD cost due to every memory blockmy;i 2 UCBP

i;2,

i.e., denoted bygP;L2
my;i ; j . For every L2-UCBmy;i 2 UCBP

i;2 (external loop line 4 to 27), the algorithm

starts by extracting the L2 cache hit locations using the functionGetHitLocations(:) (line 5). The

output of the functionGetHitLocations(:) is the setRP
my;i

, i.e.,RP
my;i

= f R1;P
my;i ;R

1;P
my;i ; :::;R

k;P
my;i g. The

algorithm then checks if the �rst reference to memory blockmy;i after preemption point P, i.e., at

R1;P
my;i , is in a loop. IfR1;P

my;i is in a loop, reference tomy;i at R1;P
my;i may result in up to two L2 cache

misses (see Lemmas 8.3 and 8.4). So, the algorithm checks for the eviction ofmy;i from the L2

cache at program pointR1;P
my;i using both Equation (8.16) and (8.17) (lines 6 to 13). Similarly, if

R1;P
my;i is not in a loop, reference tomy;i at R1;P

my;i can only be evicted from the L2 cache due to the

combination of ECBs of the preempting tasks in hp(i) and the indirect effect of preemption (i.e.,

lines 14 to 16). From Lemma 8.2, we know that all subsequent reference tomy;i after R1;P
my;i , i.e.,

at f R2;P
my;i ; :::;R

k;P
my;i g, may only result in a L2 cache miss due to the indirect effect of preemption

suffered bymy;i . Therefore, the algorithm checks for the eviction ofmy;i at all references except

R1;P
my;i using only Equation (8.17) (lines 19 to 21). Furthermore, from Lemma 8.5, we know that

the maximum CRPD taskt i can suffer due to any L2-UCBmy;i 2 UCBP
i;2 is upper bounded by

min(jRP
my;i

j; jIndmul;P
my;i j + 1) � dL2, which is considered in the last construct of Algorithm 8.3 (i.e.,

lines 23 and 24). Finally, the CRPD cost suffered by taskt i due to any L2-UCBmy;i 2 UCBP
i;2 is

given bygP;L2
my;i ; j and the total CRPD cost taskt i may suffer due to eviction of all of its L2-UCBs in

UCBP
i;2 is summed up ingP;L2

i; j .

8.5 Improved CRPD Analysis for Multilevel caches 163

Algorithm 8.3 Algorithm to calculate the total CRPD cost due to eviction of L2-UCBs of taskt i

w.r.t a preemption point P

Output: The total CRPD cost, i.e., denoted bygP;L2
i; j , that can be suffered by taskt i due to the

eviction of all its L2-UCBs inUCBP
i;2, in case of a preemption at program point P by any higher

priority taskt j 2 hp(i).

1: gP;L2
i; j := 0

2: for 8my;i 2 UCBP
i;2 do

3: gP;L2
my;i ; j := 0

4: end for
5: for 8my;i 2 UCBP

i;2 do
6: RP

my;i
= GetHitLocations(my;i ;P)

7: if R1;P
my;i is in loopthen

8: if MustAge(my;i ;R
1;P
my;i ;2)+ j

S
h2hep(j) ECB

Smy;i ;2

h j + jIndmul;P
my;i j � W2 then

9: gP;L2
my;i ; j := gP;L2

my;i ; j + dL2

10: end if
11: if MustAge(my;i ;R

1;P
my;i ;2)+ jIndmul;P

my;i j � W2 then
12: gP;L2

my;i ; j := gP;L2
my;i ; j + dL2

13: end if
14: else
15: if MustAge(my;i ;R

1;P
my;i ;2)+ j

S
h2hep(j) ECB

Smy;i ;2

h j + jIndmul;P
my;i j � W2 then

16: gP;L2
my;i ; j := gP;L2

my;i ; j + dL2

17: end if
18: end if
19: for 8r 2 RP

my;i
nR1;P

my;i do

20: if MustAge(my;i ; r;2)+ jIndmul;P
my;i j � W2 then

21: gP;L2
my;i ; j := gP;L2

my;i ; j + dL2

22: end if
23: end for
24: if gP;L2

my;i ; j > min(jRP
my;i

j; jIndmul;P
my;i j + 1) � dL2 then

25: gP;L2
my;i ; j := min(jRP

my;i
j; jIndmul;P

my;i j + 1) � dL2

26: end if
27: gP;L2

i; j := gP;L2
i; j + gP;L2

my;i ; j
28: end for

8.5.3 Computation of total CRPD and WCRT Analysis

The sum of Equation (8.13) and (8.14) upper bounds the CRPD any taskt i may suffer due to evic-

tions of its L1-UCBs by any higher priority taskt j 2 hp(i). Similarly, Algorithm 8.3 can be used

to upper bound the CRPD oft i because of the eviction of its L2-UCBs by taskt j . Therefore, an

upper bound on the CRPD of taskt i due to a preemption by taskt j can be obtained by maximizing

Equation (8.13), (8.14) and Algorithm 8.3 over all program points int i , i.e.,

gH
i; j = max

P2P
(gP;L1

i; j + gP;L12
i; j + gP;L2

i; j) (8.18)

164 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

However, we know that any higher priority taskt j 2 hp(i) can preempt any taskt k 2 aff(i; j) during

the response time of taskt i . Therefore, to ensure that the maximum CRPD cost is considered for

a preemption of taskt i by taskt j 2 hp(i), we maximize Equation (8.18) over all tasks in aff(i; j),

i.e.,

gH;max
i; j = max

8k2aff(i; j)
gH

i; j (8.19)

Equation (8.19) is safe since it accounts for both nested preemptions (i.e.,t i preempted byt k

which is preempted byt j) and consecutive preemptions (oft i by t k and t j). The CRPD cost

of a direct preemption of taskt i by taskt j 2 hp(i) is accounted for in the termgH;max
i; j , whereas

the indirect CRPD cost taskt j may generate due to preemption of any taskt k 2 aff(i; j) during

the response time oft i (i.e., a nested preemption) will be accounted for in the termsgH;max
i;k , i.e.,

due to the use of union of ECBs of all tasks hep(k) when computinggH
i;k. Finally, gH;max

i; j can be

incorporated into computation of WCRTRi of a taskt i as follows

Ri = Ci + å
8 j2hp(i)

�
Ri

Tj

�
�

�
Cj + gH;max

i; j

�
(8.20)

Note that Equation (8.20) is recursive. However, a solution can be found using simple �xed-point

iteration onRi by initializing Ri to Ci . The iteration stops as soon asRi converges orRi > Di , in

which case the task is deemed unschedulable.

8.6 Experimental Evaluation

In this section, we will explain how our proposed WCRT analysis that provides a tighter CRPD

bound for non-inclusive multilevel cache compares against the state-of-the-art analysis in (Chat-

topadhyay and Roychoudhury, 2014). First, we explain how the input quantities required for the

analysis in (Chattopadhyay and Roychoudhury, 2014) and our proposed analysis can be computed.

We then perform experiments by varying different parameters to compares the performance of both

analyses.

8.6.1 Deriving Parameters for the Analyses

To derive task parameters needed to compare the CRPD analysis of (Chattopadhyay and Roy-

choudhury, 2014) against our proposed analysis we have used the Heptane (Hardy et al., 2017)

static WCET analysis tool. Heptane is an open source WCET analysis tool that supports cache

hierarchies. Speci�cally, it supports multilevel non-inclusive caches and implements the WCET

analysis presented in (Hardy and Puaut, 2008). However, currently the tool only output the WCET

of the analyzed benchmark and few cache statistics such as the total number of references to each

cache level and the number of cache hits/misses for each cache level. Therefore, we have modi�ed

Heptane to compute the parameters needed for our analysis.

We have added a new module namedMultiCRPDAnalysis to Heptane that enables us to

compute different parameters needed for our multilevel CRPD analysis. The set of L1- and L2-

8.6 Experimental Evaluation 165

UCBs w.r.t a benchmark are computed using the Must-cache analysis along with a backward

�ow analysis on the control �ow graph. The backward �ow analysis computes the abstract cache

state at the exit of a basic block by using the join operation on all the abstract cache states at

the entry of its successors. For every memory blockmx;i used by a taskt i the analysis starts

by assumingCUP
mx;i

= (¥ ;¥). Then for each program point P, the analysis checks the accessed

memory block and update the abstract cache state using the Must-update and Must-join operations

de�ned in (Hardy and Puaut, 2008). A memory blockmx;i is considered a L1-UCB at program

point P if it satis�es Equation (8.11). Similarly, all memory blocks that satisfy Equation (8.12)

w.r.t a program point P are considered L2-UCBs at that program point. Note that our analysis to

derive the set of L1-UCBs for multilevel caches is similar to the UCB analysis in (Chattopadhyay

and Roychoudhury, 2014) however, we additionally derive the set of L2-UCBs w.r.t every program

point P. The set of ECBs of taskt i are computed using the May-cache analysis that determines

the set of all memory blocks used by taskt i at each cache level. To compute the indirect effect of

preemption, we use a forward �ow analysis along with the Must-cache analysis (Theiling et al.,

2000). Since, the indirect effect of preemption is caused by memory blocks that were L1 cache

hits in the absence of preemption but may be accessed from the L2 cache or main memory after

preemption, the forward �ow analysis (along with Must-case analysis) upper bounds the set of

memory blocks that have one or more reference categorized as L1 cache hits in the absence of

preemption and can cause the indirect effect of preemption on any memory blockmx;i of task

t i . For the analysis in (Chattopadhyay and Roychoudhury, 2014), the forward �ow analysis is

performed starting from the entry point of the program and ending at program pointr wheremx;i

may be accessed. For our analysis, the forward �ow analysis is performed for each pair of program

locations between two access to memory blockmx;i . In both cases, the largest set of memory

blocks is used when computing the indirect effect of preemption on any memory blockmx;i . Since

Heptane allows to analyze each cache level, other parameters needed for the implementation of

Equation (8.2) and Algorithm 8.2 are extracted using the Must-cache analysis. Similarly, the

cfglib used by Heptane allows to compute loop bound for each basic block. This information is

then used in Algorithm 8.3 to compute the CRPD due to the eviction of L2-UCBs.

8.6.2 Experiments

To evaluate the performance of our proposed CRPD analysis against the existing analysis, we

conducted different experiments with various parameter settings. All experiments were performed

using the Mälardalen benchmark suite (Gustafsson et al., 2010). For every benchmark, parameters

such as the WCET, set of L1- and L2-UCBs, set of L1- and L2-ECBs, maximum LRU-ages of

memory blocks, total number of references, number of references in loops etc., were extracted

using Heptane. The target architecture was MIPS R2000/R3000 with a two level instruction cache

hierarchy such that, L1 cache is 2-way set-associative with 32 sets and line size of 32-bytes, and

L2 cache is 4-way set-associative with 64 sets and line size of 64-bytes. The L1 cache miss

penalty was 10 processor cycles, i.e.,dL1 = 10, and the L2 cache miss penalty was 100 processor

cycles. Table 8.2 shows some benchmark parameters used in the experiments. Also, some task

166 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Table 8.2: Benchmarks parameters from the Mälardalen Benchmark Suite (Gustafsson et al., 2010)
used during the experimental evaluation

Name Ci L1-ECBs L2-ECBs L1-UCBs L2-UCBs
bs 4020 11 6 11 2

bsort100 5811344 20 10 19 3
crc 1782419 43 22 43 10

expint 647343 19 11 18 3
�bcall 14023 8 4 8 3

insertsort 52245 16 8 16 4
lcdnum 8640 12 6 12 1
matmult 1795585 28 14 28 3

ns 129598 20 10 20 5
qurt 111554 53 33 53 24
�r 96215 22 11 22 4

prime 248299 17 9 17 7
select 145160 26 14 26 3
sqrt 20159 26 13 25 5

minmax 4435 17 9 16 6
ud 145170 75 38 74 6

minver 58155 167 84 167 58
fft 1252363 141 71 140 13

statemate 229575 261 133 254 37
fdct 101944 106 53 106 2

jfdctint 100331 96 48 96 2
ludcmp 341583 98 49 98 8
nsichneu 515015 1377 512 1377 422

set parameters were randomly generated as follows. The default number of tasks in each task set

were 10 with task utilization generated using UUnifast (Bini and Buttazzo, 2005). Each task was

randomly assigned values of one of the benchmark in Table 8.2. Task deadlines were implicit with

priorities assigned in a deadline monotonic order. Task periods were set such thatTi = Ci=Ui .

We performed several experiments by varying the total task set utilizations, number of tasks

per task set, L1 cache miss penalty, L2 cache miss penalty, number sets in the L1 cache, number

of sets in the L2 cache, number of ways in the L1 cache and the number of ways in the L2 cache.

A WCRT based schedulability analysis is performed using the same task set for all the analyzed

approaches.

8.6 Experimental Evaluation 167

8.6.2.1 Task set Utilizations

In this experiment, we varied the total task set utilization from 0.025 to 1 in steps of 0.025 and

randomly generated 1000 task sets per utilization point. Figure 8.4 shows the number task sets

that were deemed schedulable using the “SoA Multilevel CRPD analysis", i.e., the CRPD analysis

of (Chattopadhyay and Roychoudhury, 2014), and our “Proposed Multilevel CRPD analysis". The

green line marked as “No Preemption cost" provides an upper bound on the number of task sets

that were deemed schedulable without considering any CRPD cost. For clarity, we only show a

cropped version of the plot in Figure 8.4 starting from a utilization of 0.6. All approaches pro-

duce identical results below this point. Figure 8.4 shows that our proposed approach performs

Figure 8.4: Number of task set deemed schedulable by varying total task set utilization

signi�cantly better in comparison to the SoA analysis. The proposed analysis dominates the SoA

analysis mainly due to two reasons: (i) it provides a tighter bound on the indirect effect of preemp-

tion that can be suffered by UCBs of tasks and (ii) it accurately estimates the CRPD suffered by

tasks due to memory blocks that were L2 cache hits in the absence of preemption (i.e., L2-UCBs),

but may suffer L2 cache misses after preemption. Although, the major improvement in the CRPD

computation results from the treatment of L2 cache hits, however, we can see that the number

of L2-UCBs of tasks (see Table 8.2) is very small in comparison to the number of L1-UCBs of

tasks. But, still our proposed analysis results in improving task set schedulability by up to 20%

percentage points over the existing analysis.

168 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

8.6.2.2 Number of Tasks

To evaluate how total number of tasks in a task set may impact the analyzed approaches, we

performed an experiment by varying the total number of tasks in a task set between 5 to 25 in

steps of 5. For all other parameters default values were considered. Since, we varied both the total

task set utilizations and the number of tasks, we have used the weighted schedulability measure

(see Equation (4.20)) to generate the plot shown in Figure 8.5. Intuitively, increasing the number of

tasks tends to decrease task set schedulability because of an increase in the number of preemptions

(which leads to an increase in the overall CRPD cost). The same can be con�rmed from the plot

Figure 8.5: Wighted schedulability measure by varying the total number of tasks in a task set

shown in Figure 8.5. However, we can also see that our proposed CRPD analysis always dominates

the SoA CRPD analysis. In fact, for higher number of tasks per task set (e.g., for 20 or 25 tasks per

task set) the difference between the weighted schedulability of both approaches tends to increase.

This is due to an excessive pessimism in the SoA CRPD analysis which may count the evictions

of the same memory blocks several times in the CRPD cost. This pessimism is reduced by our

analysis by bounding the number of times each memory block can contribute to the CRPD cost.

8.6.2.3 Number of Ways in the L1 Cache (W1)

In this experiment, we varied the L1 cache associativity, i.e., the number of ways in the L1 cache

W1, and evaluated its impact on the performance of all the analyzed approaches. All other param-

eters were set to their default values. However, since we focus on a cache con�guration where L1

cache associativity is always less than or equal to the L2 cache associativity, i.e.,W1 � W2. There-

8.6 Experimental Evaluation 169

fore, for this experiment, we also �xed the L2 cache associativity to 32, i.e.,W2 = 32. We then

varied the number of ways in the L1 cache between 2 to 32 and plotted the weighted schedulability

for both approaches as shown in Figure 8.6. Note that increasing the number of ways in the L1

cache will also increase the size of the L1 cache.

Figure 8.6: Weighted schedulability measure by varying number of ways in the L1 cache. The
number of ways in the L2 cache were set to 32, i.e.,W2 = 32

We can see in Figure 8.6 that by varying the number of ways in the L1 cache (i.e., L1 cache

size), both approaches produce similar results with the proposed approach marginally improving

task set schedulability. This is mainly because, for both approaches the CRPD analysis for the L1

cache is very similar except for the computation of the indirect effect of preemption. Moreover,

with the number of ways in the L2 cache set to 32, the L2 cache size becomes relatively larger w.r.t

the analyzed benchmarks, which leads to almost no CRPD due to the L2 cache. Therefore, we

observe that increasing the number of ways in the L1 cache has a similar effect on both analyses.

8.6.2.4 Number of Ways in the L2 Cache (W2)

We also performed an experiment by varying the number of ways in the L2 cache, i.e.,W2, between

2 to 32 and evaluated their impact on task set schedulability. Default values were used for all the

other parameters. The resulting plot is shown in Figure 8.7. Note that increasing the number of

ways in the L2 cache also increases its size.

Figure 8.7 shows that when varying the number of ways in the L2 cache (i.e., increasing

the L2 cache size), the difference between the performance of both analyses is very clear, with

the proposed analysis clearly outperforming the existing analysis. This is because our analysis

170 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

Figure 8.7: Weighted schedulability measure by varying number of ways in the L2 cache

provides much tighter bound on the L2 CRPD cost than the existing analysis. We can see in

Figure 8.7 that when the L2 cache is smaller, i.e., the potential CRPD due to the L2 cache is higher,

our approach performs signi�cantly better than the existing analysis. However, by increasing the

number of ways in the L2 cache, the difference between the performance of both analysis tends to

reduce. This is mainly due to an overall reduction in the L2 CRPD due to a larger L2 cache.

8.6.2.5 Number of Sets in the L1 Cache (jS1j)

In this experiment, we varied the number of sets in the L1 cache, i.e.,jS1j, between 16 to 256

and plotted the resulting weighted schedulability measure in Figure 8.8. Note that to ensure that

the number of sets in the L1 cache are always less than or equal to the number of sets in the L2

cache, i.e.,jS1j � j S2j, for this experiment we setjS2j = 512. Default values were used for all

other parameters.

We can see a similar trend in Figure 8.8 which was observed by increasing the L1 cache asso-

ciativity (i.e., Figure 8.6). Also, due to the same reasoning as previously explained in experiment

3, i.e., due to the similarities in the L1 CRPD analysis and a relatively larger L2 cache, both

approaches tend to behave similarly when the L1 cache size is increased.

8.6.2.6 Number of Sets in the L2 Cache (jS2j)

Figure 8.9 shows the weighted schedulability measure resulting from an increase in the number of

sets in the L2 cache. As an increase in the number of sets in the L2 cache also increases its size,

8.6 Experimental Evaluation 171

Figure 8.8: Weighted schedulability measure by varying number of sets in the L1 cache. The
number of sets in the L2 cache were �xed to 512, i.e.,jS2j = 512

Figure 8.9: Weighted Schedulability measure by varying number of sets in the L2 cache. The
number of sets in the L1 cache were set to their default value, i.e.,jS1j = 32

172 Tightening the Bound on Inter-task Cache Interference for Multilevel Caches

we can see a similar trend in Figure 8.9 which was previously observed in Figure 8.7. Therefore,

this behavior can be explained using the exact same reasoning described in experiment 4.

(a) Varying the L1 cache miss penalty (dL1)

(b) Varying the L2 cache miss penalty (dL2)

Figure 8.10: Weighted schedulability results by varyingdL1 anddL2

8.7 Chapter Summary 173

8.6.2.7 Varying the L1 and L2 Cache Miss Penalties (dL1 and dL1)

We conducted two more experiments by varying the L1 and L2 cache miss penalties. Default

values were used for all other parameters.

In the �rst experiment, we varied the L1 cache miss penalty between 10 to 100 processor

cycles and the resulting weighted schedulability measure is shown in Figure 8.10a. Since, the L1

miss penalty can not be larger than the L2 miss penalty, for this experiment, we setdL2 = 100

cycles. We can see in Figure 8.10a that by increasing the L1 cache miss penalty the weighted

schedulability for both approaches decreases. However, difference between the performance of

both analysis remains nearly constant due to a similar L1 CRPD analysis.

For the second experiment, we varied the L2 cache miss penalty between 40 to 140 processor

cycles keeping the default value for L1 cache miss penalty. The results are shown in Figure 8.10b.

We can see that for lower values of L2 cache miss penalty the difference between the weighted

schedulability of both approaches is smaller. However, by increasing the value of L2 miss penalty

the difference between the performance of both approaches also increases which is due to a tighter

bound on the L2 CRPD by the proposed analysis.

8.7 Chapter Summary

In this chapter, we presented a CRPD analysis for multilevel non-inclusive caches. We rede�ned

the notion of UCBs for multilevel caches, showed how these UCBs can be computed and used

them to compute the CRPD. We showed that a tighter bound on the indirect effect of preemption

can be obtained by calculating the indirect effect of preemption that can be caused instead of

calculating the indirect effect of preemption that can be suffered by memory blocks. We then

presented a new analysis to compute the CRPD due to memory blocks that were categorized as

L2 cache hits in the absence of preemption but may become L2 cache misses due to preemptions.

Our analysis provides a tighter CRPD bound than the existing analysis by identifying how many

references to a memory block can be impacted due to preemptions and therefore may contribute

to the CRPD.

We evaluated the performance of our proposed CRPD analysis against an existing analysis

from the state-of-the-art in terms of schedulability. Experiments were performed by varying dif-

ferent parameters with most values taken from the Mälardalen benchmarks. Experimental results

show that our proposed CRPD analysis for multilevel non-inclusive caches dominate the state-of-

the-art analysis and results in up to 20% percentage points higher task schedulability.

Part III

Extension to Multicore Platforms

174

Chapter 9

Evaluating the Impact of Inter-task

Cache Interference on Memory Bus

Contention in Multicore Systems

In the previous chapters, we have discussed how to derive a tighter bound on the inter-task cache

interference considering different cache con�gurations, i.e., direct-mapped, set-associative and

multi-level caches. This chapter now evaluates how a sound estimate on the inter-task cache

interference may impact the contention due to sharing of memory bus in multicore systems.

In a multicore system, data and instructions are transferred from the main memory to the

requesting core over asharedmemory bus. Due to the use of a shared memory bus, main memory

requests by a taskt i running on one core may be delayed by tasks executing on other cores, thereby

increasing the WCRT oft i . This increase in the WCRT oft i depends on many factors such as (i)

the number of main memory requests generated byt i and all other tasks running on the same

core, (ii) the number of main memory requests generated by all tasks executing on different cores

thant i and (iii) the memory bus arbiter. One of the main aspects that impact (i) and (ii) is the

number ofcache missessuffered by each task during its execution. Indeed, the number of main

memory requests generated by a task strongly depends on whether the instructions and data it

requires are available in the cache memory (cache hit) or not (cache miss), which in turn depends

on the intra- and inter-task cache interference suffered by the task. The number of cache misses

or the number of main memory requests generated by a taskt i when executing in isolation can

be bounded by using the intra-task cache interference analysis (see Section 3.1). However, when

taskt i executes concurrently with other tasks, the number of bus/main memory requests generated

by t i may also depend on the inter-task cache interference (i.e., CRPD and CPRO) suffered by

the task. Consequently, the total memory bus contention suffered by taskt i during its execution

depends mainly on the inter-task cache interference suffered by taskt i and all other tasks running

on the same core as well as the inter-task cache interference suffered by all tasks executing in

parallel witht i on different cores thant i .

There exist few approaches in literature that account for CRPDs (Davis et al., 2018b; Altmeyer

176

9.1 Assumptions on the System Model 177

et al., 2015) when bounding the memory bus contention in multicore systems. However, as we

showed in Chapter 4 and Chapter 7, only considering CRPDs when computing the inter-task cache

interference of tasks may lead to pessimistic WCRT bounds and the analysis that accounts for both

CRPDs and cache persistence dominates the analysis that only consider CRPDs. In this chapter,

we evaluate how a tighter bound on the inter-task cache interference may impact memory bus

contention in multicore platforms considering both work conserving and non-working conserv-

ing bus arbitration policies. We analyze multicore architecture considering both single-level and

multilevel caches. For architectures with single-level caches, we built on the analysis presented

in Chapter 7 to compare the performance of memory bus contention analysis that only accounts

for CRPDs against the memory bus contention analysis that accounts for both CRPDs and cache

persistence. For architectures with multiple cache levels, we evaluate how the two CRPD anal-

ysis discussed in Chapter 8 may impact the memory bus contention suffered by the tasks under

different bus arbitration policies.

9.1 Assumptions on the System Model

In this chapter, we make the following assumptions on the system model:

• We consider multicore platforms withm identical timing-compositional coresp1 to pm. By

timing-compositional we mean that it is safe to separately account for interference from

different sources such as cores, caches and memory bus (Hahn et al., 2013).

• When considering multicore architectures having a single cache level (i.e., L1) we will

consider the system model detailed in Section 7.1.

• For multicore architectures that support a two-level non-inclusive cache hierarchy (i.e., com-

prising of L1 and L2 caches) we will consider the system model and assumptions detailed

in Section 8.1.

• We assume that the cache(s) is/are set-associative and use the Least-Recently-Used (LRU)

cache replacement policy. The last level cache is connected via a shared bus to the global

main memory. The worst-case time for one access to the main memory is given bydmem.

Note that when considering multicore architectures with two-level caches, the worst-case

time for one access to the main memory is given by the sum of L1 cache miss penaltydL1

and the L2 cache miss penaltydL2, i.e.,dmem= dL1 + dL2.

• We consider a setGof n sporadic constrained deadline tasksG= f t 1; t 2; :::t ng. Each task

t i 2 Gis de�ned by a quadruple (PDi , MDi , Di , Ti) wherePDi is the worse-case execution

time of a job oft i considering that every memory access is a cache hit. Consequently, it

only accounts for execution requirements of the task and does not include the time needed

to fetch data and instructions from main memory.MDi is the worst-case memory access

demand of a job oft i , i.e., the maximum number of main memory request generated by

178
Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore

Systems

any job oft i . Note that the values ofPDi andMDi are calculated assumingt i executes in

isolation. Di is the relative deadline oft i andTi is the minimum-inter arrival time between

two jobs oft i . We assume that tasks are scheduled with a partitioned task-level �xed priority

scheduling algorithm where each task is statically assigned to a core at design time. Tasks

assigned to a corepx are denoted byGx. Tasks can be assigned priorities using any �xed

priority assignment scheme (e.g., Rate or Deadline Monotonic (Liu and Layland, 1973)).

Furthermore, we assume that the priority of each task is unique thus providing a global

priority order such thatt 1 has the highest priority andt n the lowest.Ri denotes the WCRT

of taskt i and is de�ned as the longest time between the arrival and the completion of any of

its jobs.

The list of important symbols used in this chapter is given in Table 9.1.

Table 9.1: List of important symbols used in Chapter 9

Symbol Description

G Task set of sizen

px Corex of a multicore processor

Gx Set of tasks assigned to corepx of a multicore processor

t i Task with indexi

PDi Worst-case processing demand of taskt i in isolation

MDi Worst-case memory access demand of taskt i in isolation

Ti Minimum inter-arrival time of taskt i

Di Relative deadline of taskt i

Ri Worst-case response time of taskt i

MDr
i Residual memory access demand of taskt i in isolation

M̂Di(ni) The maximum number of bus accesses generated byni jobs of taskt i while execut-

ing in isolation
hp(i) The set of tasks with higher priority thant i

hep(i) The set of tasks with higher priority thant i includingt i , i.e., hep(i) = hp(i)[t i .

aff(i; j) The set of intermediate tasks (includingt i) that may preemptt i but may themselves

be preempted by some higher priority taskt j .
dL1 L1 cache miss penalty

dL2 L2 cache miss penalty

dmem Total time needed to reload one block from the main memory to cache(s), i.e.,

dmem= dL1 + dL2.
gi; j ;x Additional bus accesses resulting from the CRPD suffered by taskt i due to preemp-

tions by a higher priority taskt j 2 hp(i) executing on the same corepx

Continued on next page

9.2 CRPD-aware Memory Bus Contention Analysis 179

Table 9.1 – continued from previous page

Symbol Description

BASx
i (t) Upper bound on the total number of bus accesses that can occur due to taskt i and

all higher priority tasks in hp(i) executing on corepx during a time interval of length

t
BAOy

k(t) Upper bound on the total number of bus accesses by all tasks having priorityk or

higher executing on corepy during a time interval of lengtht
BATx

i (t) The total number of bus accesses that may delay the execution oft i on corepx

during a time interval of lengtht
sl Slot size for Round-Robin (RR) and TDMA bus arbitration policy

r j ;i;x Additional bus accesses due to CPRO suffered by one job of a higher priority task

t j 2 hp(i) executing during the response time of a lower priority taskt i on a corepx

r̂ j ;i;x(ni) Additional bus accesses due to CPRO suffered byni jobs of a higher priority task

t j 2 hp(i) executing during the response time of a lower priority taskt i on a corepx

Ei(t) The maximum number of jobs any taskt i can release in a time interval of lengtht

ECBi The set of evicting cache blocks (ECBs) of taskt i

UCBi The set of useful cache blocks (UCBs) of taskt i

PCBi The set of persistence cache blocks (PCBs) of taskt i

9.2 CRPD-aware Memory Bus Contention Analysis

The maximum number of main memory accesses that can be generated by a taskt i in isolation

is upper bounded by the worst-case memory access demand of taskt i , i.e.,MDi . However, when

taskt i executes concurrently with other tasks, it may generate additional main memory requests

due to the CRPD it may suffer due to preemptions by higher priority tasks in hp(i). As we have

mentioned previously, there exist approaches in literature that account for CRPDs when bounding

the memory bus contention in multicore systems. One such approach is presented in (Altmeyer

et al., 2015; Davis et al., 2018b). The analysis presented in (Altmeyer et al., 2015; Davis et al.,

2018b) bounds the memory bus contention that can be suffered by a taskt i executing on corepx

of a multicore processor in a time window of lengtht by �rst computing two values; (i)BASx
i (t),

which is an upper bound on the total number of bus accesses that can occur due to taskt i and all

higher priority tasks in hp(i) executing on corepx duringt and (ii) BAO(t) , which is an upper on

the total number of bus accesses generated by all tasks running on other cores thanpx during the

same time interval of lengtht. Under the bus contention analysis presented in (Davis et al., 2018b;

Altmeyer et al., 2015)BASx
i (t) is upper bounded such that

BASx
i (t) � MDi + å

8t j 2Gx\ hp(i)

�
t
Tj

�
� (MD j + gi; j ;x) (9.1)

180
Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore

Systems

whereMDi andMD j are the worst-case memory access demands of taskt i and taskt j 2 hp(i)

respectively, andgi; j ;x accounts for the additional memory accesses due the CRPD suffered by task

t i due to preemptions by a higher priority taskt j 2 hp(i) executing on the same corepx. Note that

when using Equation (9.1),gi; j ;x can be computed using any of the CRPD analysis discussed in

Section 3.2.

When bounding the total number of bus accesses generated by all tasks running on cores other

thanpx, no assumption can be made about the synchronization of tasks w.r.t the release oft i on

corepx. Therefore, for a taskt l executing on some corepy 6= px, the worst-case number of bus

accesses generated byt l in a time interval of lengtht are obtained by assuming that the �rst job of

t l executes as late as possible, i.e., just before its WCRT, while all subsequent jobs oft l execute

as early as possible. LetBAOy
k(t) be an upper bound on the total number of bus accesses due to

all tasks having priorityk or higher executing on corepy. It is proven in (Davis et al., 2018b;

Altmeyer et al., 2015) thatBAOy
k(t) can be upper bounded using the following equation:

BAOy
k(t) � å

t l 2Gy\ hep(k)

Wy
k;l (t) + Wy

k;l ;cout(t) (9.2)

whereWy
k;l (t) is an upper bound on the total number of bus accesses by thecarry-in andbodyjobs

of taskt l that execute during a time interval of lengtht. The carry-in job of a taskt l w.r.t a time

interval of lengtht is a job that is released sometime before the start oft but has its deadline int.

Whereas, all jobs of taskt l with both release times and deadlines in the time intervalt are body

jobs of t l . Let Ny
k;l (t) be an upper bound on the maximum number of jobs oft l that may fully

execute in an interval of lengtht on corepy and considering that the maximum number of bus

accesses each of those jobs can generate is upper bounded byMDl + gk;l ;y, we have

Wy
k;l (t) = Ny

k;l (t) � (MDl + gk;l ;y) (9.3)

whereNy
k;l (t) is given by

Ny
k;l (t) =

�
t + Rl � (MDl + gk;l ;y) � dmem

Tl

�
(9.4)

In Equation (9.2),Wy
k;l ;cout denote the maximum number of bus accesses by thecarry-out job

of taskt l that may execute during the time intervalt. The carry-out job of a taskt l w.r.t a time

interval of lengtht is a job that is released during the time intervalt but has a deadline aftert.

The maximum number of bus accesses that can be generated by the carry-out job of taskt l are

computed as follows:

Wy
k;l ;cout = min

 &
t + Rl � (MDl + gk;l ;y) � dmem� Ny

k;l (t) � Tl

dmem

'

;MDl + gk;l ;y

!

(9.5)

The bus contention analysis presented in (Altmeyer et al., 2015; Davis et al., 2018b) uses Equa-

tion (9.1) and (9.2), to compute the total number of bus accessesBATx
i that may delay the execution

9.2 CRPD-aware Memory Bus Contention Analysis 181

of t i on corepx under different bus arbitration policies. For example, if the bus arbitration policy

is Fixed-priority (FP) based, i.e., bus accesses inherit the priority of the task that generate them,

thenBATx
i (t) is given by

BATx
i (t) = BASx

i (t) + å
8py6= px

BAOy
i (t) + 1+ min

�
BASx

i (t); å
8py6= px

BAOy
i;low(t)

�
(9.6)

WhereBASx
i (t) andBAOy

i (t) are calculated using Equation. (9.1) and (9.2) respectively. The sum

å 8py6= px
BAOy

i (t) represents the worst-case bus delay of taskt i , i.e., when all bus accesses from all

tasks in hep(i) executing on other cores are served before the last bus access oft i . Typically, mem-

ory bus requests are non-preemptive therefore if the main memory receives a request from a lower

priority task before the request from the higher priority task arrives, the memory request from the

higher priority task may be served after the completion of the request from the lower priority task.

However, in this scenario the maximum delay the higher priority task can suffer can only be of

one memory access. Consequently,+ 1 in Equation. (9.6) accounts for that one bus access from

any lower task in lp(i) executing on the same core ast i and can only occur at the start of busy pe-

riod w.r.t. t i . Finally, the term min
�
BASx

i (t);å 8py6= px
BAOy

i;low(t)
�

in Equation. (9.6) upper bounds

the bus interference due to accesses by tasks in lp(i) executing on cores other thanpx. Note that

BAOy
i;low(t) is calculated in a similar manner toBAOy

i (t) (i.e., Equation. (9.2)), but considering bus

accesses from tasks having a lower priority thant i , i.e.,BAOy
i;low(t) = å 8t l 2Gy\ lp(i) W

y
i;l (t)+ Wy

i;l ;cout.

Similarly, it is shown in (Altmeyer et al., 2015; Davis et al., 2018b) that if the bus arbitration

policy is Round-Robin (RR) thenBATx
i (t) can be computed as follows:

BATx
i (t) = BASx

i (t) + å
8py6= px

min
�
BAOy

n(t);sl � BASx
i (t)

�
+ 1 (9.7)

wheresl denote the number of memory access slots per core. Under a RR bus, the worst-case

delay is suffered by taskt i when each accesses inBASx
i (t) is delayed by all cores other thanpx for

sl slots. However, sincen represents the lowest priority in the system,BAOy
n(t) also upper bounds

the bus accesses due to all tasks executing on corepy. Therefore, the maximum number of bus

access by all tasks executing on corepy that may delay the execution oft i 2 px are upper bounded

by min
�
BAOy

n(t);sl � BASx
i (t)

�
.

If the bus arbitration policy is non-work conserving, i.e., TDMA, thenBATx
i (t) is upper

bounded by

BATx
i (t) = BASx

i (t) + ((L � 1) � sl) � BASx
i (t) + 1 (9.8)

where the length of one TDMA cycle isL � sl. Since TDMA is non-work conserving, it assumes

that each bus access inBASx
i (t) will always be delayed by(L � 1) � sl bus accesses by other cores

irrespective of whether these slots are used or not (in contrast to Round-Robin). For more details

on the formulation of Equation (9.1) -(9.8) readers are referred to (Altmeyer et al., 2015; Davis

et al., 2018b).

182
Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore

Systems

Figure 9.1: Execution of taskt 1 andt 2 on corepx and taskt 3 on corepy. Task parameters of
interest are:PD1=PD3 = 4, PD2= 32,MD1=MD3 = 6, MD2 = 8, MDr

1=MDr
3 = 1, ECB1=ECB3 =

f 5;6;7;8;9;10g, ECB2 = f 1;2;3;4;5;6g, PCB1=PCB3 = f 5;6;7;8;10g andUCB2 = f 5;6g.

9.3 Cache Persistence-aware Memory Bus Contention Analysis

The memory bus contention analysis presented in (Altmeyer et al., 2015; Davis et al., 2018b)

(i.e., Equation (9.1) and (9.2)) provides a safe upper bound on the memory bus delay suffered by

tasks executing on a multicore platform. However, since the analysis in (Altmeyer et al., 2015;

Davis et al., 2018b) does not consider the variation in the memory access demand of tasks due

to cache persistence, it may overestimate the actual number of accesses that compete for the bus

during the response time of the task under analysis. Recall that cache persistence refers to the

re-use of PCBs between different job executions of the same task. If all PCBs of a taskt i were

loaded in the cache by a previous job oft i , the memory access demand of all subsequent jobs of

t i can be much lower than the worst-case memory access demand oft i in isolation. This type of

memory demand is called the residual memory access demand oft i and is denoted byMDr
i (see

De�nition 4.3). According to De�nition 4.3, a PCB is loaded only once from the main memory

when a taskt i executes in isolation. Therefore, the total number of bus accesses generated by

ni jobs of t i executing in isolation can be computed by de�ning Equation (4.4) as a function of

number of jobsni , i.e.,

M̂Di(ni) = min(ni � MDi ;ni � MDr
i + jPCBi j) (9.9)

We now consider the schedule and task parameters shown in Figure 9.1 to show how Equa-

tion (9.9) can be used to reduce the pessimism of (Altmeyer et al., 2015; Davis et al., 2018b). We

have three taskst 1, t 2 andt 3 with t 1 andt 2 executing on corepx andt 3 executing on corepy.

We assumet 1 has the highest priority andt 3 the lowest. The worst-case main memory access

demandsMD1, MD2 andMD3 are 6, 8 and 6 respectively. Memory blocks in Figure 9.1 that are

pattern �lled are those that are loaded/reloaded from the main memory during the task executions.

We focus ont 2 and useBATx
2(R2) to denote the total number of bus accesses that may be generated

during its response time. Assuming that the memory bus arbitration policy is Round-Robin (RR)

9.3 Cache Persistence-aware Memory Bus Contention Analysis 183

with a slot sizesl equal to 1,BATx
2(R2) can be bounded using Equation (9.7) such that

BATx
2(R2) = BASx

2(R2) + min
�
BAOy

3(R2);BASx
2(R2)

�
(9.10)

where

BASx
2(R2) = MD2 + 3� (MD1 + g2;1;x) = 8+ 3� (6+ 2) = 8+ 18+ 6 = 32 (9.11)

BAOy
3(R2) = Ny

3;3(R2) � MD3 = 4� (6) = 24 (9.12)

Note that in Equation (9.11)g2;1;x is derived using Equation (3.4) however, any other CRPD anal-

ysis can also be used to computeg2;1;x. Moreover, sincet 2 is the lowest priority task on corepx,

Equation (9.11) does not have a trailing +1 as in Equation (9.7).

Now, if we compare the result of Equation (9.11) with the cache contents of corepx shown in

Figure 9.1 we can see that Equation (9.11) overestimates the value ofBASx
2(R2). Figure 9.1 shows

that only the �rst job oft 1 needs to load all its ECBs from the main memory and hence has a

worst-case memory access demandMD1 = 6. Moreover, since all PCBs oft 1 were loaded in the

cache by the �rst job oft 1, the memory access demand of the next two jobs oft 1 only corresponds

to the reloading of memory blockf 9g, i.e.,MDr
1 = 1. Consequently, the actual number of memory

accesses made by the three jobs oft 1 executing during the response time oft 2 are respectively

MD1 + MDr
1 + MDr

1 = 6+ 1+ 1 = 8, which is much lower than 3� MD1 = 18 accounted for in

Equation (9.11).

Figure 9.1 also shows an overlap between PCBsf 5;6g of t 1 and ECBsf 5;6g of t 2 in cache.

This overlap may lead to additional bus accesses due to CPRO, i.e., to reload PCBsf 5;6g from

the main memory between two subsequent executions oft 1. The additional bus accesses due to

CPRO suffered byni jobs of a higher priority taskt j 2 hp(i) executing during the response time

of a lower priority taskt i on a corepx is given byr̂ j ;i;x(ni), i.e.,

r̂ j ;i;x (n j) = (n j � 1) � r j ;i;x (9.13)

wherer j ;i;x denote the additional bus accesses due to CPRO suffered by on job of taskt j during

the response time of taskt i and it can be computed using any of the CPRO analysis presented in

Chapter 4, 5 or Chapter 7. For example, if we use the CPRO-union approach (see Section 4.3) to

compute the additional bus accesses due to CPRO suffered by taskt 1 during the response oft 2,

for the schedule shown in Figure 9.1 we will getr̂ 1;2;x(3) = 2� 2 = 4. Therefore, due to cache

persistence, the actual number of bus accesses during the response time taskt 2 on corepx are

given by

MD2 + MD1 + 2� MDr
1 + r̂ 1;2;x(3)+ 3� g2;1;x = 26 (9.14)

which is much lower than the value ofBASx
2(R2) = 32 calculated using Equation (9.11). This leads

to the following lemma.

184
Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore

Systems

Lemma 9.1. The total number of bus accesses by a single job of taskt i 2 Gx and all higher priority

tasks inGx \ hp(i) executing in a time interval of length t are upper bounded byˆBAS
x
i (t), where

ˆBAS
x
i (t) = MDi+ å

8t j 2Gx\ hp(i)

min
�

E j (t) � MD j ; M̂D j (E j (t)) + r̂ j ;i;x(E j (t))
�

+

å
8t j 2Gx\ hp(i)

E j (t) � gi; j ;x with Ej (t) =
�

t
Tj

�
(9.15)

Proof. We prove that in a time interval of lengtht, ˆBAS
x
i (t) is an upper bound on the total number

of bus accesses generated by taskt i 2 Gx and all higher priority tasks inGx \ hp(i).

1. By assumption, only one job oft i must be considered. Hence, the total number of bus accesses

generated byt i are upper bounded by its worst-case memory access demandMDi .

2. Any task t j 2 Gx \ hp(i) can release at mostE j (t) =
l

t
Tj

m
jobs in a time window of length

t. Therefore, it follows from Equation (9.1) thatE j (t) � MD j is an upper bound on the total

number of bus accesses generated by taskt j 2 Gx \ hp(i) in isolation. Moreover, the additional

bus accesses due to preemptions of taskt i by taskt j in a time interval of lengtht are upper

bounded byE j (t) � gi; j ;x (see Equation 9.1). Hence, the sumMDi + E j (t) � MD j + E j (t) � gi; j ;x

is an upper bound on the total number of bus accesses generated by taskt i 2 Gx and any higher

priority taskt j in Gx \ hp(i) in a time interval of lengtht.

3. Recall from Equation (9.9) and (9.13) that̂MD j (E j (t)) is an upper bound on the total number

of bus accesses due toE j (t) jobs of t j executing in isolation and̂r j ;i;x(E j (t)) is an upper bound

on the additional bus accesses due to CPRO suffered by all those jobs oft j . Therefore, the sum

MDi + M̂D j (E j (t))+ r̂ j ;i;x(E j (t))+ E j (t) � gi; j ;x is also an upper bound on the total number of bus

accesses generated by taskt i 2 Gx and any higher priority taskt j in Gx \ hp(i) in a time window of

lengtht considering both CRPD and CPRO. Thus, the minimum betweenMDi + E j (t) � MD j +

E j (t) � gi; j ;x andMDi + M̂D j (E j (t)) + r̂ j ;i;x(E j (t)) + E j (t) � gi; j ;x is also an upper bound. The

lemma follows.

Continuing the example depicted in Figure 9.1, we can see that Equation (9.12) also overesti-

mates the value ofBAOy
3(R2). In fact, due to cache persistence, the actual number of bus accesses

generated by taskt 3 2 Gy that may contend for the bus during the response time of taskt 2 2 Gx

are: MD3 + 3� MDr
3 = 6+ 3� 1 = 9, which is much lower than the value ofBAOy

3(R2) = 24

calculated using Equation (9.12). This observation leads to the following lemma.

Lemma 9.2. The total number of bus accesses by all tasks2 Gy with priority k or higher that may

contend for bus access with taskt i 2 Gx during a time window of length t is upper bounded by

ˆBAO
y
k(t) = å

8t l 2Gy\ hep(k)

Ŵy
k;l (t) + Wy

k;l ;cout (9.16)

where

Ŵy
k;l (t) = min

�
Ny

k;l (t) � MDl ; M̂Dl (N
y
k;l (t)) + r̂ k;l ;y(N

y
k;l (t))

�
+ Ny

k;l (t) � gk;l ;y (9.17)

9.4 Bus Contention-Aware Worst-case Response Time (WCRT) Analyses 185

and Wy
k;l ;cout and Ny

k;l (t) are given by Equation(9.5)and(9.4)respectively.

Proof. Since Equation (9.5) (i.e.,Wy
k;l ;cout) is proved in (Altmeyer et al., 2015; Davis et al., 2018b),

we only need to prove that̂Wy
k;l (t) is an upper bound on the total number of bus accesses by jobs

of t l 2 Gy \ hep(k) that fully execute in a time interval of lengtht.

1. It follows from Equation (9.4) thatNy
k;l (t) is an upper bound on the number of jobs that may be

fully executed in a time interval of lengtht by any taskt l 2 Gy \ hep(k). Therefore,Ny
k;l (t) � MDl

upper bounds the total number of bus accesses generated by taskt l in a time interval of length

t in isolation. Moreover,Ny
k;l (t) � gk;l ;y is an upper bound on the additional bus accesses due

to CRPD suffered by taskt l 2 Gy \ hep(k) in a time window of lengtht. Therefore, the sum

Ny
k;l (t) � MDl + Ny

k;l (t) � gk;l ;y is an upper bound on the total number of bus accesses by jobs of

t l 2 Gy \ hep(k) that fully execute in a time interval of lengtht.

2. Using Ny
k;l (t) in Equation (9.9) and (9.13) we get̂MDl (N

y
k;l (t)) which is an upper bound on

the total number of bus accesses due toNy
k;l (t) successive jobs oft j executing in isolation and

r̂ k;l ;y(N
y
k;l (t)) which is an upper bound on the additional bus accesses due to CPRO suffered by all

those jobs. Hence, the sum̂MDl (N
y
k;l (t))+ r̂ k;l ;y(N

y
k;l (t))+ Ny

k;l (t) � gk;l ;y is also an upper bound on

the total number of bus accesses by jobs oft l 2 Gy \ hep(k) that fully execute in a time interval of

lengtht considering both CRPD and CPRO. Consequently, the minimum betweenNy
k;l (t) � MDl +

Ny
k;l (t) � gk;l ;y andM̂Dl (N

y
k;l (t))+ r̂ k;l ;y(N

y
k;l (t))+ Ny

k;l (t) � gk;l ;y is also an upper bound. The lemma

follows.

Note that having bounded the values ofˆBAS
x
i (t) (i.e., Lemma 9.1) and ˆBAO

y
k(t) (i.e., Lemma 9.2)

these value can be directly used in Equation (9.6), (9.7) or (9.8) to bound the value ofBATx
i (t) due

to cache persistence for any given bus arbitration policy.

9.4 Bus Contention-Aware Worst-case Response Time (WCRT) Anal-

yses

If the memory bus contention that can be suffered by a taskt i 2 Gx during its execution is explicitly

considered then the worst-case response timeRi of a taskt i is given by the smallest possible

solution of the following expression

Ri = PDi + å
8t j 2Gx\ hp(i)

�
Ri

Tj

�
� PD j + BATx

i (Ri) � dmem (9.18)

wherePDi andPD j are the worst-case processing demands of taskt i andt j respectively. The

termå 8t j 2Gx\ hp(i)

l
Ri
Tj

m
� PD j upper bounds the total core interference suffered by taskt i due to

preemptions by higher priority tasks executing on the same core, whereas the total memory bus

interference thatt i may suffer duringRi is upper bounded byBATx
i (Ri) � dmem. Depending on

the bus arbitration policy,BATx
i (Ri) can be calculated using Equation. (9.6), (9.7) or (9.8). When

considering the bus contention analysis that only accounts for CRPDs the values ofBASx
i (t) and

186
Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore

Systems

(a) FP-Bus with/without considering cache peristence(b) RR Bus with/without considering cache peristence

(c) TDMA Bus with/without considering cache peristence

Figure 9.2: Schedulability ratio of different bus arbitration policies by varying total core utiliza-
tions

BAOy
k(t) are computed using Equation (9.1) and (9.2) respectively. For cache persistence-aware

bus contention analysis the values ofBASx
i (t) andBAOy

k(t) are computed using Lemma 9.1 and

Lemma 9.2, respectively. Note that the response time of each task may depend on the response

times of other tasks. This circular dependency is solved using a �xed point iteration over all

response times, �rst initiating the response time of each task toPDi + MDi � dmemand stopping

as soon as all response times remain constant or there is one task withRi > Di , in which case the

task is deemed unschedulable.

9.5 Experimental Evaluation

In this section, we evaluate the impact of inter-task cache interference on memory bus contention

in multicore platforms. As we have mentioned previously, we analyze multicore architectures

with two types of cache con�gurations, i.e., (i) with only one cache level and (ii) with multiple

cache levels. When analyzing architectures with single-level caches, we compare the performance

of different bus arbitration policies with/without considering cache persistence. For architectures

9.5 Experimental Evaluation 187

that support multiple cache levels, we evaluate how our proposed CRPD analysis for multilevel

caches (presented in Chapter 8) can impact memory bus contention in comparison to the state-

of-the-art CRPD analysis for multilevel caches presented in (Chattopadhyay and Roychoudhury,

2014).

Figure 9.3: Wighted schedulability measure by varying the total number of cores

9.5.1 Multicore Platforms with Single-level Caches

To evaluate how a tighter bound on the inter-task cache interference can impact memory bus

contention in multicore platforms with single-level caches, we compare the performance of FP,

RR and TDMA bus arbitration policies under two approaches; (i) that only accounts for CRPDs

and (ii) that accounts for both CRPDs and cache persistence. For bus contention analysis that only

accounts for CRPDs we compute the CRPDs using the Resilience analysis (Altmeyer et al., 2010)

(see Section 3.2.2). Cache persistence-aware bus contention analysis computes the CRPDs using

the Resilience analysis and CPROs using the Multi-path ResilienceP analysis (see Section 7.4).

We model a multicore platform with 4 cores each having a private L1 instruction cache with 4-

ways, 64 cache sets and a block size of 32 Bytes. The default value ofdmemis 5ms. All experiments

were performed using the Mälardalen benchmark suite (Gustafsson et al., 2010) with the values

of PDi , MDi , MDr
i , UCBi , ECBi andPCBi taken from Table 5.2. The default task set size was

24 with 6 tasks per core. Each task within the task set is randomly assigned parameters from one

of the benchmarks of the Mälardalen benchmark suite. Task utilizations were generated using

UUnifast (Bini and Buttazzo, 2005) assuming an equal utilization for each core. Task periods

188
Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore

Systems

and deadlines were set such thatTi = Di = (PDi + MDi � dmem)=Ui . Task priorities were assigned

according to deadline monotonic.

We randomly generated task sets and determined their schedulability using Equation (9.18)

for FP, RR, and TDMA buses with and without considering cache persistence under different

settings, i.e., by varying core utilizations, number of cores, memory reload timedmem, cache size

and RR/TDMA slot sizesl that has a default value of 2.

1. Core Utilizations: In this experiment, we varied the per core utilization between 0.05 to 1 in

steps of 0.05. For every value of core utilization, 1000 task sets were generated. Figure 9.2 shows

the number of task sets that were deemed schedulable by FP, RR and TDMA bus arbitration

policies with and without considering cache persistence. Figure 9.2 also shows a line marked

as “perfect bus" which assumes that there is no interference on the memory bus when the bus

utilization � 1. That line provides an upper bound on the actual number of schedulable task

sets at a particular core utilization. We can see in Figure 9.2 that bus arbitration policies that

account for cache persistence dominate their counterparts that do not consider cache persistence.

This improved performance mainly results from a tighter bound on the number of bus request

generated by tasks executing on different cores. We can see in Figure 9.2a that for a FP bus, up

to 80% more task sets were schedulable when considering cache persistence. Similarly, we can

also see huge improvements for both RR (up to 50% more schedulable task sets) and TDMA (up

to 23% more schedulable task sets). Note that the FP bus outperforms the RR and TDMA buses

since it provides a tightly bounded bus latency for single accesses which is not the case with RR

and TDMA.

Figure 9.4: Wighted schedulability measure by varying the value of memory reload timedmem

9.5 Experimental Evaluation 189

Figure 9.5: Wighted schedulability measure by increasing cache size between 2kB to 32kB

2. Number of Cores:In this experiment, we varied the number of cores between 2 and 10 in steps

of 2 with all other parameters set to the default values. We have used the weighted schedulability

measure de�ned in (Bastoni et al., 2010) (i.e., Equation (4.20)) to plot the results in Figure 9.3.

We can see in Figure 9.3 that by increasing the number of cores the total number of schedulable

task sets decreases. This is mainly because by increasing the number of cores the number of tasks

also increases. This leads to an increases in the interference on the memory bus. However, we can

see that analyses that account for cache persistence always dominate their counterparts that do not

account for cache persistence.

3. Memory Reload Time dmem: For this experiment, we varied the value of memory reload

time dmem from 2ms to 10ms in step of 2ms and evaluated its impact on the performance of all

bus arbitration policies. The results are presented in Figure 9.4. We can see in Figure 9.4 that

for lower values ofdmemthe difference between the weighted schedulability of cache persistence-

aware analyses and their respective counterparts is higher. However, for higher value ofdmemthe

time spent by tasks in performing memory operations increases and hence the schedulability of all

approaches decreases.

4. Cache Size:To evaluate the impact of cache size on the performance of the analyses, we varied

the size of the L1 cache of each core between 2kB to 32kB by increasing the number of sets in the

cache from 16 to 256. Default values were used for all other parameters. The results are shown in

Figure 9.5. We can see in Figure 9.5 that by increasing the cache size, the number of schedulable

task sets under bus arbitration policies that account for cache persistence also increases. This is

190
Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore

Systems

Figure 9.6: Wighted schedulability measure by varying the RR/TDMA slot size (sl)

mainly because by increasing the cache size the number of PCBs of each task also increases, which

results in gradually improving the performance of the analyses that account for cache persistence.

Note that the increase in cache size also reduce CRPD and thus increase the task set schedulability

for analyses that do not account for cache persistence, but at a slower rate than for persistence

aware analyses.

5. RR/TDMA slot size sl: For RR/TDMA buses the number of memory access slots per core,

i.e.,sl, can greatly affect the memory bus contention suffered by tasks. To evaluate this, we varied

the value of slot sizesl between 1 to 6 and plotted the results in Figure 9.6. The results show that

for smaller values ofsl, the difference between the weighted schedulability of cache persistence

aware analyses and their respective counterparts is much higher. However, by increasing the value

of sl the task set schedulability of all approaches decrease, which is intuitive, considering the

formulation of Equation (9.7) and (9.8).

9.5.2 Multicore Platforms with Multilevel Caches

To evaluate the impact of inter-task cache interference on memory bus contention in multicore

platforms that support multilevel caches, we compared the performance of different bus arbitration

policies considering two approaches; (i) that computes the inter-task cache interference using our

proposed CRPD analysis for multilevel caches presented in Chapter 8 (i.e., Equation (8.19)) and

(ii) that computes the inter-task cache interference using the CRPD analysis of (Chattopadhyay

and Roychoudhury, 2014) (i.e., Equation (8.10)). Effectively, the goal is to conclude if a tighter

9.5 Experimental Evaluation 191

(a) FP-Bus (b) RR-Bus

(c) TDMA-Bus

Figure 9.7: Schedulability ratio of different bus arbitration policies by varying total core utiliza-
tions for multicore architectures with two-level caches.

bound on the CRPD can improve schedulability of tasks executing on a multicore platform that

support multilevel caches.

We model a multicore platform having 4 cores each supporting private two-level instructions

caches, i.e., L1 and L2. L1 cache is 2-way set-associative with 32 sets and line size of 32-bytes.

L2 cache is 4-way set-associative with 64 sets and line size of 64-bytes. The L1 cache miss

penalty was 10 processor cycles, i.e.,dL1 = 10, and the L2 cache miss penalty was 100 processor

cycles. Consequently, the total time to reload one memory block from the main memory to both

cache levels is computed such thatdmem= dL1 + dL2 = 110. All experiments were performed

using the Mälardalen benchmark suite (Gustafsson et al., 2010) with the values ofCi , L1-ECBs,

L2-ECBs, L1-UCBs and L2-UCBs taken from Table 8.2. The values of worst-case processing

demandPDi and worst-case memory access demandMDi were chosen randomly such thatMDi =

rand(0:1;0:6) � Ci andPDi = Ci � MDi . The default task set size was 32 with 8 tasks per core.

Each task within the task set is randomly assigned parameters from one of the benchmarks of the

Mälardalen benchmark suite. Task utilizations were generated using UUnifast (Bini and Buttazzo,

2005) assuming an equal utilization for each core. Task periods and deadlines were set such that

192
Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore

Systems

Figure 9.8: Wighted schedulability measure by varying the total number of cores in multicore
platforms with two-level caches

Ti = Di = (PDi + MDi � dmem)=Ui . Task priorities were assigned according to deadline monotonic.

We randomly generated a large number of task sets and determined their schedulability using

Equation (9.18) for FP, RR, and TDMA buses. Depending on the chosen bus arbitration policy,

upper bound on the memory bus contention, i.e.,BATx
i (Ri) in Equation (9.18), can be computed

using Equation (9.6), (9.7) or (9.8). For every bus arbitration policy the CRPD is either computed

using our proposed CRPD analysis for multilevel caches, i.e., Equation (8.19)), or by using the

state-of-the-art CRPD analysis for multilevel caches presented in (Chattopadhyay and Roychoud-

hury, 2014) (i.e., Equation (8.10)). The schedulability analysis is then performed under different

settings. Note that for RR/TDMA bus, the default value of slot sizesl was 2.

1. Core Utilizations: For this experiment, we varied the per core utilization between 0.05 to 1 in

steps of 0.05 and generated 1000 task sets at each step. Figure 9.7 shows the number of task sets

that were deemed schedulable at each step by FP, RR and TDMA bus arbitration policies that use

our proposed CRPD analysis for multilevel caches, i.e., Equation (8.19)), and the state-of-the-art

CRPD analysis for multilevel caches presented in (Chattopadhyay and Roychoudhury, 2014) (i.e.,

Equation (8.10)). In Figure 9.7, we can see that the performance of all bus arbitration policies

is similar to what was observed in Figure 9.2. However by comparison, the total number of task

sets that were deemed schedulable by each approach is lower. This is mainly because the analysis

results plotted in Figure 9.7 only considers CRPDs when computing the memory bus contention

of tasks and does not account for cache persistence which is considered by the analysis results

shown in Figure 9.2. Overall, we can see that the bus arbitration policies that consider a tighter

9.5 Experimental Evaluation 193

CRPD bound (i.e., given by the CRPD analysis presented in Chapter 8) in the computation of

memory bus contention, dominate their counterparts that use the state-of-the-art CRPD analysis

presented in (Chattopadhyay and Roychoudhury, 2014). This shows inter-task cache interference

can also have a signi�cant impact on the schedulability of tasks executing on a multicore platform

that support multilevel caches.

Figure 9.9: Wighted schedulability measure by varying the RR/TDMA slot size (sl) for multicore
platforms with two-level caches.

2. Number of Cores: In this experiment, we increased the number of cores in the platform be-

tween 2 to 10 in steps of 2 and plotted the resulting weighted schedulability measure in Figure 9.8.

We can see a similar trend in Figure 9.8 which was observed for the results plotted in Figure 9.3,

i.e., by increasing the number of cores (which also increases the total number of tasks) the total

number of task sets deemed schedulable by all approaches decreases. This is due to an increase

in the inter-task cache interference due to CRPDs and since the analyses considered in Figure 9.8

does not account for cache persistence we can see a much faster decrease in schedulability in

comparison to Figure 9.3. However, we can see that our proposed CRPD analysis for multilevel

caches still dominates the state-of-the-art analysis.

3. RR/TDMA slot sizesl: In another experiment, we varied the value of RR/TDMA slot sizesl

from 1 to 6 and plotted the resulting weighted schedulability in Figure 9.9. Again, we can see that

the plot shown in Figure 9.9 is similar to the plot shown in Figure 9.6 but, the overall weighted

schedulability of all approaches is lower. We can also see that for smaller values ofsl a tighter

CRPD bound improves task set schedulability. However, for higher values ofsl the inter-task

194
Evaluating the Impact of Inter-task Cache Interference on Memory Bus Contention in Multicore

Systems

cache interference from tasks executing on other cores also increases. This results in decreasing

the number of task sets deemed schedulable by all approaches.

From the results presented in Section 8.6.2, we know that our proposed CRPD analysis for

multilevel caches mainly bene�ts from a tighter bound on the CRPD due to L2 cache. Therefore,

we also performed experiments by varying L2 cache miss penalty and L2 cache size and observed

a similar trend which is shown in Figure 9.4 and 9.5 respectively.

9.6 Chapter Summary

In this chapter, we evaluate the impact of inter-task cache interference on task set schedulability

in multicore platforms. We show that the memory bus contention suffered by tasks executing on

a multicore platform heavily depends on the inter-task cache interference suffered by the tasks.

We perform different experiments by considering multicore platforms with single- and multi-level

caches. The experimental results show that the analyses that provides a tighter bound on the inter-

task cache interference signi�cantly reduce the memory bus contention suffered by tasks executing

on multicore platforms, thereby improving schedulability.

Chapter 10

Thesis Summary, Limitations and

Future Directions

For hard real-time systems that allow task preemptions, a sound estimate of inter-task cache inter-

ference is a prerequisite for an accurate schedulability analysis. However, bounds on the inter-task

cache interference must also be as precise as possible such that system resources are not underuti-

lized. In this thesis, we have identi�ed the sources of pessimism in the state-of-the-art computation

of inter-task cache interference and proposed solutions that improve the accuracy of the schedula-

bility analysis by providing tighter bounds on the inter-task cache interference. We also provide

a holistic insight into the relationship between inter-task cache interference and memory bus con-

tention and show how a tighter bound on inter-task cache interference can impact the memory bus

contention suffered by tasks executing on a multicore platform.

10.1 Summary of Contributions

The work done in this dissertation is divided into three parts. In the �rst part, i.e., Chapter 4-6, we

focus on systems with single-level direct-mapped caches. In Chapter 4, we show that the existing

analysis in literature that only focus oncache-related preemption delaysmay overestimate the

inter-task cache interference suffered by the tasks. To remove this overestimation, we introduce

the notion ofcache persistencethat enables the reuse of cache content between different task

instances, thus, providing a tighter bound on the inter-task cache interference. However, we also

identify that persistent cache content of tasks can also be evicted due to inter-task cache con�icts

which may lead to additional memory reload overhead calledcache persistence reload overhead

(CPRO). We present different approaches to compute CPRO and show how to correctly account

for both CRPD and cache persistence in the schedulability analysis for�xed-priority preemptive

systems. In Chapter 5, we identify that aseparatecomputation of CRPD and CPRO may lead

to an overestimation in the total inter-task cache interference suffered by the tasks. We present

an integratedanalysis that considers cache evictions that are already counted for in the CRPD

analysis, when computing CPRO. The integrated analysis provides a tighter bound on the total

195

196 Thesis Summary, Limitations and Future Directions

inter-task cache interference compared to the separate treatment of CRPD and CPRO. In Chapter 6,

we evaluate the impact of memory layout of tasks on schedulability. We show that the intra- and

inter-task cache interference can be interrelated and balancing their respective contribution to tasks

WCRT may result in improving task set schedulability. We present an approach to optimize task

layout in memory such that the trade-off between intra- and inter-task cache interference can be

balanced and the task set's schedulability is achieved. Evaluation has shown that the new methods

strongly improve upon former approaches.

In the second part of this thesis, i.e., Chapter 7 and 8, we focus on the analysis of inter-task

cache interference considering single-level and multilevel set-associative caches. In Chapter 7,

we provide solutions that analyze the impact of cache persistence on the schedulability analysis

consideringset-associativeLRU-caches. We show howpersistent cache blocks(PCBs) of tasks

can be determined when considering set-associative caches and present three different approaches

to calculate CPRO for set-associative caches. In Chapter 8, we present a CRPD analysis for

multilevel non-inclusivecaches. We identify challenges in the computation of CRPD for multilevel

caches and propose solutions that provide a tighter CRPD bound than an existing analysis in

the state-of-the-art. Evaluations show that our proposed analysis signi�cantly improve upon the

existing approaches.

Finally, in the last part of thesis, i.e., Chapter 9, we evaluate how a sound estimate on the inter-

task cache interference may impact the contention due to sharing of memory bus in multicore

systems. We show that the number of bus/memory requests generated by a task executing on a

multicore platform strongly depends on the number of cache misses suffered by that task which in

turn depends on the inter-task cache interference experienced by the task during its execution. We

built on the work done in Chapter 4, Chapter 7 and Chapter 8 to analyze memory bus contention in

multicore architecture with single- and multi-level caches. Evaluations show that a tighter bound

on the inter-task cache interference can signi�cantly reduce memory bus contention suffered by

tasks executing on multicore platforms and results in improving schedulability.

10.2 Limitations of Current Work and Future Directions

10.2.1 Cache Persistence Analysis for Multilevel Caches

In this thesis, we have shown that the notion of cache persistence between task instances can

signi�cantly improve schedulability for �xed-priority preemptive systems. However, the current

cache persistence-aware analysis only support single-level, i.e., L1, caches. Considering that mod-

ern processors are equipped with multiple cache levels, it will be interesting to extend the notion of

cache persistence to cache hierarchies. For example, in a processor architecture that support two-

level caches, i.e., L1 and L2 caches, L2 cache is considerably larger than the L1 cache. Which

means that L2 can hold more content than the L1 cache and tasks may have fewer con�icts in the

L2 cache in comparison to the L1 cache. Consequently, in a two-level cache hierarchy more con-

tent can be “persistent" and re-used from the L2 cache which may lead to a signi�cant reduction

10.2 Limitations of Current Work and Future Directions 197

in task's WCRT estimates. For example, consider the scenario shown in Figure 10.1, where task

t 1 has more memory blocks persistent in the cache when the cache has two levels, i.e., L1 and L2,

in comparison to the case where there is only a single cache level, i.e., L1.

Figure 10.1: Cache persistence-aware analysis of multiple cache levels may lead more tighter
WCRT bounds.

10.2.2 Inter-task Cache Interference Analysis for Last-level Shared Caches

The current analysis focus on inter-task cache interference, i.e., cache interference between tasks

executing on the same processor/core, and assume that the cache(s) is/are private to the cores.

However, in many modern processors last-level cache is usually shared among cores which may

lead tointer-core cache interference, i.e., tasks running on different cores may concurrently access

the last level cache and if two lines in the two addressing spaces of the running tasks map to the

same cache line, said tasks can repeatedly evict each other in cache. Inter-core cache interference

can occur between tasks that can run in parallel on different cores, therefore the exact interference

analysis requires analyzing all the possible interleaving of task executions. This makes the analysis

of inter-core cache interference much harder in comparison to the analysis of intra-core or inter-

task cache interference. There exist few approaches in the state-of-the-art (Xiao et al., 2017,

2020) that focus on the computation of inter-core cache interference. However, these approaches

focus on non-preemptive task systems and assume that the intra-core cache interference is already

considered in the task's WCETs. Therefore, an interesting problem to solve is to bound inter-

core cache interference for systems that allow preemptions. This requires to analyze intra- and

inter-core cache interference simultaneously which is a challenging endeavor.

198 Thesis Summary, Limitations and Future Directions

Figure 10.2: Under preemptive scheduling, simultaneous analysis of intra- and inter-core cache
interference is a challenge.

10.2.3 Holistic Memory Contention Analysis for Preemptive Systems

Main memory is one of the hardware resources that is shared by different tasks executing on a mul-

ticore platform and the time needed to access a block from the main memory mainly depends on

the number of requests generated by the executing tasks and the behavior of the memory controller.

Several works have been proposed in literature that focus on bounding main memory contention

by using techniques such as the DRAM bank partitioning (Reineke et al., 2011; Wu et al., 2013;

Kim et al., 2014) and memory bandwidth reservation (Yun et al., 2012, 2013, 2014). However,

these approaches may still result in pessimistic/optimistic estimates on the memory interference

delay considering that these approaches usually do not consider the relationship between main

memory and other resources, i.s., the bus and caches. As we have shown in Chapter 9, the number

of main memory requests generated by a task during its execution strongly depends on the con-

tention it may suffer on the cache or at the bus. Therefore, an interesting prospective is to provide

a holistic memory contention analysis that considers the relationship between caches, bus and the

main memory.

10.2.4 Cache Persistence-aware Inter-task Cache Interference Analysis consider-
ing Dynamic Priority Scheduling

In the current work, we focus on systems where tasks are scheduled under a �xed-priority assign-

ment scheme, e.g., Rate or Deadline Monotonic (Liu and Layland, 1973), and show that a cache

persistence-aware inter-task cache interference analysis can greatly improve system's schedulabil-

ity. However, considering the bene�ts dynamic priority scheduling schemes such as theEarliest

10.3 Conclusions 199

Deadline First(EDF) can offer in comparison to �xed-priority schemes, it would be very interest-

ing to adapt the proposed analysis to EDF. The work of Lunniss et al. (Lunniss et al., 2013, 2014)

can be very helpful in this regard. It focus on integrating CRPDs into schedulability tests for EDF

and compare the performance of FP and EDF scheduling algorithms in the presence of CRPD.

Knowing that an inter-task cache interference analysis that accounts for both cache persistence

and CRPDs dominates the analysis that only consider CRPDs, we expect EDF to offer signi�cant

performance gains over FP when cache persistence is considered.

10.3 Conclusions

The work done in this dissertation shows that inter-task interference due to contention for shared

resources such as caches and memory bus can greatly affect the temporal behavior of tasks. A

correct and sound computation of shared resource contention is therefore essential to improve

the accuracy of schedulability analyses. The proposed analysis framework provides a holistic

solution that considers the inter-dependency between the behavior of different shared resources

thus providing deterministic bounds on the WCRT of tasks.

Bibliography

“Aramis project,” https://www.projekt-aramis.de/.

“Frescor fp7 project,” ftp://ftp.cordis.europa.eu/pub/ist/docs/dir_c/ems/frescor-v1_en.pdf.

“Multiprocessor execution platforms,” http://download.tuxfamily.org/erika/webdownload/nios2/
1422/FRESCOR_WP4_D-EP7v2.pdf.

“Single core equivalence,” http://rtsl-edge.cs.illinois.edu/SCE/.

“Deadline scheduling for linux,” https://en.wikipedia.org/wiki/SCHED_DEADLINE.

“ait wcet analyser,” http://www.absint.com/ait.

“Front-side bus,” May 2017. [Online]. Available: https://en.wikipedia.org/wiki/Front-side_bus

“Bus (computing),” May 2017. [Online]. Available: https://en.wikipedia.org/wiki/Bus_
(computing)

“Rapitime,” http://www.rapitasystems.com.

D. Adams, The Hitchhiker's Guide to the Galaxy. San Val, 1995. [Online]. Available:
http://books.google.com/books?id=W-xMPgAACAAJ

B. Akesson and K. Goossens, “Architectures and modeling of predictable memory controllers for
improved system integration,” inDesign, Automation & Test in Europe Conference & Exhibition
(DATE), 2011. IEEE, 2011, pp. 1–6.

B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable sdram memory controller,”
in Proceedings of the 5th IEEE/ACM international conference on Hardware/software codesign
and system synthesis. ACM, 2007, pp. 251–256.

S. Altmeyer,Analysis of preemptively scheduled hard real-time systems. epubli GmbH, 2013.

S. Altmeyer and C. M. Burguière, “Cache-related preemption delay via useful cache blocks: Sur-
vey and rede�nition,”Journal of Systems Architecture, vol. 57, no. 7, pp. 707–719, 2011.

S. Altmeyer and G. Gebhard, “Optimal task placement to improve cache performance,” inIn
EMSOFT. Citeseer, 2007.

S. Altmeyer, C. Maiza, and J. Reineke, “Resilience analysis: tightening the crpd bound for set-
associative caches,” inACM Sigplan Notices, vol. 45, no. 4. ACM, 2010, pp. 153–162.

S. Altmeyer, R. Davis, C. Maizaet al., “Cache related pre-emption delay aware response time
analysis for �xed priority pre-emptive systems,” inRTSS'11. IEEE, 2011, pp. 261–271.

200

https://www.projekt-aramis.de/
ftp://ftp.cordis.europa.eu/pub/ist/docs/dir_c/ems/frescor-v1_en.pdf
http://download.tuxfamily.org/erika/webdownload/nios2/1422/FRESCOR_WP4_D-EP7v2.pdf
http://download.tuxfamily.org/erika/webdownload/nios2/1422/FRESCOR_WP4_D-EP7v2.pdf
http://rtsl-edge.cs.illinois.edu/SCE/
https://en.wikipedia.org/wiki/SCHED_DEADLINE
http://www.absint.com/ait.
https://en.wikipedia.org/wiki/Front-side_bus
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Bus_(computing)
http://www.rapitasystems.com
http://books.google.com/books?id=W-xMPgAACAAJ

BIBLIOGRAPHY 201

S. Altmeyer, R. I. Davis, and C. Maiza, “Improved cache related pre-emption delay aware response
time analysis for �xed priority pre-emptive systems,”Real-Time Systems, vol. 48, no. 5, pp.
499–526, 2012.

S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis, “Outstanding paper: Evaluation of cache
partitioning for hard real-time systems,” in2014 26th Euromicro Conference on Real-Time Sys-
tems. IEEE, 2014, pp. 15–26.

S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke, “A generic and com-
positional framework for multicore response time analysis,” inRTNS'15. ACM, 2015, pp.
129–138.

S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis, “On the effectiveness of cache partitioning
in hard real-time systems,”Real-Time Systems, vol. 52, no. 5, pp. 598–643, 2016.

R. Alur and D. L. Dill, “A theory of timed automata,”Theoretical computer science, vol. 126,
no. 2, pp. 183–235, 1994.

B. Andersson and E. Tovar, “Multiprocessor scheduling with few preemptions,” inEmbedded and
Real-Time Computing Systems and Applications, 2006. Proceedings. 12th IEEE International
Conference on. IEEE, 2006, pp. 322–334.

B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on multiprocessors,” inReal-
Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd IEEE. IEEE, 2001, pp. 193–
202.

L. C. Aparicio, J. Segarra, C. Rodríguez, and V. Viñals, “Improving the wcet computation in the
presence of a lockable instruction cache in multitasking real-time systems,”Journal of Systems
Architecture, vol. 57, no. 7, pp. 695–706, 2011.

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings, “Applying new scheduling
theory to static priority pre-emptive scheduling,”Software Engineering Journal, vol. 8, no. 5,
pp. 284–292, 1993.

F. A. Authority, ““cast-32-a: Multi-core processors,” 2016. [Online]. Available: https:
//www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf

T. P. Baker, “An analysis of edf schedulability on a multiprocessor,”IEEE transactions on parallel
and distributed systems, vol. 16, no. 8, pp. 760–768, 2005.

A. Banerjee, S. Chattopadhyay, and A. Roychoudhury, “Precise micro-architectural modeling for
wcet analysis via ai+ sat,” inReal-Time and Embedded Technology and Applications Symposium
(RTAS), 2013 IEEE 19th. IEEE, 2013, pp. 87–96.

S. Baruah, “The limited-preemption uniprocessor scheduling of sporadic task systems,” inECRTS
2005. IEEE, 2005, pp. 137–144.

S. Baruah and J. Goossens, “Scheduling real-time tasks: Algorithms and complexity,”Handbook
of scheduling: Algorithms, models, and performance analysis, vol. 3, 2004.

S. Baruah, M. Bertogna, and G. Buttazzo,Multiprocessor Scheduling for Real-Time Systems.
Springer, 2015.

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf

202 BIBLIOGRAPHY

S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportionate progress: A notion of
fairness in resource allocation,”Algorithmica, vol. 15, no. 6, pp. 600–625, 1996.

A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemption and migration delays:
Empirical approximation and impact on schedulability,”Proceedings of OSPERT, pp. 33–44,
2010.

S. Basumallick and K. Nilsen, “Cache issues in real-time systems,” inACM SIGPLAN Workshop
on Language, Compiler, and Tool Support for Real-Time Systems, vol. 5. Citeseer, 1994.

P. Baufreton, V. Bregeon, K. Didier, G. Iooss, D. Potop-Butucaru, and J. Souyris, “Ef�cient
�ne-grain parallelism in shared memory for real-time avionics,” inERTS 2020-10th European
Congress Embedded Real Time Systems, 2020.

F. Bellosa, “Process cruise control: Throttling memory access in a soft real-time environment,”
University of Erlangen, Tech. Rep, 1997.

M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo, “Optimal selection of pre-
emption points to minimize preemption overhead,” inECRTS'11. IEEE, 2011, pp. 217–227.

E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability tests,”Real-Time Sys-
tems, vol. 30, no. 1-2, pp. 129–154, 2005.

T. Blaß, S. Hahn, and J. Reineke, “Write-back caches in wcet analysis,” inLIPIcs-Leibniz Interna-
tional Proceedings in Informatics, vol. 76. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

R. J. Bril, S. Altmeyer, M. M. van den Heuvel, R. I. Davis, and M. Behnam, “Integrating cache-
related pre-emption delays into analysis of �xed priority scheduling with pre-emption thresh-
olds,” in 2014 IEEE Real-Time Systems Symposium. IEEE, 2014, pp. 161–172.

B. D. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact of cache partitioning on multi-tasking
real time embedded systems,” in2008 14th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications. IEEE, 2008, pp. 101–110.

A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, “New strategies for assigning real-time tasks
to multiprocessor systems,”IEEE transactions on computers, vol. 44, no. 12, pp. 1429–1442,
1995.

P. Burgio, A. Marongiu, P. Valente, and M. Bertogna, “A memory-centric approach to enable
timing-predictability within embedded many-core accelerators,” inReal-Time and Embedded
Systems and Technologies (RTEST), 2015 CSI Symposium on, Oct 2015, pp. 1–8.

C. Burguière, J. Reineke, and S. Altmeyer, “Cache-related preemption delay computation for set-
associative caches-pitfalls and solutions,” inOASIcs-OpenAccess Series in Informatics, vol. 10.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

A. Burns,Preemptive priority based scheduling: An appropriate engineering approach. Citeseer,
1993.

A. Burns and R. I. Davis, “Adaptive mixed criticality scheduling with deferred preemption,” in
2014 IEEE Real-Time Systems Symposium. IEEE, 2014, pp. 21–30.

BIBLIOGRAPHY 203

A. Burns, R. I. Davis, P. Wang, and F. Zhang, “Partitioned edf scheduling for multiprocessors
using a c= d task splitting scheme,”Real-Time Systems, vol. 48, no. 1, pp. 3–33, 2012.

J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings, “Adding instruction cache
effect to schedulability analysis of preemptive real-time systems,” inRTAS'96. IEEE, 1996,
pp. 204–212.

J. V. Busquets-Mataix, J. J. Serrano, and A. Wellings, “Hybrid instruction cache partitioning for
preemptive real-time systems,” inReal-Time Systems, Proceedings., Ninth Euromicro Workshop
on. IEEE, 1997, pp. 56–63.

J. V. Busquets-Mataix, D. Gil, P. Gil, and A. Wellings, “Techniques to increase the schedulable uti-
lization of cache-based preemptive real-time systems,”Journal of systems architecture, vol. 46,
no. 4, pp. 357–378, 2000.

G. Buttazzo,Hard real-time computing systems: predictable scheduling algorithms and applica-
tions. Springer Science & Business Media, 2011, vol. 24.

G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive scheduling for real-time systems.
a survey,”Industrial Informatics, IEEE Transactions on, vol. 9, no. 1, pp. 3–15, 2013.

M. Campoy, A. P. Ivars, and J. Busquets-Mataix, “Static use of locking caches in multitask pre-
emptive real-time systems,” inProceedings of IEEE/IEE Real-Time Embedded Systems Work-
shop (Satellite of the IEEE Real-Time Systems Symposium). Citeseer, 2001, pp. 1–6.

J. Cavicchio, C. Tessler, and N. Fisher, “Minimizing cache overhead via loaded cache blocks and
preemption placement,” in2015 27th Euromicro Conference on Real-Time Systems. IEEE,
2015, pp. 163–173.

N. Cecere, M. Tipaldi, R. Wenker, and U. Villano, “Measurement and analysis of schedulability
of spacecraft on-board software,” in2016 IEEE Metrology for Aerospace (MetroAeroSpace).
IEEE, 2016, pp. 545–550.

F. Certi�cation Authorities Software Team (CAST) Position Paper CAST-32, “Multi-core proces-
sors,” 2014.

S. Chattopadhyay and A. Roychoudhury, “Scalable and precise re�nement of cache timing anal-
ysis via model checking,” inReal-Time Systems Symposium (RTSS), 2011 IEEE 32nd. IEEE,
2011, pp. 193–203.

S. Chattopadhyay and A. Roychoudhury, “Cache-related preemption delay analysis for multilevel
noninclusive caches,”ACM Transactions on Embedded Computing Systems (TECS), vol. 13,
no. 5s, pp. 1–29, 2014.

S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Modeling shared cache and bus in multi-cores
for timing analysis,” inProceedings of the 13th international workshop on software & compilers
for embedded systems. ACM, 2010, p. 6.

S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Marwedel, and H. Falk, “A uni�ed
wcet analysis framework for multicore platforms,”ACM Transactions on Embedded Computing
Systems (TECS), vol. 13, no. 4s, p. 124, 2014.

204 BIBLIOGRAPHY

H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time scheduling algorithm for multipro-
cessors,” inReal-Time Systems Symposium, 2006. RTSS'06. 27th IEEE International. IEEE,
2006, pp. 101–110.

A. Chousein and R. N. Mahapatra, “Fully associative cache partitioning with don't care bits for
real-time applications,”ACM SIGBED Review, vol. 2, no. 2, pp. 35–38, 2005.

E. M. Clarke, O. Grumberg, and D. Peled,Model checking. MIT press, 1999.

A. Colin and I. Puaut, “A modular and retargetable framework for tree-based wcet analysis,” in
Real-Time Systems, 13th Euromicro Conference on, 2001.IEEE, 2001, pp. 37–44.

P. Cousot and R. Cousot, “Abstract interpretation: a uni�ed lattice model for static analysis of pro-
grams by construction or approximation of �xpoints,” inProceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. ACM, 1977, pp. 238–252.

C. Cullmann, “Cache persistence analysis: Theory and practice,”ACM Transactions on Embedded
Computing Systems (TECS), vol. 12, no. 1s, p. 40, 2013.

A. E. Dalsgaard, M. C. Olesen, M. Toft, R. R. Hansen, and K. G. Larsen, “Metamoc: Modular
execution time analysis using model checking,” inOASIcs-OpenAccess Series in Informatics,
vol. 15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and J. Lee, “Response time analysis
of cots-based multicores considering the contention on the shared memory bus,” in2011IEEE
10th International Conference on Trust, Security and Privacy in Computing and Communica-
tions. IEEE, 2011, pp. 1068–1075.

D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and J. Lee, “Response time analysis
of cots-based multicores considering the contention on the shared memory bus,” in2011IEEE
10th International Conference on Trust, Security and Privacy in Computing and Communica-
tions. IEEE, 2011, pp. 1068–1075.

D. Dasari, B. Akesson, V. Nelis, M. A. Awan, and S. M. Petters, “Identifying the sources of
unpredictability in cots-based multicore systems,” in2013 8th IEEE International Symposium
on Industrial Embedded Systems (SIES). IEEE, 2013, pp. 39–48.

D. Dasari, V. Nelis, and B. Akesson, “A framework for memory contention analysis in multi-core
platforms,”Real-Time Systems, vol. 52, no. 3, pp. 272–322, 2016.

R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor systems,”
ACM Computing Surveys (CSUR), vol. 43, no. 4, p. 35, 2011.

R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor systems,”
ACM computing surveys (CSUR), vol. 43, no. 4, p. 35, 2011.

R. I. Davis, S. Altmeyer, and J. Reineke, “Analysis of write-back caches under �xed-priority pre-
emptive and non-preemptive scheduling,” inProceedings of the 24th International Conference
on Real-Time Networks and Systems. ACM, 2016, pp. 309–318.

R. I. Davis, S. Altmeyer, L. S. Indrusiak, C. Maiza, V. Nelis, and J. Reineke, “An extensible
framework for multicore response time analysis,”Real-Time Systems, vol. 54, no. 3, pp. 607–
661, 2018.

BIBLIOGRAPHY 205

R. I. Davis, I. Bate, G. Bernat, I. Broster, A. Burns, A. Colin, S. Hutchesson, and N. Tracey,
“Transferring real-time systems research into industrial practice: Four impact case studies,” in
30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

M. Deck, “Software reliability and the" cleanroom" approach: a position paper,” inReliability and
Maintainability Symposium, 1998. Proceedings., Annual. IEEE, 1998, pp. 218–223.

S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,”Operations research, vol. 26,
no. 1, pp. 127–140, 1978.

M. Di Natale and A. L. Sangiovanni-Vincentelli, “Moving from federated to integrated archi-
tectures in automotive: The role of standards, methods and tools,”Proceedings of the IEEE,
vol. 98, no. 4, pp. 603–620, 2010.

H. Ding, Y. Liang, and T. Mitra, “Wcet-centric dynamic instruction cache locking,” inDesign,
Automation and Test in Europe Conference and Exhibition (DATE), 2014. IEEE, 2014, pp.
1–6.

A. Ermedahl, “A modular tool architecture for worst-case execution time analysis,” Ph.D. disser-
tation, Acta Universitatis Upsaliensis, 2003.

M. S. Espinoza, J. Goncalves, P. Leitao, J. L. G. Sanchez, and A. Herreros, “Inverse kinematics of
a 10 dof modular hyper-redundant robot resorting to exhaustive and error-optimization methods:
A comparative study,” inRobotics Symposium and Latin American Robotics Symposium (SBR-
LARS), 2012 Brazilian. IEEE, 2012, pp. 125–130.

M. S. Espinoza, A. I. Pereira, and J. Gonçalves, “Optimization methods for hyper-redundant
robots' inverse kinematics in biomedical applications,” inAIP Conference Proceedings, vol.
1479, 2012, p. 818.

H. Falk and H. Kotthaus, “Wcet-driven cache-aware code positioning,” in2011 Proceedings of
the 14th International Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES). IEEE, 2011, pp. 145–154.

H. Falk, S. Plazar, and H. Theiling, “Compile-time decided instruction cache locking using worst-
case execution paths,” inProceedings of the 5th IEEE/ACM international conference on Hard-
ware/software codesign and system synthesis. ACM, 2007, pp. 143–148.

C. Ferdinand and R. Wilhelm, “Ef�cient and precise cache behavior prediction for real-time sys-
tems,”Real-time systems, vol. 17, no. 2, pp. 131–181, 1999.

C. Ferdinand, R. Heckmann, and B. Franzen, “Static memory and timing analysis of embedded
systems code,” inProceedings of VVSS2007-3rd European Symposium on Veri�cation and Val-
idation of Software Systems, 23rd of March, 2007, pp. 07–04.

G. Fernandez, J. Jalle, J. Abella, E. Quiñones, T. Vardanega, and F. J. Cazorla, “Resource usage
templates and signatures for cots multicore processors,” inProceedings of the 52nd Annual
Design Automation Conference. ACM, 2015, p. 155.

M. Fernández, R. Gioiosa, E. Quiñones, L. Fossati, M. Zulianello, and F. J. Cazorla, “Assessing
the suitability of the ngmp multi-core processor in the space domain,” inProceedings of the
tenth ACM international conference on Embedded software. ACM, 2012, pp. 175–184.

206 BIBLIOGRAPHY

S. Funk, “Lre-tl: an optimal multiprocessor algorithm for sporadic task sets with unconstrained
deadlines,”Real-Time Systems, vol. 46, no. 3, pp. 332–359, 2010.

J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling of periodic task systems on
multiprocessors,”Real-time systems, vol. 25, no. 2-3, pp. 187–205, 2003.

G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pellizzoni, “A survey on cache
management mechanisms for real-time embedded systems,”ACM Computing Surveys (CSUR),
vol. 48, no. 2, p. 32, 2015.

N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling and analysis for multicores,”
in Proceedings of the seventh ACM international conference on Embedded software. ACM,
2009, pp. 245–254.

N. Guan, X. Yang, M. Lv, and W. Yi, “Fifo cache analysis for wcet estimation: a quantitative
approach,” inProceedings of the Conference on Design, Automation and Test in Europe. EDA
Consortium, 2013, pp. 296–301.

N. Guan, M. Lv, W. Yi, and G. Yu, “Wcet analysis with mru cache: challenging lru for predictabil-
ity,” ACM Transactions on Embedded Computing Systems (TECS), vol. 13, no. 4s, p. 123, 2014.

J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen WCET benchmarks: Past,
present and future,” inOASIcs-OpenAccess Series in Informatics, vol. 15. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2010.

A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson, “Towards wcet analysis of multicore
architectures using uppaal,” inOASIcs-OpenAccess Series in Informatics, vol. 15. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in execution time analysis–
de�nition and challenges,” inCRTS, 2013.

S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in execution time analysis: de�-
nition and challenges,”ACM SIGBED Review, vol. 12, no. 1, pp. 28–36, 2015.

D. Hardy and I. Puaut, “Wcet analysis of multi-level non-inclusive set-associative instruction
caches,” in2008 Real-Time Systems Symposium. IEEE, 2008, pp. 456–466.

D. Hardy and I. Puaut, “Wcet analysis of instruction cache hierarchies,”Journal of Systems Archi-
tecture, vol. 57, no. 7, pp. 677–694, 2011.

D. Hardy, T. Piquet, and I. Puaut, “Using bypass to tighten wcet estimates for multi-core proces-
sors with shared instruction caches,” inReal-Time Systems Symposium, 2009, RTSS 2009. 30th
IEEE. IEEE, 2009, pp. 68–77.

D. Hardy, B. Rouxel, and I. Puaut, “The heptane static worst-case execution time estimation tool,”
in 17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

R. Hegde, “Optimizing application performance on intel core microarchitecture using hardware-
implemented prefetchers,”Intel Software Network, 2008.

F. e. a. Heiko, “TACLeBench: A benchmark collection to support worst-case execution time re-
search,” inWCET 2016, ser. OpenAccess Series in Informatics, M. Schoeberl, Ed., vol. 55.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016, pp. 2:1–2:10.

BIBLIOGRAPHY 207

H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Le�our, J.-L. Maté,
K. Nishikawa, and T. Scharnhorst, “Automotive open system architecture-an industry-wide ini-
tiative to manage the complexity of emerging automotive e/e-architectures,”Convergence, pp.
325–332, 2004.

N. Holsti and S. Saarinen, “Status of the bound-t wcet tool,”Space Systems Finland Ltd, 2002.

W.-H. Huang, J.-J. Chen, and J. Reineke, “Mirror: symmetric timing analysis for real-time tasks
on multicore platforms with shared resources,” inDAC. ACM, 2016, p. 158.

B. K. Huynh, L. Ju, and A. Roychoudhury, “Scope-aware data cache analysis for wcet estimation,”
in Real-Time and Embedded Technology and Applications Symposium (RTAS), 2011 17th IEEE.
IEEE, 2011, pp. 203–212.

B. Jacob, S. Ng, and D. Wang,Memory systems: cache, DRAM, disk. Morgan Kaufmann, 2010.

K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive scheduling of period and sporadic
tasks,” inRTSS'91. IEEE, 1991, pp. 129–139.

M. Joseph and P. Pandya, “Finding response times in a real-time system,”The Computer Journal,
vol. 29, no. 5, pp. 390–395, 1986.

R. Kamal,Embedded systems: architecture, programming and design. Tata McGraw-Hill Edu-
cation, 2011.

S. Kato and N. Yamasaki, “Portioned edf-based scheduling on multiprocessors,” inProceedings
of the 8th ACM international conference on Embedded software. ACM, 2008, pp. 139–148.

S. Kato and N. Yamasaki, “Semi-partitioned �xed-priority scheduling on multiprocessors,” in
Real-Time and Embedded Technology and Applications Symposium, 2009. RTAS 2009. 15th
IEEE. IEEE, 2009, pp. 23–32.

T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury, “Bus-aware multicore
wcet analysis through tdma offset bounds,” in2011 23rd Euromicro Conference on Real-Time
Systems. IEEE, 2011, pp. 3–12.

H. Kim, A. Kandhalu, and R. Rajkumar, “A coordinated approach for practical os-level cache man-
agement in multi-core real-time systems,” inReal-Time Systems (ECRTS), 2013 25th Euromicro
Conference on. IEEE, 2013, pp. 80–89.

H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, “Bounding memory inter-
ference delay in cots-based multi-core systems,” in2014 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2014, pp. 145–154.

H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, “Bounding and reducing
memory interference in cots-based multi-core systems,”Real-Time Systems, vol. 52, no. 3, pp.
356–395, 2016.

D. B. Kirk and J. K. Strosnider, “Smart (strategic memory allocation for real-time) cache design
using the mips r3000,” inReal-Time Systems Symposium, 1990. Proceedings., 11th. IEEE,
1990, pp. 322–330.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”science,
vol. 220, no. 4598, pp. 671–680, 1983.

208 BIBLIOGRAPHY

R. Kirner, P. Puschner, I. Wenzelet al., Measurement-based worst-case execution time analysis
using automatic test-data generation. na, 2004.

C. H. Koo and H. Kim, “Measurement of cache-related preemption delay for spacecraft com-
puters,” in2018 IEEE 24th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). IEEE, 2018, pp. 234–235.

H. Kopetz, “An integrated architecture for dependable embedded systems,” inReliable Distributed
Systems, 2004. Proceedings of the 23rd IEEE International Symposium on. IEEE, 2004, pp.
160–161.

M. Kowarschik and C. Weiß, “An overview of cache optimization techniques and cache-aware
numerical algorithms,” inAlgorithms for memory hierarchies. Springer, 2003, pp. 213–232.

K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned �xed-priority preemptive scheduling
for multi-core processors,” inReal-Time Systems, 2009. ECRTS'09. 21st Euromicro Conference
on. IEEE, 2009, pp. 239–248.

C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S. Kim,
“Analysis of cache-related preemption delay in �xed-priority preemptive scheduling,”Comput-
ers, IEEE Transactions on, vol. 47, no. 6, pp. 700–713, 1998.

J. Y.-T. Leung and J. Whitehead, “On the complexity of �xed-priority scheduling of periodic,
real-time tasks,”Performance evaluation, vol. 2, no. 4, pp. 237–250, 1982.

X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A timing analyzer for embedded
software,”Science of Computer Programming, vol. 69, no. 1, pp. 56–67, 2007.

Y.-T. S. Li and S. Malik, “Performance analysis of embedded software using implicit path enu-
meration,” inLCTES '95: Proceedings of the ACM SIGPLAN 1995 workshop on Languages,
compilers, & tools for real-time systems, R. Gerber and T. Marlowe, Eds., vol. 30, no. 11, New
York, NY, USA, Nov. 1995, pp. 88–98.

Y.-T. Li and S. Malik, “Performance analysis of embedded software using implicit path enu-
meration,”IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 16, no. 12, pp. 1477–1487, 1997.

Y.-T. Li, S. Malik, and A. Wolfe, “Cache modeling for real-time software: Beyond direct mapped
instruction caches,” inReal-Time Systems Symposium, 1996., 17th IEEE. IEEE, 1996, pp.
254–263.

Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury, “Timing analysis of concurrent
programs running on shared cache multi-cores,” inReal-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE. IEEE, 2009, pp. 57–67.

Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury, “Timing analysis of concurrent
programs running on shared cache multi-cores,” inReal-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE. IEEE, 2009, pp. 57–67.

J. Liedtke, H. Hartig, and M. Hohmuth, “Os-controlled cache predictability for real-time systems,”
in Real-Time Technology and Applications Symposium, 1997. Proceedings., Third IEEE. IEEE,
1997, pp. 213–224.

BIBLIOGRAPHY 209

J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, “Gaining insights into multicore
cache partitioning: Bridging the gap between simulation and real systems,” inHPCA. IEEE,
2008, pp. 367–378.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time
environment,”JACM, vol. 20, no. 1, pp. 46–61, 1973.

F. Liu, A. Narayanan, and Q. Bai, “Real-time systems,” 2000.

F. Liu and Y. Solihin, “Understanding the behavior and implications of context switch misses,”
ACM Transactions on Architecture and Code Optimization (TACO), vol. 7, no. 4, p. 21, 2010.

J. W. Liu, “Real-time systems. 2000.”

T. Liu, M. Li, and C. J. Xue, “Instruction cache locking for real-time embedded systems
with multi-tasks,” inEmbedded and Real-Time Computing Systems and Applications, 2009.
RTCSA'09. 15th IEEE International Conference on. IEEE, 2009, pp. 494–499.

T. Liu, M. Li, and C. J. Xue, “Minimizing wcet for real-time embedded systems via static instruc-
tion cache locking,” inReal-Time and Embedded Technology and Applications Symposium,
2009. RTAS 2009. 15th IEEE. IEEE, 2009, pp. 35–44.

T. Liu, Y. Zhao, M. Li, and C. J. Xue, “Task assignment with cache partitioning and locking for
wcet minimization on mpsoc,” inParallel Processing (ICPP), 2010 39th International Confer-
ence on. IEEE, 2010, pp. 573–582.

P. Lokuciejewski, H. Falk, and P. Marwedel, “Wcet-driven cache-based procedure positioning
optimizations,” in2008 Euromicro Conference on Real-Time Systems. IEEE, 2008, pp. 321–
330.

T. Lundqvist,A WCET analysis method for pipelined microprocessors with cache memories. Cite-
seer, 2002.

W. Lunniss, S. Altmeyer, and R. I. Davis, “Optimising task layout to increase schedulability via
reduced cache related pre-emption delays,” inProceedings of the 20th International Conference
on Real-Time and Network Systems, 2012, pp. 161–170.

W. Lunniss, S. Altmeyer, C. Maiza, and R. I. Davis, “Integrating cache related pre-emption de-
lay analysis into edf scheduling,” inReal-Time and Embedded Technology and Applications
Symposium (RTAS), 2013 IEEE 19th. IEEE, 2013, pp. 75–84.

W. Lunniss, S. Altmeyer, and R. I. Davis, “A comparison between �xed priority and edf scheduling
accounting for cache related pre-emption delays,”Leibniz Transactions on Embedded Systems,
vol. 1, no. 1, pp. 01–1, 2014.

M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract interpretation with model checking for
timing analysis of multicore software,” inReal-Time Systems Symposium (RTSS), 2010 IEEE
31st. IEEE, 2010, pp. 339–349.

M. Lv, N. Guan, Q. Deng, G. Yu, and W. Yi, “Mcait–a timing analyzer for multicore real-time
software,” inInternational Symposium on Automated Technology for Veri�cation and Analysis.
Springer, 2011, pp. 414–417.

210 BIBLIOGRAPHY

M. Lv, N. GUAN, W. YI, J. REINEKE, and R. WILHELM, “A survey on cache analysis for
real-time systems,”ACM Computing Surveys, p. 45, 2015.

C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I. Davis, “A survey of timing
veri�cation techniques for multi-core real-time systems,”ACM Computing Surveys (CSUR),
vol. 52, no. 3, pp. 1–38, 2019.

R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni, “Real-time cache
management framework for multi-core architectures,” inReal-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th. IEEE, 2013, pp. 45–54.

R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun, “Wcet (m) estimation in multi-core
systems using single core equivalence,” inReal-Time Systems (ECRTS), 2015 27th Euromicro
Conference on. IEEE, 2015, pp. 174–183.

J. M. Marinho, V. Nélis, S. M. Petters, and I. Puaut, “An improved preemption delay upper bound
for �oating non-preemptive region,” in7th IEEE International Symposium on Industrial Em-
bedded Systems (SIES'12). IEEE, 2012, pp. 57–66.

J. M. Marinho, V. Nélis, S. M. Petters, and I. Puaut, “Preemption delay analysis for �oating non-
preemptive region scheduling,” inDATE'12. IEEE, 2012, pp. 497–502.

F. Markovíc, “Preemption-delay aware schedulability analysis of real-time systems,” Ph.D. disser-
tation, Mälardalen University, 2020.

F. Markovic, J. Carlson, and R. Dobrin, “Tightening the bounds on cache-related preemption delay
in �xed preemption point scheduling,” in17th International Workshop on Worst-Case Execution
Time Analysis (WCET 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

F. Markovíc, J. Carlson, and R. Dobrin, “Improved cache-related´ preemption delay estimation
for �xed preemption point scheduling,” inAda-Europe International Conference on Reliable
Software Technologies. Springer, 2018, pp. 87–101.

F. Markovíc, J. Carlson, S. Altmeyer, and R. Dobrin, “Improving the accuracy of cache-aware
response time analysis using preemption partitioning,” in32nd Euromicro Conference on Real-
Time Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

F. Markovíc, J. Carlson, and R. Dobrin, “Cache-aware response time analysis for real-time tasks
with �xed preemption points,” in2020 IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS). IEEE, 2020, pp. 30–42.

M. A. Marsan, G. Balbo, G. Conte, and F. Gregoretti, “Modeling bus contention and memory
interference in a multiprocessor system,”IEEE Transactions on Computers, no. 1, pp. 60–72,
1983.

F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand, “Analysis of loops,” inInternational Conference
on Compiler Construction. Springer, 1998, pp. 80–94.

E. Mezzetti and T. Vardanega, “A rapid cache-aware procedure positioning optimization to fa-
vor incremental development,” in2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2013, pp. 107–116.

A. K. Mok, “Fundamental design problems of distributed systems for the hard-real-time environ-
ment,” 1983.

BIBLIOGRAPHY 211

T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial of memory service in multi-
core systems,” inProceedings of 16th USENIX Security Symposium on USENIX Security Sym-
posium. USENIX Association, 2007, p. 18.

F. Mueller, “Compiler support for software-based cache partitioning,” inACM Sigplan Notices,
vol. 30, no. 11. ACM, 1995, pp. 125–133.

F. Mueller, “Timing predictions for multi-level caches,” inACM SIGPLAN Workshop on Lan-
guage, Compiler, and Tool Support for Real-Time Systems. Citeseer, 1997, pp. 29–36.

F. Mueller, “Timing analysis for instruction caches,”Real-time systems, vol. 18, no. 2, pp. 217–
247, 2000.

D. Muench, M. Paulitsch, and A. Herkersdorf, “Iompu: Spatial separation for hardware-based i/o
virtualization for mixed-criticality embedded real-time systems using non-transparent bridges,”
in High Performance Computing and Communications (HPCC), 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International Conferen
on Embedded Software and Systems (ICESS), 2015 IEEE 17th International Conference on.
IEEE, 2015, pp. 1037–1044.

K. Müller, G. Sigl, B. Triquet, and M. Paulitsch, “On mils i/o sharing targeting avionic systems,” in
Dependable Computing Conference (EDCC), 2014 Tenth European. IEEE, 2014, pp. 182–193.

S. P. Muralidhara, M. Kandemir, and P. Raghavan, “Intra-application cache partitioning,” inParal-
lel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on. IEEE, 2010,
pp. 1–12.

H. S. Negi, T. Mitra, and A. Roychoudhury, “Accurate estimation of cache-related preemption de-
lay,” in Proceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, 2003, pp. 201–206.

V. Nélis, P. M. Yomsi, L. M. Pinho, J. Fonseca, M. Bertogna, E. Quiñones, R. Vargas, and
A. Marongiu, “The challenge of time-predictability in modern many-core architectures,” in14th
International Workshop on Worst-Case Execution Time Analysis, 2014.

F. Nemer, H. Casse, P. Sainrat, and J. Bahsoun, “Inter-task WCET computation for a-way instruc-
tion caches,” inIndustrial Embedded Systems, 2008. SIES 2008. International Symposium on,
June 2008, pp. 169–176.

F. Nemer, H. Cassé, P. Sainrat, and A. Awada, “Improving the worst-case execution time accu-
racy by inter-task instruction cache analysis,” inIndustrial Embedded Systems, 2007. SIES'07.
International Symposium on. IEEE, 2007, pp. 25–32.

J. Nowotsch and M. Paulitsch, “Quality of service capabilities for hard real-time applications
on multi-core processors,” inProceedings of the 21st International Conference on Real-Time
Networks and Systems. ACM, 2013, pp. 151–160.

J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing architectures in avionics,” in
Dependable Computing Conference (EDCC), 2012 Ninth European. IEEE, 2012, pp. 132–
143.

J. Nowotsch, M. Paulitsch, A. Henrichsen, W. Pongratz, and A. Schacht, “Monitoring and wcet
analysis in cots multi-core-soc-based mixed-criticality systems,” in2014 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2014, pp. 1–5.

212 BIBLIOGRAPHY

I. NXP, Freescale Semiconductor, “Data sheet: "p4080/p4081 qoriq inte-
grated processor hardware speci�cations";,” March 2017. [Online]. Available:
http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/
qoriq-platforms/p-series/qoriq-p4080-p4040-p4081-multicore-communications-processors:
P4080?&tab=Documentation_Tab&linkline=Data-Sheets

Y. Oh and S. H. Son, “Allocating �xed-priority periodic tasks on multiprocessor systems,”Real-
Time Systems, vol. 9, no. 3, pp. 207–239, 1995.

M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero, “Hardware support for wcet
analysis of hard real-time multicore systems,”ACM SIGARCH Computer Architecture News,
vol. 37, no. 3, pp. 57–68, 2009.

M. Paolieri, E. Quinones, F. J. Cazorla, and M. Valero, “An analyzable memory controller for hard
real-time cmps,”IEEE Embedded Systems Letters, vol. 1, no. 4, pp. 86–90, 2009.

M. Paulitsch, J. Nowotsch, D. Münch, and L. Girbinger, “Transparent software replication and
hardware monitoring leveraging modern system-on-chip features,” in2013 IEEE 19th Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications. IEEE,
2013, pp. 157–164.

M. Paulitsch, O. M. Duarte, H. Karray, K. Mueller, D. Muench, and J. Nowotsch, “Mixed-
criticality embedded systems–a balance ensuring partitioning and performance,” inDigital Sys-
tem Design (DSD), 2015 Euromicro Conference on. IEEE, 2015, pp. 453–461.

R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley, “A predictable
execution model for COTS-based embedded systems,” inReal-Time and Embedded Technology
and Applications Symposium (RTAS), 2011 17th IEEE, April 2011, pp. 269–279.

R. Pellizzoni and M. Caccamo, “Toward the predictable integration of real-time cots based sys-
tems,” inRTSS'07. IEEE, 2007, pp. 73–82.

R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele, “Worst case delay analysis
for memory interference in multicore systems,” inProceedings of the Conference on Design,
Automation and Test in Europe. European Design and Automation Association, 2010, pp.
741–746.

B. Peng, N. Fisher, and M. Bertogna, “Explicit preemption placement for real-time conditional
code,” in2014 26th Euromicro Conference on Real-Time Systems. IEEE, 2014, pp. 177–188.

G. Phavorin and P. Richard, “Cacherelated preemption delays and real-time scheduling: A survey
for uniprocessor systems,” Technical report, Laboratoire dInformatique et dAutomatique pour
les Systemes, 2015. URL: http://www. lias-lab. fr/publications/19296/survey. pdf, Tech. Rep.

S. Plazar, P. Lokuciejewski, and P. Marwedel, “Wcet-aware software based cache partitioning for
multi-task real-time systems,” in9th International Workshop on Worst-Case Execution Time
Analysis (WCET'09). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

P. J. Prisaznuk, “Integrated modular avionics,” inAerospace and Electronics Conference, 1992.
NAECON 1992., Proceedings of the IEEE 1992 National. IEEE, 1992, pp. 39–45.

P. J. Prisaznuk, “Arinc 653 role in integrated modular avionics (ima),” in2008 IEEE/AIAA 27th
Digital Avionics Systems Conference. IEEE, 2008, pp. 1–E.

BIBLIOGRAPHY 213

I. Puaut and A. Arnaud, “Dynamic instruction cache locking in hard real-time systems,” inProc.
of the 14th Int. Conference on Real-Time and Network Systems, 2006.

I. Puaut and D. Decotigny, “Low-complexity algorithms for static cache locking in multitask-
ing hard real-time systems,” inReal-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE.
IEEE, 2002, pp. 114–123.

P. Puschner and A. Schedl, “Computing maximum task execution times with linear programming
techniques,”Technische Universität Wien, Institut für Technische Informatik, Tech. Rep, 1995.

H. Ramaprasad and F. Mueller, “Tightening the bounds on feasible preemption points,” in2006
27th IEEE International Real-Time Systems Symposium (RTSS'06). IEEE, 2006, pp. 212–224.

H. Ramaprasad and F. Mueller, “Bounding worst-case response time for tasks with non-preemptive
regions,” in2008 IEEE Real-Time and Embedded Technology and Applications Symposium.
IEEE, 2008, pp. 58–67.

W. RapiTime, “tool homepage, 2006.”

S. A. Rashid, G. Nelissen, and E. Tovar, “Cache persistence aware response time analysis for
�xed priority preemptive systems,” in2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2016, p. 33.

J. Reineke, “The semantic foundations and a landscape of cache-persistence analyses,”Leibniz
Transactions on Embedded Systems, vol. 5, no. 1, pp. 03–1, 2018.

J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and B. Becker, “A de�nition
and classi�cation of timing anomalies,” inOASIcs-OpenAccess Series in Informatics, vol. 4.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2006.

J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “Pret dram controller: Bank privatization
for predictability and temporal isolation,” inHardware/Software Codesign and System Synthesis
(CODES+ ISSS), 2011 Proceedings of the 9th International Conference on. IEEE, 2011, pp.
99–108.

S. Resch, A. Steininger, and C. Scherrer, “A composable real-time architecture for replicated rail-
way applications,”Journal of Systems Architecture, vol. 61, no. 9, pp. 472–485, 2015.

J. Rosen, A. Andrei, P. Eles, and Z. Peng, “Bus access optimization for predictable implementation
of real-time applications on multiprocessor systems-on-chip,” inReal-Time Systems Symposium,
2007. RTSS 2007. 28th IEEE International. IEEE, 2007, pp. 49–60.

J. Rosen, A. Andrei, P. Eles, and Z. Peng, “Bus access optimization for predictable implementation
of real-time applications on multiprocessor systems-on-chip,” inReal-Time Systems Symposium,
2007. RTSS 2007. 28th IEEE International. IEEE, 2007, pp. 49–60.

K. Rosvall and I. Sander, “A constraint-based design space exploration framework for real-time
applications on mpsocs,” inProceedings of the conference on Design, Automation & Test in
Europe. European Design and Automation Association, 2014, p. 326.

S. Schliecker and R. Ernst, “Real-time performance analysis of multiprocessor systems with
shared memory,”ACM Transactions on Embedded Computing Systems (TECS), vol. 10, no. 2,
p. 22, 2010.

214 BIBLIOGRAPHY

S. Schliecker and R. Ernst, “Real-time performance analysis of multiprocessor systems with
shared memory,”ACM Transactions on Embedded Computing Systems (TECS), vol. 10, no. 2,
pp. 1–27, 2011.

S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst, “System level performance
analysis for real-time automotive multicore and network architectures,”IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 7, pp. 979–992, 2009.

S. Schliecker, M. Negrean, and R. Ernst, “Bounding the shared resource load for the performance
analysis of multiprocessor systems,” inProceedings of the conference on design, automation
and test in Europe. European Design and Automation Association, 2010, pp. 759–764.

J. Schneider, “Cache and pipeline sensitive �xed priority scheduling for preemptive real-time sys-
tems,” inReal-Time Systems Symposium, 2000. Proceedings. The 21st IEEE. IEEE, 2000, pp.
195–204.

A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing analysis for tdma arbitration in resource shar-
ing systems,” inReal-Time and Embedded Technology and Applications Symposium (RTAS),
2010 16th IEEE. IEEE, 2010, pp. 215–224.

A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo, “Timing analysis for
resource access interference on adaptive resource arbiters,” inReal-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2011 17th IEEE. IEEE, 2011, pp. 213–222.

J. Simonson and J. H. Patel, “Use of preferred preemption points in cache-based real-time sys-
tems,” inCPDS'95. IEEE, 1995, pp. 316–325.

T. Sondag and H. Rajan, “A more precise abstract domain for multi-level caches for tighter wcet
analysis,” in2010 31st IEEE Real-Time Systems Symposium. IEEE, 2010, pp. 395–404.

D. S. Speci�cation, “Jesd79,” 2010.

A. Srinivasan and S. Baruah, “Deadline-based scheduling of periodic task systems on multipro-
cessors,”Information Processing Letters, vol. 84, no. 2, pp. 93–98, 2002.

J. A. Stankovic, “Misconceptions about real-time computing: A serious problem for next-
generation systems,”Computer, vol. 21, no. 10, pp. 10–19, 1988.

J. Stärner and L. Asplund, “Measuring the cache interference cost in preemptive real-time sys-
tems,” inProceedings of the 2004 ACM SIGPLAN/SIGBED conference on Languages, compil-
ers, and tools for embedded systems, 2004, pp. 146–154.

J. Staschulat and R. Ernst, “Scalable precision cache analysis for real-time software,”ACM Trans-
actions on Embedded Computing Systems (TECS), vol. 6, no. 4, pp. 25–es, 2007.

J. Staschulat, S. Schliecker, and R. Ernst, “Scheduling analysis of real-time systems with precise
modeling of cache related preemption delay,” inECRTS'05. IEEE, 2005, pp. 41–48.

G. Stock, S. Hahn, and J. Reineke, “Cache persistence analysis: Finally exact,” in2019 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2019, pp. 481–494.

V. Suhendra and T. Mitra, “Exploring locking & partitioning for predictable shared caches on
multi-cores,” inProceedings of the 45th annual Design Automation Conference. ACM, 2008,
pp. 300–303.

BIBLIOGRAPHY 215

Y. Tan and V. Mooney, “Timing analysis for preemptive multitasking real-time systems with
caches,”ACM (TECS), vol. 6, no. 1, p. 7, 2007.

C. Tessler, “Bundle: Taming the cache and improving schedulability of multi-threaded hard real-
time systems,” Ph.D. dissertation, Wayne State University, 2019.

C. Tessler and N. Fisher, “Bundle: real-time multi-threaded scheduling to reduce cache con-
tention,” in2016 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2016, pp. 279–290.

C. Tessler and N. Fisher, “Bundlep: Prioritizing con�ict free regions in multi-threaded programs
to improve cache reuse,” in2018 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2018,
pp. 325–337.

C. Tessler and N. Fisher, “Npm-bundle: Non-preemptive multitask scheduling for jobs with
bundle-based thread-level scheduling,” in31st Euromicro Conference on Real-Time Systems
(ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

M. Tham, “Writing research theses or dissertations,” May 2001, university of Newcastle Upon
Tyne. [Online]. Available: http://lorien.ncl.ac.uk/ming/dept/Tips/writing/thesis/thesis-intro.htm

H. Theiling, “Control �ow graphs for real-time systems analysis,”Universität des Saarlandes,
Diss, 2002.

H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and precise WCET prediction by separated
cache and path analyses,”Real-Time Systems, vol. 18, no. 2-3, pp. 157–179, 2000.

S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R. Wilhelm, and
C. Ferdinand, “An abstract interpretation-based timing validation of hard real-time avionics
software,” in2003 International Conference on Dependable Systems and Networks, 2003. Pro-
ceedings. IEEE, 2003, pp. 625–632.

H. Tomiyama and N. D. Dutt, “Program path analysis to bound cache-related preemption delay in
preemptive real-time systems,” inProceedings of the eighth international workshop on Hard-
ware/software codesign. ACM, 2000, pp. 67–71.

H. Tomiyama and H. Yasuura, “Code placement techniques for cache miss rate reduction,”ACM
Transactions on Design Automation of Electronic Systems (TODAES), vol. 2, no. 4, pp. 410–
429, 1997.

T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E. Quinones, M. Gerdes,
M. Paolieri, J. Wolfet al., “Merasa: Multicore execution of hard real-time applications support-
ing analyzability,”IEEE Micro, vol. 30, no. 5, pp. 66–75, 2010.

X. Vera, B. Lisper, and J. Xue, “Data cache locking for higher program predictability,” inACM
SIGMETRICS Performance Evaluation Review, vol. 31, no. 1. ACM, 2003, pp. 272–282.

Y. Wang and M. Saksena, “Scheduling �xed-priority tasks with preemption threshold,” inPro-
ceedings Sixth International Conference on Real-Time Computing Systems and Applications.
RTCSA'99 (Cat. No. PR00306). IEEE, 1999, pp. 328–335.

B. C. Ward, A. Thekkilakattil, and J. H. Anderson, “Optimizing preemption-overhead accounting
in multiprocessor real-time systems,” inProceedings of the 22nd International Conference on
Real-Time Networks and Systems. ACM, 2014, p. 235.

216 BIBLIOGRAPHY

C. B. Watkins and R. Walter, “Transitioning from federated avionics architectures to integrated
modular avionics,” inDigital Avionics Systems Conference, 2007. DASC'07. IEEE/AIAA 26th.
IEEE, 2007, pp. 2–A.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitraet al., “The worst-case execution-time problem—overview of methods
and survey of tools,”ACM Transactions on Embedded Computing Systems (TECS), vol. 7, no. 3,
p. 36, 2008.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitraet al., “The worst-case execution-time problem—overview of methods
and survey of tools,”ACM Transactions on Embedded Computing Systems (TECS), vol. 7, no. 3,
p. 36, 2008.

A. Wolfe, “Software-based cache partitioning for real-time applications,” inThird International
Workshop on Responsive Computer Systems, 1993.

L. Wu and W. Zhang, “A model checking based approach to bounding worst-case execution
time for multicore processors,”ACM Transactions on Embedded Computing Systems (TECS),
vol. 11, no. S2, p. 56, 2012.

Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst case analysis of dram latency in multi-requestor
systems,” inReal-Time Systems Symposium (RTSS), 2013 IEEE 34th. IEEE, 2013, pp. 372–
383.

J. Xiao, S. Altmeyer, and A. Pimentel, “Schedulability analysis of non-preemptive real-time
scheduling for multicore processors with shared caches,” in2017 IEEE Real-Time Systems Sym-
posium (RTSS). IEEE, 2017, pp. 199–208.

J. Xiao, S. Altmeyer, and A. D. Pimentel, “Schedulability analysis of global scheduling for multi-
core systems with shared caches,”IEEE Transactions on Computers, 2020.

J. Yan and W. Zhang, “Wcet analysis for multi-core processors with shared l2 instruction caches,”
in Real-Time and Embedded Technology and Applications Symposium, 2008. RTAS'08. IEEE.
IEEE, 2008, pp. 80–89.

J. Yan and W. Zhang, “Wcet analysis for multi-core processors with shared l2 instruction caches,”
in Real-Time and Embedded Technology and Applications Symposium, 2008. RTAS'08. IEEE.
IEEE, 2008, pp. 80–89.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory access control in multipro-
cessor for real-time systems with mixed criticality,” inReal-Time Systems (ECRTS), 2012 24th
Euromicro Conference on. IEEE, 2012, pp. 299–308.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard: Memory bandwidth reser-
vation system for ef�cient performance isolation in multi-core platforms,” inReal-Time and
Embedded Technology and Applications Symposium (RTAS), 2013 IEEE 19th. IEEE, 2013,
pp. 55–64.

H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “Palloc: Dram bank-aware memory allocator
for performance isolation on multicore platforms,” inReal-Time and Embedded Technology and
Applications Symposium (RTAS), 2014 IEEE 20th. IEEE, 2014, pp. 155–166.

BIBLIOGRAPHY 217

X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page coloring-based multicore cache
management,” inProceedings of the 4th ACM European conference on Computer systems.
ACM, 2009, pp. 89–102.

Z. Zhang and X. Koutsoukos, “Cache-related preemption delay analysis for multi-level inclusive
caches,” inProceedings of the 13th International Conference on Embedded Software, 2016, pp.
1–10.

S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, “Survey of scheduling
techniques for addressing shared resources in multicore processors,”ACM Computing Surveys
(CSUR), vol. 45, no. 1, p. 4, 2012.

	Front Page
	Table of Contents

