

Two-type Heterogeneous Multiprocessor
Scheduling: Is there a Phase Transition?
(Extended Abstract)

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-110503

Version:

Date: 05-30-2011

Gurulingesh Raravi

Björn Andersson

Konstantinos Bletsas

Technical Report HURRAY-TR-110503 Two-type Heterogeneous Multiprocessor Scheduling:

 Is there a Phase Transition? (Extended Abstract)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Two-type Heterogeneous Multiprocessor Scheduling: Is there a Phase
Transition? (Extended Abstract)
Gurulingesh Raravi, Björn Andersson, Konstantinos Bletsas

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of non-migratively scheduling a set of implicit-deadline sporadic tasks to meet all deadlines on a
two-type heterogeneous multiprocessor platform. We ask the following question: Does there exist a phase transition
behavior for the two-type heterogeneous multiprocessor scheduling problem? We also provide some initial observations
via simulations performed on randomly generated task sets.

Two-type Heterogeneous Multiprocessor Scheduling: Is there a Phase Transition?

Gurulingesh Raravi∗, Björn Andersson†∗ and Konstantinos Bletsas∗
∗CISTER-ISEP Research Center, Polytechnic Institute of Porto, Portugal

†Software Engineering Institute, Carnegie Mellon University, Pittsburgh, USA
Email: ∗{ghri, baa, ksbs}@isep.ipp.pt, †baandersson@sei.cmu.edu

I. INTRODUCTION
Consider the problem of non-migratively scheduling a

set of implicit-deadline sporadic tasks to meet all deadlines
on a two-type heterogeneous multiprocessor platform.

A. System Model and Assumptions
The system is as follows:
• Computing Platform (denoted as Π): The com-
puting platform consists of m processors; Of those,
m1 ≥ 1 are of type-1, and m2 ≥ 1 are of type-2, i.e.,
m1 + m2 = m. A processor is denoted as πj ∈ Π,
where j ∈ {1, · · · ,m}.

• Task Set (denoted as τ): The task set comprises n
implicit-deadline sporadic tasks (i.e., for each task, its
deadline is equal to its minimum inter-arrival time).
A task is denoted as τi ∈ τ , where i ∈ {1, · · · , n}.

• Utilization (denoted as U): The utilization of a task
τi on a processor πj is given by uj

i , a non-negative
real number.

The following assumptions are made:
• No job parallelism: A job can be executing on at
most one processor at any given time instant

• Independent tasks: The execution of jobs are in-
dependent, i.e., they neither share any resources nor
have data dependency and

• No migration: All the jobs released by a task must
execute on the same processor to which the task is
assigned.

B. Phase Transition
A behavior in which a given system transitions from

one state to another is known as phase transition be-
havior. During the phase transition, certain properties
of the system change “drastically”. In context of real-
time scheduling, one way to relate this concept is to
reason about the difficulty of scheduling problems. We
can say that when a scheduling problem satisfies certain
property (i.e., when the system is in a certain phase),
it is almost certain to schedule the task set and upon
changing the property (the system enters a new phase),
it is hardly possible to schedule the task set. For example,
such a behavior has been observed for a uniprocessor
non-preemptive scheduling problem. It has been shown
that there exists a utilization threshold U∗ such that, for
large task sets, task sets with utilization U < U∗ can
almost surely be scheduled and task sets with utilization
U > U∗ almost surely cannot be scheduled [3]. It is

also believed that such a behavior exists for identical
multiprocessor scheduling problem [4]. We are interested
in finding whether such a behavior exists for two-type
heterogeneous multiprocessor platforms.

II. OPEN PROBLEM
Does there exist a phase transition behavior for the two-

type heterogeneous multiprocessor scheduling problem?

III. SOME INSIGHTS
In a quest to find an answer to the question, we

performed some simulations and did not observe the phase
transition behavior in our simulations. We understand that
these simulations/observations are not enough to answer
the question and hence more work needs to be done in this
regard. We brief our simulation setup and observations in
this section.
We randomly generated the problem instances compris-

ing the task set (with an upper bound of 15 tasks) and the
computing platform (with an upper bound of 2 processors
of each type). We then formulated the task assignment
problem as Zero-One Integer Linear Program (ILP) as
discussed in [1]. This formulation is shown in Figure 1.
Here Z denotes the maximum capacity of any processor

Minimize Z subject to the following constraints :
C1.

∑m
j=1

xj
i = 1 (i = 1, 2, · · · , n)

C2.
∑n

i=1

(

xj
i · u

j
i

)

≤ Z (j = 1, 2, · · · ,m)

C3. xj
i is a non-negative integer (i = 1, 2, · · · , n);

(j = 1, 2, · · · ,m)

Figure 1. ILP formulation – ILP-Feas(τ,Π)

that is used and is set as the objective function (to be
minimized). Z ≤ 1 implies that the sum of utilization of
tasks assigned to any processor is less than or equal to
the available capacity on that processor – hence, Z ≤ 1
indicates that the task set is feasible on the platform. The
variable xj

i (referred to as indicator variable) indicate the
assignment of task τi to processor πj , i.e., xj

i = 1 implies
that τi is (entirely) assigned to processor πj , xj

i = 0
implies that τi is not assigned to processor πj . The first
constraint (C1) indicates that every task must be assigned
to processors. The second constraint (C2) indicates that
no processor capacity should be used more than Z. The
third constraint (C3) indicates that the indicator variables
must be non-negative integers.
We extracted only those problem instances that are

feasible (i.e., a problem instance in which the task set

could be assigned on the platform without missing any
deadlines when EDF [2] is used to schedule the tasks
on each processor – ILP solver returns Z ≤ 1 for such
task sets). For each of the feasible problem instances, we
computed the success ratio which is defined as follows:

success ratio =
Nsucc

Nvalid

where, Nsucc denotes the number of assignments that meet
all the deadlines of the tasks and Nvalid denotes the total
number of possible valid assignments. A valid assignment
is one in which (i) no task is left unassigned and (ii) the
task assignment in one valid assignment is different from
other valid assignments. All the possible valid assignments
are generated using exhaustive enumeration.
We then plotted our observations for 10000 feasible task

sets with Z on X-axis and ‘average success ratio’ (for
each Z) on Y-axis as shown in Figure 2. As we can see
from the graph, there is a gradual decrease in the value of
‘average success ratio’ and hence no sharp threshold on a
particular value of Z where ‘average success ratio’ reduces
significantly. The fluctuation in the ‘average success ratio’
in the initial half of the graph (where 0 < Z ≤ 0.45)
can be attributed to the fact that our task set generator
generated very few task sets for which ILP solver gave
the output 0 < Z ≤ 0.45 — to be precise, among 10000
task sets, only 250 were in this category. Hence, we believe
that with a more balanced task set generator, we will not
observe those fluctuations.























                    



















Figure 2. Average success ratio of randomly generated 10000 (feasible)
task sets

From the observations made, we tend to believe that
with the parameters that we have chosen, it may not be
possible to observe the phase transition behavior if there is
one. However, these are initial observations and we need
to carry out more work to answer the following questions:
1) Does there exist a phase transition behavior? If there
is one, then with what parameters we can observe
such a behavior?

2) If there is no phase transition, then what is its
implication considering the fact that such a behavior
has been observed in the past for a uniprocessor
scheduling problem [3][4]?

ACKNOWLEDGMENTS
This work was partially supported by the REHEAT project,

ref. FCOMP-01-0124-FEDER-010045, funded by FEDER funds
through COMPETE (POFC - Operational Programme Thematic
Factors of Competitiveness), National Funds (PT) through FCT -
Portuguese Foundation for Science and Technology and REJOIN
project of FLAD (Luso-American Development Foundation).

REFERENCES
[1] S. Baruah, Task partitioning upon heterogeneous multi-

processor platforms, 10th IEEE International Real-Time
and Embedded Technology and Applications Symposium
(2004).

[2] C. L. Liu and J. W. Layland, Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment, Jour-
nal of the ACM (1973).

[3] S. Gopalakrishnan, M. Caccamo and L. Sha, Sharp Thresh-
olds for Scheduling Recurring Tasks with Distance Con-
straints, IEEE Transactions on Computers (2008).

[4] S. Gopalakrishnan, A sharp threshold for rate monotonic
schedulability of real-time tasks, 1st International Real-
Time Scheduling Open Problems Seminar (2010).

