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Abstract 
An increasing number of real-time embedded applications present high computation requirements which need to 
be realized within strict time constraints. Simultaneously, architectures are becoming more and more 
heterogeneous, programming models are having difficulty in scaling or stepping outside of a particular domain, 
and programming such solutions requires detailed knowledge of the system and the skills of an experienced 
programmer. In this context, this paper advocates the transparent integration of a parallel and distributed 
execution framework, capable of meeting real-time constraints, based on OpenMP, and using MPI as the 
distribution mechanism. The paper also introduces our modified implementation of GCC compiler, enabled to 
support such parallel and distributed computations, which is evaluated through a real implementation. This 
evaluation gives important hints, towards the development of the parallel/distributed fork-join model for real-time 
embedded applications. 
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Abstract—An increasing number of real-time embedded 
applications present high computation requirements which need 
to be realized within strict time constraints. Simultaneously, 
architectures are becoming more and more heterogeneous, 
programming models are having difficulty in scaling or stepping 
outside of a particular domain, and programming such solutions 
requires detailed knowledge of the system and the skills of an 
experienced programmer. In this context, this paper advocates 
the transparent integration of a parallel and distributed 
execution framework, capable of meeting real-time constraints, 
based on OpenMP programming model, and using MPI as the 
distribution mechanism. The paper also introduces our modified 
implementation of GCC compiler, enabled to support such 
parallel and distributed computations, which is evaluated 
through a real implementation. This evaluation gives important 
hints, towards the development of the parallel/distributed fork-
join framework for supporting real-time embedded applications. 

Keywords—parallel execution, real-time, distributed embedded 
systems, compiler support, GCC, OpenMP, MPI. 

I.  INTRODUCTION 
Real-time embedded systems are present in our everyday life. 
These systems range from safety critical ones to entertainment 
and domestic applications, presenting very diverse set of 
requirements. Although diverse, in all these areas, modern real-
time applications are becoming larger and more complex, thus 
demanding more and more computing resources.  

By using parallel computation models, the time required for 
processing computational intensive applications can be 
reduced, therefore, gaining flexibility. This is a known solution 
in areas that require high performance computing power, and 
real-time systems are not the exception. Therefore, the real-
time community has been making a large effort to extend real-
time tools and methods to multi-cores [1], and lately to further 
extend them considering the use of parallel models [2]. 

Nevertheless, these parallel models do not take into 
consideration heterogeneous architectures, which mix both 
data-sharing and message passing models. In [3], we 
introduced a solution for parallelising and distributing 
workloads between neighbouring nodes based on a hybrid 
approach of OpenMP [4] and Message Passing Interface (MPI) 
programs [5], which can be used in this context. Furthermore, 
we presented a timing model, which enables the structured 
reasoning on the timing behaviour of such hybrid 
parallel/distributed programs.  

However, one main disadvantage of the use of such 
approaches comes   from   the   programmer’s   point   of   view.  
Coding parallel programs is not a straight-forward task, even 
more, when programming for distributed memory; including 
real-time constraints adds even more programming complexity. 
This complexity usually requires detailed knowledge of the 
system and the skills of an experienced programmer; 
constraints that may not always be affordable (in cost or time).  

In this context, this paper presents a transparent parallel 
distributed fork-join execution model intended to support real-
time constraints. Furthermore, we introduce our modified 
implementation of GNU Compiler Collection (GCC) compiler 
[6]; enabled to support parallel and distributed computations in 
a transparent manner. We also show through a real 
implementation, how the execution times of parallel/distributed 
applications can be reduced by following our execution model. 
We also derive some conclusions on the importance of 
considering the transmission time (e.g. implicit transmission 
delay) when developing distributed applications. 

II. PARALLEL/DISTRIBUTED REAL-TIME EXECUTION 
MODEL 

The parallel/distributed fork-join model for distributed real-
time systems has been introduced in [3]. One of our main goals 
is to be able to model the parallelisation and distribution of 
computations of real-time tasks. Thus, the generic operation of 
the local process/thread which performs a parallel/distributed 
fork-join execution is as follows: i) The local process/thread 
initialize the distributed environment (e.g. by calling 
MPI_Init()); ii) it determines the data to be sent and sends 
it using a communication mechanism (e.g. by using 
MPI_Send()); iii) the data gets transmitted through the 
network with a certain implicit delay; iv) the data is received 
on the remote neighbour node (e.g. by using MPI_Recv()) 
and processed (in parallel if more than one core is available in 
the remote node); v) when the execution in the remote node is 
finished, the results are sent back through the network to the 
local process/thread; vi) finally, the results are gathered and the 
final result produced.  

To implement this model we propose the introduction of a 
new #pragma omp parallel distributed for in 
OpenMP, which removes the burden of coding the 
parallel/distributed application from the programmer. Also, a 
deadline() clause can be associated to this pragma, passing 



as parameter the number of milliseconds on which the 
application is expected to finish its parallel/distributed part of 
code. Figure 1 depicts a fragment of code using this pragma, 
indicating that the code embraced within the for loop can be 
executed on distributed nodes within no more than 200 
milliseconds. 

1.   #pragma omp parallel distributed for  
      deadline (200) num_threads(3){ 
2.       for (i = 0; i < 4; i++) 
3.          loopCode(); 
4.   } 

Figure 1.  #pragma omp parallel distributed for deadline pragma example. 

Figure 2 is a timeline representation of the execution of 
parallel/distributed fork-join, where the horizontal lines 
represent threads/processes and the vertical lines represent 
forks and joins. In this case, the main thread splits in three 
threads (creates a team of OpenMP threads), two are executed 
in parallel on the local node and another is, mainly, executed 
on a remote node, hereafter we call such kind of execution as 
remote execution. Furthermore, we also assume that it is 
possible to split the remote execution in two threads, one for 
each core on the remote node. This is done automatically by 
the framework. Thus, taking as example the code in Figure 1, 
the timeline in Figure 2 assumes that two threads 𝜎ଵ,ଵ,ଵ  and 
𝜎ଵ,ଵ,ଶ  execute locally one for loop iteration each, the 
distributable thread 𝜎ଵ,ଵ,ଷ  executes the remaining two 
iterations. Then, thread 𝜎ଵ,ଵ,ଷ is hosted in a remote node and 
further split into two threads, by adding thread 𝜎ଵ,ଵ,ସ, each one 
of these threads is executing one iteration of the for loop. By 
looking at Figure 2, it is also considered the inherent 
transmission delay of transmitting and receiving code and data, 
this is the transmission delay 𝒯𝒟ଵ,ଷ and 𝒯𝒟ଷ,ଵ, respectively. In 
this case note that the MPI framework places the code on 
distributed nodes and starts the remote programs. 

Also, it is important to notice that the fork-join execution is 
divided in a sequence of serial and parallel segments (e.g. 
parallel regions in OpenMP), which implies precedence 
constraints between the segments of a fork-join task. 
Furthermore, the execution of a fork-join real-time task has 
associated Worst-Case Execution Time 𝐶௜ , a task period 𝑇௜  
which indicates the minimum interval time in which a task is 
periodically invoked, and a task deadline 𝐷௜  which defines the 
maximum possible time a task can take to be completed. 

 
Figure 2.  Timeline of a real-time task using the parallel/distributed fork-join 

model. 

III. TOWARDS PARALLEL/DISTRIBUTED REAL-TIME 
COMPILER SUPPORT 

A. GCC Compiler and OpenMP 
GCC is structured in three modules, the front-end (also known 
as parser) which is responsible for identifying and validating 
the source code (e.g. lexical analyses), the middle-end which 
has the main objective of simplifying and optimizing the code, 
and the back-end which is in charge of transforming the final 
optimised code to assembly code, by taking into consideration 
the destination platform. The modifications required for 
implementing our parallel/distributed model only require 
changes on the GCC front-end and middle-end.  

The front-end parses the code in a recursive manner and 
performs sanity checks of the code. The main objective is to 
identify the language keywords that affect the execution of the 
program (including the OpenMP keywords). It is in this stage, 
where the new distributed clause is added to the existing 
set of OpenMP clauses. The result of applying the parsing 
process is an intermediate code called GENERIC, which is 
later propagated to the middle-end for further processing. 

The middle-end transforms the GENERIC code into the 
intermediate representation called GIMPLE, this process is 
usually refereed as the “gimplification” step. During this step 
all implicit data sharing clauses are made explicit and atomic 
directives are transformed into the corresponding atomic 
update functions. Similarly to the front-end, the middle-end 
starts a process of simplification and optimizations of the code. 
Each optimization or simplification is defined as a pass. 

The pass manager is in charge of calling the set of passes 
which are included in the passes.c source file. One of those 
passes is the OpenMP lowering pass. The objective of the 
OpenMP lowering pass is to identify the OpenMP clauses, 
transform them in equivalent simplified code (GIMPLE code), 
and initialize the auxiliary variables of the expansion phase [7]. 
After the lowering pass, the pass manager invokes the OpenMP 
expansion pass. The expansion pass is in charge of outlining 
the OpenMP parallel regions and introducing the built-in 
function to be called by the libgomp library. libgomp is the 
GNU implementation of the OpenMP API for shared memory 
platforms. 

In our implementation, a new function has been created in 
libgomp. The GOMP_Distributed_Parallel_start() 
function initialises the MPI environment; from that point, the 
code is simultaneously executed by all MPI processes. The 
number of created MPI processes is equal to the number of 
hosts in mpd.hosts configuration file of MPI, which indicates 
the number of nodes in the distributed system (e.g. a cluster of 
embedded computing devices). All MPI processes receive the 
data to execute using MPI broadcast primitives. In our current 
implementation the workload is evenly divided among nodes in 
the system.  

After all processes have received their corresponding data, 
each process creates a team of OpenMP threads. By default a 
team of OpenMP threads is then created, having the same 
number of threads as the number of processors/cores in the 
node they are going to be executed.  



Once the team of threads has been created, the workload 
can be re-assigned by using the standard sharing mechanisms 
implemented by libgomp. Then, whenever the execution of a 
parallel region is finalised, the execution of the OpenMP team 
of threads and MPI processes is automatically terminated by 
calling the proper termination routine.  

B. Towards Real-time Libgomp Implementation 
Currently, we have an implementation, which is able to 
parallelise and distribute computing workloads transparently. 
However, our final objective is to be able to support real-time 
processes/threads based on the OpenMP programming model.  

In order to support real-time processes/threads, an 
underlying real-time operating system must be used. We are 
mainly interested on the use of two available real-time kernels 
for Linux: the SCHED_DEADLINE [8] and the 
SCHED_RTWS [9]. The first of them, implements partitioned, 
global and clustered scheduling algorithms that allows the 
cohabitence of hard and soft real time tasks. The second one, 
implements a combination of the Global EDF and a priority-
based work-stealing algorithm, which allows executing parallel 
real-time tasks in more than one core at the same time instant 
whenever an idle core is available. 

libgomp implements threads by using the POSIX threads 
library [10] (also known as pthreads). This is done by calling 
gomp_team_start() function. This function initializes the 
data structures and passes the required parameters to the 
phtread_create() function. Is in this point where we can 
use the phtread_ create() function, to create the new 
threads according to the received real-time parameters 
extracted from the deadline() clause. The implementation 
of the deadline() clause can be done by repeating a similar 
procedure as when implementing the distributed clause. 

In the following section, we present the performance 
evaluation of our distributed clause implementation, of 
the non-real-time version of the software. Although, the real-
time support is being currently implemented, the results help us 
to confirm that we are following the correct path for supporting 
real-time processes/threads based on the OpenMP 
programming model. 

IV. EXPERIMENTAL EVALUATION 
The experiments reported in this paper were conducted in a 
cluster with 5 identical machines. Each machine is equipped 
with a dual-core Intel(r) Celeron(r) CPU, with a clock rate of 
1.9 GHz and 2 GB memory. Communications were supported 
by 8-port 100 Mbps n-way fast Ethernet switch.  

The experiments are based on the execution of the 
#pragma omp parallel distributed for pragma, 
and having a variable number of iterations. This number of 
iterations represents different sizes of a synthetic workload that 
need to be processed within some time constraints. For 
example, in Figure 3, iterations contained in the variable 
N_ITER are to be divided among the nodes/cores in the 
system. Each iteration takes in average, approximately 0.016 
ms to be executed. The iterations inside the for loop are 
considered to be independent between them, and therefore, 

each iteration only produces changes on an independent part of 
the data. 

The work-sharing mechanism used for these experiments, 
divides the iterations contained inside the for loop between the 
MPI processes (one process per node) and they further split on 
the number of OpenMP threads (one thread per core). We had 
chosen this approach since is one of the most general work-
sharing mechanisms used for the Single Program Multiple Data 
(SIMD) paradigm. On the other hand, it has the disadvantage 
of not being suitable for handling more dynamic patterns of 
parallelism (e.g. variable real-time patterns).  

1.   #pragma omp parallel distributed for  
2.      for (i = 0; i < N_ITER; i++) 
3.         loopCode(); 
4.   } 

Figure 3.  Distributed for clause example. 

The data collected is related to experiments with a different 
number of iterations (100, 1000 and 10000) – variable N_ITER 
in Figure 3. Each experiment consists on averaging the 
execution time of the distributed parallel loop over one 
thousand measurements. I.e. measuring the time from before 
the execution of line 1 to after line 4. When conducting the 
experiments, we were interested in estimating the reduction of 
the execution time as a function of the number of utilised 
nodes, and estimating the maximum measured execution time.  

Figure 4, depicts the average execution time and the 
maximum measured execution time of three experiments, 
having 100, 1000 and 10000 iterations, respectively. It is 
important to note that the vertical axis in Figure 4 has a 
logarithmic scale. It is also possible to observe that the 
execution time (numerically presented above the bars) and the 
maximum measured execution time (represented as error bars) 
are reduced almost in a linear way (considering the logarithmic 
scale) for the cases of 10000 and 1000 iterations. This is an 
expected speedup for parallel programs when computations 
realised in different nodes are independent. However, this is 
not the case for the execution with 100 iterations; where the 
execution times are kept almost the same, regardless the 
number of nodes utilised during execution. The reason for this 
behaviour is that the time saved on the parallel task execution, 
is consumed in transmission time. 

 
Figure 4.  Execution times with 100, 1000 and 10000 iterations.  

Also, the average transmission time and the maximum 
mesuared transmission time are important parameters to take 



into account when scheduling parallel tasks in a distributed 
environment, because they add a considerable extra time 
(delay), to the total execution, which is usually not considered 
when scheduling tasks in shared-memory platforms. For 
example, the size of the data to be transmitted is proportional to 
the number of iterations contained in the N_ITER variable. 
During the initial fork operation the data size to be transmitted 
is approximately 6.25 Kb, 62.5 Kb and 625 Kb, when N_ITER 
variable is equal to 100, 1000 and 10000 iterations, 
respectively. The same amount of data is later transmitted to 
the main node during the join operation. Figure 5 shows the 
total transmission time (e.g. the sum of 𝒯𝒟ଵ,ଷ  and 𝒯𝒟ଷ,ଵ  in 
Figure 2) for the different values of N_ITER mentioned above. 

The results in Figure 5, show that the number of nodes in 
the cluster does not affect the transmission times. The reason is 
that the size of the data to be transmitted is constant and 
transmitted using MPI broadcast. The last, holds because the 
workload to be transmitted is considerably small in comparison 
with the total capacity of the network. It is also important to 
note that these measurements had been done in a closed 
network where the only traffic is related to our experiments. 

 
Figure 5.  Transmission times with 100, 1000 and 10000 iterations. 

Therefore, we can confirm that when the execution time 
increases, the transmission time becomes more negligible. 
Thus, in order to correctly address parallel/distributed 
applications, a trade-off between local/distributed 
computations (execution time) and the cost of transmitting 
computations (transmission time) over networked devices, 
needs to be carefully considered. This is one of the main 
differences of our model, when compared to pure shared-
memory approaches. By observing the preliminary results in 
Figures 4 and 5, we can derive two remarks from these plots. 

The first one is that total execution time needs to be 
pondered, in order to decide if it is worth to apply a workload 
distribution, or not. For example, when running applications 
with execution times of a few milliseconds, the total execution 
time becomes more susceptible to delays (e.g. the implicit 
transmission delay). Therefore, it may be not be worthwhile to 
realize workload distribution. It is possible to observe this 
effect in Figure 4 for the case of 100 iterations. The second 
remark is that the existing parallel/distributed algorithms 
implemented by OpenMP and MPI are not suitable for 
handling real-time workloads since no resources are reserved 
in the nodes neither in the network. Therefore, this opens 
opportunities to explore different and more complex work-
sharing mechanisms and scheduling algorithms.  

V. CONCLUSIONS AND FUTURE WORK  
This paper presented the parallel/distributed fork-join real-time 
execution model. We proposed an automatic code generation 
by modifying the GCC compiler and enabling it to 
transparently support MPI messages based on OpenMP 
programming model. To do so, we proposed an extension to 
the OpenMP specification by adding the #pragma omp 
parallel distributed for. Also, we describe the 
modification done on the GCC compiler to support transparent 
parallel/distributed executions.  

We are currently working on the implementation and 
integration of the deadline() clause into libgomp. This will 
allow libgomp to be able to generate real-time threads. We also 
plan to join libgomp with the new real-time SCHED_RTWS 
scheduler for Linux. Then, it will be possible to execute 
parallel/distributed threads on a real-time kernel and therefore, 
having real-time guarantees on the execution of parallel 
threads.  
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