

Towards Transparent Parallel/Distributed
Support for Real-Time Embedded
Applications

Technical Report

CISTER-TR-130202

Version:

Date: 2/14/2013

Ricardo Garibay-Martínez

Luis Lino Ferreira

Cláudio Maia

Luis Miguel Pinho

Technical Report CISTER-TR-130202 Towards Transparent Parallel/Distributed Support for

 Real-Time Embedded Applications

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Towards Transparent Parallel/Distributed Support for Real-Time Embedded
Applications
Ricardo Garibay-Martínez, Luis Lino Ferreira, Cláudio Maia, Luis Miguel Pinho

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: rgmaz@isep.ipp.pt, llf@isep.ipp.pt, clrrm@isep.ipp.pt, lmp@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
An increasing number of real-time embedded applications present high computation requirements which need to
be realized within strict time constraints. Simultaneously, architectures are becoming more and more
heterogeneous, programming models are having difficulty in scaling or stepping outside of a particular domain,
and programming such solutions requires detailed knowledge of the system and the skills of an experienced
programmer. In this context, this paper advocates the transparent integration of a parallel and distributed
execution framework, capable of meeting real-time constraints, based on OpenMP, and using MPI as the
distribution mechanism. The paper also introduces our modified implementation of GCC compiler, enabled to
support such parallel and distributed computations, which is evaluated through a real implementation. This
evaluation gives important hints, towards the development of the parallel/distributed fork-join model for real-time
embedded applications.

Towards Transparent Parallel/Distributed Support for
Real-Time Embedded Applications

Ricardo Garibay-Martínez, Luis Lino Ferreira, Cláudio Maia and Luís Miguel Pinho
CISTER/INESC-TEC, ISEP

Polytechnic Institute of Porto, Portugal
{rgmz, llf, crrm, lmp}@isep.ipp.pt

Abstract—An increasing number of real-time embedded
applications present high computation requirements which need
to be realized within strict time constraints. Simultaneously,
architectures are becoming more and more heterogeneous,
programming models are having difficulty in scaling or stepping
outside of a particular domain, and programming such solutions
requires detailed knowledge of the system and the skills of an
experienced programmer. In this context, this paper advocates
the transparent integration of a parallel and distributed
execution framework, capable of meeting real-time constraints,
based on OpenMP programming model, and using MPI as the
distribution mechanism. The paper also introduces our modified
implementation of GCC compiler, enabled to support such
parallel and distributed computations, which is evaluated
through a real implementation. This evaluation gives important
hints, towards the development of the parallel/distributed fork-
join framework for supporting real-time embedded applications.

Keywords—parallel execution, real-time, distributed embedded
systems, compiler support, GCC, OpenMP, MPI.

I. INTRODUCTION
Real-time embedded systems are present in our everyday life.
These systems range from safety critical ones to entertainment
and domestic applications, presenting very diverse set of
requirements. Although diverse, in all these areas, modern real-
time applications are becoming larger and more complex, thus
demanding more and more computing resources.

By using parallel computation models, the time required for
processing computational intensive applications can be
reduced, therefore, gaining flexibility. This is a known solution
in areas that require high performance computing power, and
real-time systems are not the exception. Therefore, the real-
time community has been making a large effort to extend real-
time tools and methods to multi-cores [1], and lately to further
extend them considering the use of parallel models [2].

Nevertheless, these parallel models do not take into
consideration heterogeneous architectures, which mix both
data-sharing and message passing models. In [3], we
introduced a solution for parallelising and distributing
workloads between neighbouring nodes based on a hybrid
approach of OpenMP [4] and Message Passing Interface (MPI)
programs [5], which can be used in this context. Furthermore,
we presented a timing model, which enables the structured
reasoning on the timing behaviour of such hybrid
parallel/distributed programs.

However, one main disadvantage of the use of such
approaches comes from the programmer’s point of view.
Coding parallel programs is not a straight-forward task, even
more, when programming for distributed memory; including
real-time constraints adds even more programming complexity.
This complexity usually requires detailed knowledge of the
system and the skills of an experienced programmer;
constraints that may not always be affordable (in cost or time).

In this context, this paper presents a transparent parallel
distributed fork-join execution model intended to support real-
time constraints. Furthermore, we introduce our modified
implementation of GNU Compiler Collection (GCC) compiler
[6]; enabled to support parallel and distributed computations in
a transparent manner. We also show through a real
implementation, how the execution times of parallel/distributed
applications can be reduced by following our execution model.
We also derive some conclusions on the importance of
considering the transmission time (e.g. implicit transmission
delay) when developing distributed applications.

II. PARALLEL/DISTRIBUTED REAL-TIME EXECUTION
MODEL

The parallel/distributed fork-join model for distributed real-
time systems has been introduced in [3]. One of our main goals
is to be able to model the parallelisation and distribution of
computations of real-time tasks. Thus, the generic operation of
the local process/thread which performs a parallel/distributed
fork-join execution is as follows: i) The local process/thread
initialize the distributed environment (e.g. by calling
MPI_Init()); ii) it determines the data to be sent and sends
it using a communication mechanism (e.g. by using
MPI_Send()); iii) the data gets transmitted through the
network with a certain implicit delay; iv) the data is received
on the remote neighbour node (e.g. by using MPI_Recv())
and processed (in parallel if more than one core is available in
the remote node); v) when the execution in the remote node is
finished, the results are sent back through the network to the
local process/thread; vi) finally, the results are gathered and the
final result produced.

To implement this model we propose the introduction of a
new #pragma omp parallel distributed for in
OpenMP, which removes the burden of coding the
parallel/distributed application from the programmer. Also, a
deadline() clause can be associated to this pragma, passing

as parameter the number of milliseconds on which the
application is expected to finish its parallel/distributed part of
code. Figure 1 depicts a fragment of code using this pragma,
indicating that the code embraced within the for loop can be
executed on distributed nodes within no more than 200
milliseconds.

1. #pragma omp parallel distributed for
 deadline (200) num_threads(3){
2. for (i = 0; i < 4; i++)
3. loopCode();
4. }

Figure 1. #pragma omp parallel distributed for deadline pragma example.

Figure 2 is a timeline representation of the execution of
parallel/distributed fork-join, where the horizontal lines
represent threads/processes and the vertical lines represent
forks and joins. In this case, the main thread splits in three
threads (creates a team of OpenMP threads), two are executed
in parallel on the local node and another is, mainly, executed
on a remote node, hereafter we call such kind of execution as
remote execution. Furthermore, we also assume that it is
possible to split the remote execution in two threads, one for
each core on the remote node. This is done automatically by
the framework. Thus, taking as example the code in Figure 1,
the timeline in Figure 2 assumes that two threads 𝜎ଵ,ଵ,ଵ and
𝜎ଵ,ଵ,ଶ execute locally one for loop iteration each, the
distributable thread 𝜎ଵ,ଵ,ଷ executes the remaining two
iterations. Then, thread 𝜎ଵ,ଵ,ଷ is hosted in a remote node and
further split into two threads, by adding thread 𝜎ଵ,ଵ,ସ, each one
of these threads is executing one iteration of the for loop. By
looking at Figure 2, it is also considered the inherent
transmission delay of transmitting and receiving code and data,
this is the transmission delay 𝒯𝒟ଵ,ଷ and 𝒯𝒟ଷ,ଵ, respectively. In
this case note that the MPI framework places the code on
distributed nodes and starts the remote programs.

Also, it is important to notice that the fork-join execution is
divided in a sequence of serial and parallel segments (e.g.
parallel regions in OpenMP), which implies precedence
constraints between the segments of a fork-join task.
Furthermore, the execution of a fork-join real-time task has
associated Worst-Case Execution Time 𝐶௜ , a task period 𝑇௜
which indicates the minimum interval time in which a task is
periodically invoked, and a task deadline 𝐷௜ which defines the
maximum possible time a task can take to be completed.

Figure 2. Timeline of a real-time task using the parallel/distributed fork-join

model.

III. TOWARDS PARALLEL/DISTRIBUTED REAL-TIME
COMPILER SUPPORT

A. GCC Compiler and OpenMP
GCC is structured in three modules, the front-end (also known
as parser) which is responsible for identifying and validating
the source code (e.g. lexical analyses), the middle-end which
has the main objective of simplifying and optimizing the code,
and the back-end which is in charge of transforming the final
optimised code to assembly code, by taking into consideration
the destination platform. The modifications required for
implementing our parallel/distributed model only require
changes on the GCC front-end and middle-end.

The front-end parses the code in a recursive manner and
performs sanity checks of the code. The main objective is to
identify the language keywords that affect the execution of the
program (including the OpenMP keywords). It is in this stage,
where the new distributed clause is added to the existing
set of OpenMP clauses. The result of applying the parsing
process is an intermediate code called GENERIC, which is
later propagated to the middle-end for further processing.

The middle-end transforms the GENERIC code into the
intermediate representation called GIMPLE, this process is
usually refereed as the “gimplification” step. During this step
all implicit data sharing clauses are made explicit and atomic
directives are transformed into the corresponding atomic
update functions. Similarly to the front-end, the middle-end
starts a process of simplification and optimizations of the code.
Each optimization or simplification is defined as a pass.

The pass manager is in charge of calling the set of passes
which are included in the passes.c source file. One of those
passes is the OpenMP lowering pass. The objective of the
OpenMP lowering pass is to identify the OpenMP clauses,
transform them in equivalent simplified code (GIMPLE code),
and initialize the auxiliary variables of the expansion phase [7].
After the lowering pass, the pass manager invokes the OpenMP
expansion pass. The expansion pass is in charge of outlining
the OpenMP parallel regions and introducing the built-in
function to be called by the libgomp library. libgomp is the
GNU implementation of the OpenMP API for shared memory
platforms.

In our implementation, a new function has been created in
libgomp. The GOMP_Distributed_Parallel_start()
function initialises the MPI environment; from that point, the
code is simultaneously executed by all MPI processes. The
number of created MPI processes is equal to the number of
hosts in mpd.hosts configuration file of MPI, which indicates
the number of nodes in the distributed system (e.g. a cluster of
embedded computing devices). All MPI processes receive the
data to execute using MPI broadcast primitives. In our current
implementation the workload is evenly divided among nodes in
the system.

After all processes have received their corresponding data,
each process creates a team of OpenMP threads. By default a
team of OpenMP threads is then created, having the same
number of threads as the number of processors/cores in the
node they are going to be executed.

Once the team of threads has been created, the workload
can be re-assigned by using the standard sharing mechanisms
implemented by libgomp. Then, whenever the execution of a
parallel region is finalised, the execution of the OpenMP team
of threads and MPI processes is automatically terminated by
calling the proper termination routine.

B. Towards Real-time Libgomp Implementation
Currently, we have an implementation, which is able to
parallelise and distribute computing workloads transparently.
However, our final objective is to be able to support real-time
processes/threads based on the OpenMP programming model.

In order to support real-time processes/threads, an
underlying real-time operating system must be used. We are
mainly interested on the use of two available real-time kernels
for Linux: the SCHED_DEADLINE [8] and the
SCHED_RTWS [9]. The first of them, implements partitioned,
global and clustered scheduling algorithms that allows the
cohabitence of hard and soft real time tasks. The second one,
implements a combination of the Global EDF and a priority-
based work-stealing algorithm, which allows executing parallel
real-time tasks in more than one core at the same time instant
whenever an idle core is available.

libgomp implements threads by using the POSIX threads
library [10] (also known as pthreads). This is done by calling
gomp_team_start() function. This function initializes the
data structures and passes the required parameters to the
phtread_create() function. Is in this point where we can
use the phtread_ create() function, to create the new
threads according to the received real-time parameters
extracted from the deadline() clause. The implementation
of the deadline() clause can be done by repeating a similar
procedure as when implementing the distributed clause.

In the following section, we present the performance
evaluation of our distributed clause implementation, of
the non-real-time version of the software. Although, the real-
time support is being currently implemented, the results help us
to confirm that we are following the correct path for supporting
real-time processes/threads based on the OpenMP
programming model.

IV. EXPERIMENTAL EVALUATION
The experiments reported in this paper were conducted in a
cluster with 5 identical machines. Each machine is equipped
with a dual-core Intel(r) Celeron(r) CPU, with a clock rate of
1.9 GHz and 2 GB memory. Communications were supported
by 8-port 100 Mbps n-way fast Ethernet switch.

The experiments are based on the execution of the
#pragma omp parallel distributed for pragma,
and having a variable number of iterations. This number of
iterations represents different sizes of a synthetic workload that
need to be processed within some time constraints. For
example, in Figure 3, iterations contained in the variable
N_ITER are to be divided among the nodes/cores in the
system. Each iteration takes in average, approximately 0.016
ms to be executed. The iterations inside the for loop are
considered to be independent between them, and therefore,

each iteration only produces changes on an independent part of
the data.

The work-sharing mechanism used for these experiments,
divides the iterations contained inside the for loop between the
MPI processes (one process per node) and they further split on
the number of OpenMP threads (one thread per core). We had
chosen this approach since is one of the most general work-
sharing mechanisms used for the Single Program Multiple Data
(SIMD) paradigm. On the other hand, it has the disadvantage
of not being suitable for handling more dynamic patterns of
parallelism (e.g. variable real-time patterns).

1. #pragma omp parallel distributed for
2. for (i = 0; i < N_ITER; i++)
3. loopCode();
4. }

Figure 3. Distributed for clause example.

The data collected is related to experiments with a different
number of iterations (100, 1000 and 10000) – variable N_ITER
in Figure 3. Each experiment consists on averaging the
execution time of the distributed parallel loop over one
thousand measurements. I.e. measuring the time from before
the execution of line 1 to after line 4. When conducting the
experiments, we were interested in estimating the reduction of
the execution time as a function of the number of utilised
nodes, and estimating the maximum measured execution time.

Figure 4, depicts the average execution time and the
maximum measured execution time of three experiments,
having 100, 1000 and 10000 iterations, respectively. It is
important to note that the vertical axis in Figure 4 has a
logarithmic scale. It is also possible to observe that the
execution time (numerically presented above the bars) and the
maximum measured execution time (represented as error bars)
are reduced almost in a linear way (considering the logarithmic
scale) for the cases of 10000 and 1000 iterations. This is an
expected speedup for parallel programs when computations
realised in different nodes are independent. However, this is
not the case for the execution with 100 iterations; where the
execution times are kept almost the same, regardless the
number of nodes utilised during execution. The reason for this
behaviour is that the time saved on the parallel task execution,
is consumed in transmission time.

Figure 4. Execution times with 100, 1000 and 10000 iterations.

Also, the average transmission time and the maximum
mesuared transmission time are important parameters to take

into account when scheduling parallel tasks in a distributed
environment, because they add a considerable extra time
(delay), to the total execution, which is usually not considered
when scheduling tasks in shared-memory platforms. For
example, the size of the data to be transmitted is proportional to
the number of iterations contained in the N_ITER variable.
During the initial fork operation the data size to be transmitted
is approximately 6.25 Kb, 62.5 Kb and 625 Kb, when N_ITER
variable is equal to 100, 1000 and 10000 iterations,
respectively. The same amount of data is later transmitted to
the main node during the join operation. Figure 5 shows the
total transmission time (e.g. the sum of 𝒯𝒟ଵ,ଷ and 𝒯𝒟ଷ,ଵ in
Figure 2) for the different values of N_ITER mentioned above.

The results in Figure 5, show that the number of nodes in
the cluster does not affect the transmission times. The reason is
that the size of the data to be transmitted is constant and
transmitted using MPI broadcast. The last, holds because the
workload to be transmitted is considerably small in comparison
with the total capacity of the network. It is also important to
note that these measurements had been done in a closed
network where the only traffic is related to our experiments.

Figure 5. Transmission times with 100, 1000 and 10000 iterations.

Therefore, we can confirm that when the execution time
increases, the transmission time becomes more negligible.
Thus, in order to correctly address parallel/distributed
applications, a trade-off between local/distributed
computations (execution time) and the cost of transmitting
computations (transmission time) over networked devices,
needs to be carefully considered. This is one of the main
differences of our model, when compared to pure shared-
memory approaches. By observing the preliminary results in
Figures 4 and 5, we can derive two remarks from these plots.

The first one is that total execution time needs to be
pondered, in order to decide if it is worth to apply a workload
distribution, or not. For example, when running applications
with execution times of a few milliseconds, the total execution
time becomes more susceptible to delays (e.g. the implicit
transmission delay). Therefore, it may be not be worthwhile to
realize workload distribution. It is possible to observe this
effect in Figure 4 for the case of 100 iterations. The second
remark is that the existing parallel/distributed algorithms
implemented by OpenMP and MPI are not suitable for
handling real-time workloads since no resources are reserved
in the nodes neither in the network. Therefore, this opens
opportunities to explore different and more complex work-
sharing mechanisms and scheduling algorithms.

V. CONCLUSIONS AND FUTURE WORK
This paper presented the parallel/distributed fork-join real-time
execution model. We proposed an automatic code generation
by modifying the GCC compiler and enabling it to
transparently support MPI messages based on OpenMP
programming model. To do so, we proposed an extension to
the OpenMP specification by adding the #pragma omp
parallel distributed for. Also, we describe the
modification done on the GCC compiler to support transparent
parallel/distributed executions.

We are currently working on the implementation and
integration of the deadline() clause into libgomp. This will
allow libgomp to be able to generate real-time threads. We also
plan to join libgomp with the new real-time SCHED_RTWS
scheduler for Linux. Then, it will be possible to execute
parallel/distributed threads on a real-time kernel and therefore,
having real-time guarantees on the execution of parallel
threads.

ACKNOWLEDGMENTS
This work was partially supported by National Funds through FCT
(Portuguese Foundation for Science and Technology), by ERDF (European
Regional Development Fund) through COMPETE (Operational Programme
'Thematic Factors of Competitiveness'), within VipCore project, ref. FCOMP-
01-0124-FEDER-015006, and by ESF (European Social Fund) through POPH
(Portuguese Human Potential Operational Program), under PhD grant
SFRH/BD/71562/2010.

REFERENCES

[1] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comp. Surv., vol. 43, no. 35, p. 1–44,
2011.

[2] A. Saifullah, K. Agrawal, C. Lu and C. Gill, “Multi-core Real-Time
Scheduling for Generalized Parallel Task Models,” in Proc. of the IEEE
32st Real-Time Systems Symposium (RTSS 2011), 2011.

[3] R. Garibay-Martinez, L. L. Ferreira and L. M. Pinho, “A framework for
the development of parallel and distributed real-time embedded
systems,” in Proc. of 38th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA 2012), 2012.

[4] OpenMP Architecture Review Board, "OpenMP application program
interface V3.1 July 2011," www.openmp.org/wp/openmp-specifications/,
online: last accessed April 2012.

[5] Message Passing Interface Forum, “MPI: A Message-Passing Interface
standard version 2.2,” online: http://www.mpi-forum.org/docs/docs.html,
online: last accessed April 2012.

[6] GCC Internals, http://gcc.gnu.org/onlinedocs/gccint/, online: last
accessed September 2012.

[7] D. Novillo, "Openmp and automatic parallelization in gcc," in In the
Proceedings of the GCC Developers’ Summit, June 2006.

[8] N. Manica, L. Abeni, L. Palopoli, D. Faggioli and C. Scordino,
“Schedulable device drivers: Implementation and experimental results,”
in Proceedings of the 6th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OSPERT 2010), 2010.

[9] L. Nogueira, J. C. Fonseca, C. Maia and L. M. Pinho, “Dynamic Global
Scheduling of Parallel Real-Time Tasks,” in Proc.10th IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing
(EUC’12), 2012.

[10] POSIX Threads Programming,
https://computing.llnl.gov/tutorials/pthreads/, online: last accessed,
September 2012.

