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Abstract 

Segmenting aerial images is of great potential in surveillance and scene understanding of urban areas. It provides 
a mean for automatic reporting of the different events that happen in inhabited areas. This remarkably promotes 
public safety and traffic management applications. After the wide adoption of convolutional neural networks 
methods, the accuracy of semantic segmentation algorithms could easily surpass 80% if a robust dataset is 
provided. Despite this success, the deployment of a pretrained segmentation model to survey a new city that is 
not included in the training set significantly decreases accuracy. This is due to the domain shift between the 
source dataset on which the model is trained and the new target domain of the new city images. In this paper, we 
address this issue and consider the challenge of domain adaptation in semantic segmentation of aerial images. 
We designed an algorithm that reduces the domain shift impact using generative adversarial networks (GANs). In 
the experiments, we tested the proposed methodology on the International Society for Photogrammetry and 
Remote Sensing (ISPRS) semantic segmentation dataset and found that our method improves overall accuracy 
from 35% to 52% when passing from the Potsdam domain (considered as source domain) to the Vaihingen 
domain (considered as target domain). In addition, the method allows efficiently recovering the inverted classes 
due to sensor variation. In particular, it improves the average segmentation accuracy of the inverted classes due 
to sensor variation from 14% to 61%. 
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Abstract: Segmenting aerial images is of great potential in surveillance and scene understanding

of urban areas. It provides a mean for automatic reporting of the different events that happen in

inhabited areas. This remarkably promotes public safety and traffic management applications.

After the wide adoption of convolutional neural networks methods, the accuracy of semantic

segmentation algorithms could easily surpass 80% if a robust dataset is provided. Despite this

success, the deployment of a pretrained segmentation model to survey a new city that is not included

in the training set significantly decreases accuracy. This is due to the domain shift between the

source dataset on which the model is trained and the new target domain of the new city images.

In this paper, we address this issue and consider the challenge of domain adaptation in semantic

segmentation of aerial images. We designed an algorithm that reduces the domain shift impact using

generative adversarial networks (GANs). In the experiments, we tested the proposed methodology

on the International Society for Photogrammetry and Remote Sensing (ISPRS) semantic segmentation

dataset and found that our method improves overall accuracy from 35% to 52% when passing from

the Potsdam domain (considered as source domain) to the Vaihingen domain (considered as target

domain). In addition, the method allows efficiently recovering the inverted classes due to sensor

variation. In particular, it improves the average segmentation accuracy of the inverted classes due to

sensor variation from 14% to 61%.

Keywords: convolutional neural networks; semantic segmentation; aerial imagery; domain adaptation;

gener ative adversarial networks

1. Introduction

Semantic segmentation is an image analysis task that assigns for every pixel in an input image

a label that describes the class of its enclosing region. Beyond image classification and object

detection, semantic segmentation is the highest-level image analysis task that allows a complete

scene understanding of the whole input image.

Semantic segmentation was referred in many remote sensing works as pixel-wise classification.

Semantic segmentation term is more used in computer vision, and it is being more and more

adopted in remote sensing. Semantic segmentation can be used in aerial imagery in a variety of
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potential applications, like urban area monitoring and planning, traffic management and analysis,

hazard detection and avoidance, and so on. This potential is boosted by the increasing adoption

of unmanned aerial vehicles (UAVs). UAVs make the surveillance of inhabited areas easier due to

their flexibility, great mobility, and the high resolution images that they can gather and stream in real

time. These images can be automatically processed by accurate semantic segmentation algorithms to

substantially reinforce the ability to analyze and describe the surveyed scenes automatically.

The progress of semantic segmentation algorithms was delayed years ago by the low accuracy of

traditional approaches of image analysis algorithms based on the extraction of hand-crafted features.

However, since the emergence of highly descriptive feature extractors like convolutional neural

networks, the whole area of image analysis has shown a significant increase in accuracy. In fact, since

2012 [1], convolutional neural networks (CNNs) have shown an outstanding efficiency in computer

vision. This advancement enhanced the areas of semantic segmentation algorithms. Recently, several

CNN- based architectures have shown their efficiency in this task, such as fully connected networks

(FCN) [2], SegNet [3], UNet [4], PSPNets [5], and DeepLab [6]. If a robust dataset is provided and

semantically labeled, training one of the state-of-the-art models could lead easily to an accuracy that

exceeds 80% [7].

Despite this notable success made in the area of semantic segmentation algorithms, a great

challenge is hampering their implementation in real use cases. In fact, if we train a model on a specific

dataset, the accuracy will be high when applying this model on images belonging to the same domain

of the train set (lighting conditions, sensor type, resolution, object representation). However, if we

try to apply this model to segment images acquired under different conditions, the performance falls

dramatically due to the domain shift between the images used in the source domain (used during

the training) training and the target domain. To illustrate this fact, we conducted an experiment

where we chose a state-of-the-art segmentation algorithm (DeepLab v3 plus [8]) which is trained

on the International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam benchmark

dataset [9], and we applied it for segmenting a random image from the ISPRS Vaihingen benchmark

dataset. A drop in global accuracy from 85% to 35% was observed. Figure 1 shows a typical situation in

which we have a trained model on a specific source domain and we want to use this model to segment

another domain. The domains have different characteristics (resolution per pixel changed from 5 cm to

9 cm, image information changed from a red-green-blue sensor to a near-infrared-red-green, location

changed from Potsdam to Vaihingen).

Figure 1. Cross-domain semantic segmentation in aerial imagery.

The ordinary solution to cope with this intriguing limitation is to make a new semantically

labeled dataset on the target domain and to train the model on it. This solution is very costly and
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impractical. In fact, collecting a large dataset of pixel-labeled images for the targeted city of interest

will be time-consuming and expensive. Indeed, pixel-labeling of Cityscapes images (size 2040 by

1016 pixels) takes 90 min on average [10]. Remote sensing is more time-demanding as it contains

objects from different sizes (small-sized objects like cars and roads need more attention and effort

in the labeling process). To reduce human efforts in manual pixel-wise classification, a number of

solutions have been introduced, like synthesizing data from 3D rendered images [11,12] or weakly

supervised labeling [13–15]. However, these approaches still have limitations, as they also require

significant human efforts. Moreover, they have some drawbacks (like domain shift from 3D rendered

images to real images in synthetic data solutions and imprecise boundaries in weakly supervised

solutions). This is why it is highly fruitful to invest in an automatic domain adaptation solution.

Domain adaptation is the machine learning field that aims at learning from a source data

distribution how to improve the performance of a model on a different target data distribution.

It addresses reducing the domain shift problem between the source domain dataset used in training

and the target domain dataset. For this purpose, we typically design a mapping function between the

source domain data and the target domain data. Recent domain adaptation techniques have used deep

learning models to train this mapping function [16–19]. Domain adaptation techniques could also

consolidate this mapping function by adding some modifications on the model itself to get a correlated

feature level with the target domain dataset.

Inspired by recent advances in generative adversarial networks (GANs) [20,21], we developed

an algorithm for domain adaptation for aerial imagery based on GANs. The objective of our method

was to handle the scenario presented in Figure 1 and similar cases. We aimed to add the ability

for a semantic segmentation model to handle domains that are different from the source domain

with minimal cost and maximum accuracy. Our method was divided into two steps. The first step

considered the process of converting the images of the dataset from the source domain to the target

domain. This was done using a GAN model trained using a cyclic-loss to map between two sets,

one taken from the source domain and the other from the target domain. We adopted this approach to

eliminate the need for a paired set of images, which may be time-consuming. The second step was to

fine-tune the already trained semantic model using the mapped version of the dataset associated with

the original labels. After the fine-tuning process, the model will improve its ability to semantically

label images taken from the target domain. The major contributions of our work can be presented

as follows: (1) To the best of our knowledge, no previous works have addressed the problem of

domain adaptation for semantic segmentation in aerial imagery using GANs. (2) We demonstrated

that our approach mitigates the domain shift problem for cross-domain semantic segmentation in

aerial imagery, which allows the portability of the semantic segmentation model over different image

domains. (3) We validated the method on the ISPRS semantic labelling dataset by making cross-domain

semantic segmentation between the Potsdam dataset and Vaihingen dataset. (4) We introduced GANs

as a promising solution for analysis of aerial imagery.

The rest of the paper is organized as follows: Section 2 gives an overview of the related works

in area of domain adaptation in semantic segmentation. Section 3 makes an introduction to GANs.

Section 4 describes our proposed method. Section 5 presents the experimental details we used to

test our method. Section 6 discusses its efficiency for domain adaptation in aerial imagery. Section 7

concludes our work and deduces the contribution we made in this paper.

2. Related Works

In this section, we discuss the related works on domain adaptation in semantic segmentation.

When applying a machine learning algorithm, we generally assume that the training data and the test

data belong to the same underlying distribution. In real scenarios, though, we face some discordance

between them. This discordance decreases the efficiency of the model outside its training domain.

Domain adaptation is a separate field in machine learning that aims to rectify this discordance and

help the model to be better generalized to test domains.
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The efforts on domain adaptation in image analysis have focused on classification and regression

tasks [22], like trying to train models on online photos to classify objects in real world [23]. Recent works

are mostly oriented towards improving the adaptability of deep learning algorithms [16,17,24–26].

Concerning the domain adaptation for semantic segmentation, many works on this field focused

on simulated data [12,27–31]. In fact, they expected to use domain adaptation to improve the

segmentation efficiency on real images by training models on synthetic data. Among the first works

that treated domain adaptation on semantic segmentation, we can find FCNs in the wild [32] which

employed a pixel-level adversarial loss to guide the model towards learning the domain-invariant

features. The goal is to make the adversarial classifier not differentiate between source and target

domains to equalize its performance on both domains. Hoffman et al. proposed CyCADA [27]

as another method that converts the source images (synthetic data) to the style of the target (real

datat) using CycleGAN. The converted images are then fed to the segmentation model to improve its

performance on the target images. Zhang et al. [33] proposed a curriculum-style learning approach to

minimize the domain shift. They concluded properties of the target data by combining the learning

of the local distributions over landmark superpixels with the learning of global label distribution.

Then they trained the segmentation network by regularizing it to follow those concluded properties.

Chen et al. [34] proposed ROAD (reality-oriented adaptation) by designing two losses to align the

source and the target domains. The first is called target-guided distillation loss, and the second is a

spatially-aware adaptation loss. The feature map of the image is divided into grids. Then, a maximum

mean discrepancy loss is calculated for every grid. Sankaranarayanan et al. [35] proposed an

auto-encoder network that takes as input both source and target images and regenerates them before

they are fed to the segmentation network. Tsai et al. [36] proposed CGAN to add random noise to the

source data before being fed to the segmentation network. They found that this approach improves

the performance of the model on target domains. Huang et al. [37] separately trained two models for

the source and the target domains. Because the target domain is without labels, the target model is

trained by regressing it to the weights of the source model. Further, an adversarial loss is calculated in

every layer of the two networks. Zhang et al. [38] used an adversarial loss between the source and the

target data on both the first layer and the layers of the network. This method improves the adaptation

performance of the network.

These are the main works that treated domain adaptation on semantic segmentation. We can

deduce that, to our knowledge, no one has treated domain adaptation on semantic segmentation on

aerial imagery. Most of the methods treated images of urban scenes taken from a camera mounted on

a car. Aerial imagery has many dissimilarities with the data treated in these works. This is why we

targeted this problem in this paper. We used it to test the efficiency of our method on the International

Society for Photogrammetry and Remote Sensing (ISPRS) semantic segmentation dataset. We studied

the domain adaptation from the Potsdam domain dataset to Vaihingen dataset [9].

3. Generative Adversarial Networks (GANs)

3.1. Generator and Discriminator

GANs are increasingly becoming popular due to the wide area of applications that they address.

They were firstly introduced in 2014 by Goodfellow et al. [20]. They are composed of two models,

named the generator and discriminator. The generator model is trained to generate data that are

similar to the real data considered. The discriminator is trained to differentiate between the real and

fake data generated by the generator. During the training, the generator and the discriminator are

competing with each other, playing an adversarial zero-sum game. The loss on both models is balanced

by the loss of its adverse model. In fact, the generator is trained to generate fake data that fool the

discriminator, making it judge the generated fake data as real data. On the other side, the discriminator

is trained to differentiate between the fake data and the real data. During the training, this game is

solved using game theory theorems. At the end, the generator is well trained to generate data that are
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similar to the real data and not previously seen in the training set. The discriminator is well trained

to differentiate between the real and fake data. This simultaneous training of the discriminator and

generator is shown in Figure 2.

Figure 2. Generative adversarial network.

The two networks compete with each other during the training until reaching the Nash

equilibrium. In game theory, Nash equilibrium is a strategy profile in which no player can unilaterally

deviate and improve their payoff [39].

GAN’s objective function is described by Equation (1):

minGmaxDV(D, G) = IEX∼Pdata(X)[logD(X)] + IEz∼Pz(z)[log(1 − D(G(z)))], (1)

where G is the cost function of the generator trained by maximizing D(G(z)). D is the cost function

of the discriminator trained by minimizing D(G(z)). X is an image sampled from the real data

distribution pdata, z is the noise vector sampled from the distribution pz, G(z) is the fake image

generated by the generator. IEX∼Pdata(X) is the expectation over X drawn by the distribution described

by Pdata(X). D and G are playing the two-player minimax game with value function V(G, D) [20].

GANs have a plethora of implementations and applications [40]. The most attractive application

for domain adaptation is image to image translation. In the next subsection, we focus more on this

area and introduce the GAN models designed for this task.

3.2. GAN for Image to Image Translation

Image to image translation is the task of converting one image from a domain to

another—for example, translating an image taken in the summer to another one that mimics its

appearance as if it were taken in winter. This area may have numerous applications and use cases,

and many GAN models were designed in the literature [41–44]. Image translation can be either

paired [44] or unpaired [21].

3.2.1. Paired Image Translation

In paired image translation, the GAN model should be trained in a supervised way using

labeled pairs from source domain to target domain. Considering that X is the source dataset, Y is

the target dataset, and N is the number of samples in every dataset, the model will access every pair

of corresponding images {xi, yi}i=0..N and try to learn how to convert between X and Y domains

based on these samples. Pix2pix [44] is the major state-of-the-art architecture for paired image to

image translation.

3.2.2. Unpaired Image Translation

In unpaired image translation, the GAN model is trained in a unsupervised way between two sets

of images. The first set represents the source, while the second represents the target. Considering that

X is the source dataset, Y is the target dataset, and N is the number of samples in every dataset,

{xi}i=0..N and {yi}i=0..N are not necessarily corresponding and could be taken randomly from the
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associated domain set. CycleGAN [21] is the major state-of-the-art architecture for unpaired image to

image translation. It makes a bidirectional image to image translation between two sets of images.

4. Proposed Method

4.1. Our Proposed GAN Architecture

The proposed method aims to perform image level translation from the source domain to the

target domain using a GAN as shown in Figure 3. We describe in this figure how we implemented an

unpaired image to image translation GAN from the source domain to the target domain.

Figure 3. Generative adversarial network (GAN) architecture for unpaired image translation in

aerial images.

This procedure was designed to make images of the source domain mimic the characteristics of

the target domain (types of sensors, quality of the images, resolution, etc.). This will have the effect

of reducing the domain shift related to the quality and characteristics of the images in the training

set. To reduce our method cost, we did not adopt the traditional GAN approach. In fact, if we adopt

it without modification, a paired dataset should be provided for every class of objects considered in

our model. This will be really costly and time-demanding and does not harmonize with our goal to

make the domain adaptation straightforward and easy to implement. Hence, we adopted a modified

approach inspired from many state-of-the-art architectures [21,45]. We implemented an unpaired image

translation adversarial network working in a unidirectional way from the source to the target as shown

in Figure 3. The translation of an image from the source domain to the target domain does not need

paired images. Images for both domains are collected separately without the need for corresponding

pairs to train a mapping function G : X → Y. This function G(X) learns during the training process

to make images from the source X imitate the distribution of images in the target Y, minimizing

adversarial loss. However, we have here to take into consideration another condition. If we were

only limited to this mapping function, the image translation would not be done as expected. In fact,

because this mapping function is not constrained with paired data, the image translation is prone

to being done in a meaningless way, leading to a model collapse. Therefore, we considered adding

the inverse mapping function F : Y → X that makes the image translation on the inverse direction

from the target to the source. This function F(Y) learns during the training process to imitate the

distribution of images in X, minimizing a second adversarial loss. Then, we added the reconstruction

loss to consolidate that F(G(X)) ≈ X and G(F(X)) ≈ X simultaneously. Then, we trained our model

jointly so that the image structure would be conserved during the translation process from the source

domain to the target domain.

The architecture of the generator is similar to U-Net [4] architecture. We used an encoder–decoder

network as illustrated in Figure 4. Four convolutional layers awee set for downsampling, and four
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convolutional layers were used for upsampling. We used Leaky ReLU (rectified linear unit) [46] as

the activation function for all the layers of downsampling and standard ReLU for all the layers of

upsampling. Leaky ReLU is similar to the standard ReLU (rectified linear unit) but has a small slope α

in the negative region. The Leaky ReLU function is defined as f (x) = x, if x >= 0; and as f (x) = αx if

x < 0, where α is a very small coefficient. It allows having a small positive gradient when the function

is not activated. The output features extracted from the encoder are passed into the decoder that will

learn how to rebuild the original feature vector. We used dropout [47] in the decoder architecture to

reduce overfitting. We used instance normalization [48] after every layer in the generator, because it

was proven in [48] that it works better than batch normalization [49] for generator neural networks.

It helps to provide better stylization in the image generation process. Figure 4 shows the architecture

of the generator.

Figure 4. The encoder–decoder architecture of the generator.

Concerning the discriminator architecture, it receives as input the generated image and makes a

binary classification output of real or fake image. We used five convolutional layers that encode the

generated image into a feature vector of a size of 256. Then, we used an output neuron with Sigmoid

activation function in the last layer to convert this feature vector into a binary output. In the same

way as the generator, we used the Leaky ReLU [46] as an activation function for all the layers of the

network, and we applied instance normalization [48] in every layer of the discriminator except the first

and the last layer. We did not add normalization in these layers following the experimental settings

given by Xiang et al. [50]. Figure 5 shows the architecture of the discriminator.

Figure 5. The architecture of the discriminator.
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4.2. Algorithm Description

Based on the GAN architecture provided in Figure 3, we designed and implemented our proposed

algorithm for domain adaptation in aerial imagery. The flowchart of the algorithm is described in

Figure 6. The algorithm is divided into four steps. The first step is to train a segmentation model

on the source dataset. In principle, with a good structured dataset, the segmentation accuracy could

easily reach a level higher than 80%. The second step considers the training of our proposed GAN

architecture to translate image efficiently from the source domain to the target domain. The third

step is to convert the source dataset to the target domain using this GAN architecture. The output of

the third step is a new dataset that conserves the structures represented in the images of the source

dataset but mimics the global characteristics of the target dataset (imaging sensors, global coloring,

etc.). The fourth step is to fine-tune the already trained segmentation model with the translated dataset

associated with the source labels. This step helps the model parameters to learn the patterns of the

target dataset and to converge to a better recognition of image structure on the target dataset. After the

fine-tuning process, the semantic segmentation model is adapted to work on the target dataset.

Figure 6. Flowchart of the domain adaptation algorithm.

4.3. Problem Formulation

In this section, we present the formal mathematical model of the algorithm. We considered the

problem of domain adaptation from source domain data XS, which are already mapped to their labels

YS, to target domain data XT without labels.

We started by training a source model MS that performs the semantic segmentation on the source

data by mapping the input images and their corresponding labels. The pixel-wise labels have one of C

classes. Using the cross-entropy loss function, the source model MS corresponds to:

LMS
(MS, XS, YS) = −IE(xs ,ys)∼(XS ,YS)

C

∑
c=1

Il[c=ys ]log(So f tmax(M
(c)
S (xs))). (2)

IE(x,ys)∼(XS ,YS)
is the expectation over xs, ys drawn by the distribution described by XS and YS.

Il[c=ys ] is the corresponding loss for only the class c separately from other classes. Thanks to the

advance in the semantic segmentation algorithms, MS generally performs well on the source data.

However, when applying the source model MS on the target data, we have lower accuracy due to

the domain shift that exists between the source and the target domain. To alleviate this domain shift,

we began first by mapping the dataset images of the source domain to the target domain. This was

implemented by our proposed GAN architecture that learns how to map the image samples between
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domains so that the discriminator will be unable to detect that the mapped image from the source to

the target does not really belong to the target. The next step was to fine-tune the source model MS by

running the trained model on the mapped dataset, and this helps to generalize our source model to

perform better on the target domain, as proven in the experimental section of this paper.

The mapping model from source to target GS−→T was implemented and trained to map from

the source domain to the target domain. The goal was to generate image samples that would be

classified by the adversarial discriminator DT as real images from the target domain. On the other

side, the adversarial discriminator DT was trained to not be fooled by the generated images and to

detect them successfully as fake. The loss function corresponding to this is:

LGAN(GS−→T , DT , XT , XS) = IExt∼XT
[logDT(xt)] + IExs∼XS

[log(1 − DT(GS−→T(xs)))]. (3)

The training of this loss makes GS−→T capable of generating from a sample image taken from

the source domain an image that imitates the appearance of an image taken from the target domain.

Therefore, from the source segmentation model MS, we made a new model MT that minimizes the

loss function:

L(MT , GS−→T(XS), YS) =

− IE(GS−→T(xs),ys)∼(GS−→T(XS),YS)

C

∑
c=1

Il[c=ys ]log(So f tmax(M
(c)
T (GS−→T(xs)))). (4)

This loss function is trained in a similar manner to the loss defined in Equation (3).

Therefore, the target model MT is a copy from the already trained source model MS that we trained on

the mapped dataset by minimizing the loss defined in Equation (4). This operation makes the model

generalize better on the target domain. The GAN loss defined in Equation 4 ensures that for a sample

image xs from the source domain, GS−→T(xs) will resemble the sample images taken from domain

XT . Although general resemblance can be assured through the training, we cannot guarantee that

GS−→T(xs) maintains the structural content of xs.

To preserve the content and the structure of xs during the mapping operation assured by GS−→T ,

we used a GAN network working on the inverse direction from the target to the source as detailed in

Section 3. It maps from the target to the source GT−→S. The loss to train for GT−→S is identical to the

loss defined for GS−→T in Equation (3); just the parameters of the loss are changed to be:

LGAN(GT−→S, DS, XS, XT). (5)

Then, we ensured that mapping a sample image xs from the source to the target using GS−→T ,

followed by another mapping of this generated image GS−→T(xs) back to the source using the mapping

function GT−→S, will generate an identical image of the source xs. This is the reconstruction loss

constraint that we added, as we explained in Section 3, to keep the structural content of the images

during the mapping process. This loss constraint is formulated by the following equations:

GT−→S(GS−→T(xs)) ≈ xs, (6)

GS−→T(GT−→S(xt)) ≈ xt. (7)

To ensure that Equations (6) and (7) are satisfied, we imposed the reconstruction loss constraint

defined in the following equation:

Lreconstruction(GS−→T , GT−→S, XS, XT) =

IExs∼XS
[‖GT−→S(GS−→T(xs))− xs‖1] + IExt∼XT

[‖GS−→T(GT−→S(xt))− xt‖1]. (8)
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After finishing the training of our proposed GAN architecture, we used it to translate the source

data XS to XS_tr.Then, we profited from the labels provided with the source data by reusing them

exactly the same in the training with the new translated dataset. We took the segmentation model

MS which is already trained on source data before translation, we fixed the weight values and

used it as a start point for the training of our target model MT . This model performs the semantic

segmentation on the translated image data by mapping XS_tr with their corresponding pixel-wise

labels YS. Using cross-entropy as loss function, the target model corresponds to:

LMT
(MT , XS_tr, YS) = −IE(xs_tr ,ys)∼(XS_tr ,YS)

C

∑
c=1

Il[c=ys ]log(So f tmax(M
(c)
T (xs_tr))). (9)

Finally, we obtained a target model MT that is more adapted to work on the target domain,

as described in the Experimental Section.

5. Experimental Results

In this section, our objective is to prove the efficiency of the proposed algorithm by providing the

description of the implemented experiments and discussing the obtained results.

5.1. Datasets and Evaluation Metrics

5.1.1. Datasets

To validate our methodology, we used the ISPRS (WGII/4) 2D semantic segmentation benchmark

dataset [9]. It is afforded by the ISPRS 2D semantic labeling challenge that currently provides the best

platform to evaluate semantic segmentation algorithms for aerial images. We used the Vaihingen and

Potsdam datasets, which are publicly available to the community. Although digital surface model

(DSM) data are provided for every image, we only used the image data as we were targeting domain

adaptation using only image data. Both datasets contain very-high resolution images with a resolution

of 9 cm for Vaihingen images and 5 cm for Potsdam images. Note that the resolutions are different in

both datasets, and this represents one of the factors that require domain adaptation. These resolutions

are categorized in aerial imagery as very high resolution (VHR) and are helpful in recognizing objects

clearly. In addition, this helps to maximize the intraclass variance and minimize the interclass variance

by providing more details about objects. All images in both datasets are provided with their semantic

segmentation labels, which comprise six classes of ground objects: building, tree, car, impervious

surfaces, low vegetation, and clutter/background. Impervious surfaces indicate a paved area with no

building on it. The clutter/background category refers to all the ground objects that are not included

in the other five categories. The Vaihingen dataset includes 33 TOP images with sizes near to 2000 ×

2000 pixels. All these 33 TOP images are released with the ground truth. The TOP file contains three

channels: Infrared, red, and green bands. Among the 33 TOP images, 27 TOP images were used for

training, and 6 images were used for the test. The Potsdam dataset is a larger dataset that contains

38 TOP images with a fixed size of 6000 × 6000 pixels. All these images are released with their ground

truth. The TOP files for Potsdam contain 3 different spectral channels: red, green, and nlue. Among the

38 TOP images, 32 images were used for the training, and 6 images were used for the test. To train the

segmentation model, we divided the images and their labels into squares of a size of 512 × 512 and

fed the network with uniform patches of a size of 512 × 512. Figure 7 shows samples from Potsdam

and Vaihingen ISPRS datasets.
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Figure 7. Samples of images from Potsdam and Vaihingen International Society for Photogrammetry

and Remote Sensing (ISPRS) datasets.

The distribution of pixels over the six classes is not proportionally balanced. Categories like

impervious surface or buildings are much more represented as compared to other classes, like cars or

clutter. Table 1 represents the percentage of each class proportionally to the total number of pixels.

The percentage of a class is calculated by summing the number of pixels belonging to this class divided

by the total number of pixels in the dataset.

Table 1. Percentage of each category in the datasets.

Category Potsdam Vaihingen

Impervious Surfaces 29.9% 29.3%
Buildings 28.2% 26.9%

Low vegetation 20.9% 19.4%
Trees 14.4% 22.4%
Cars 1.7% 1.3%

Clutter 4.8% 0.7%

5.1.2. Domain Shift Analysis

The domain shift from the source domain (Potsdam) to the target domain (Vaihingen) resulted

from 3 essential factors. The first factor is the imaging sensor factor. Images of Vaihingen are captured

using a 3-band sensor, IRRG (infrared, red, green). The images of Potsdam are also captured using a
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3-band sensor, RGB (red, green, blue). For example, the class vegetation and trees are characterized by

the green color due to the RGB sensor used for the Potsdam dataset. The segmentation model will be

trained to recognize the varieties of green color that help to identify these classes accurately. In the

Postdam dataset, the green color is well represented. In the Vaihingen dataset, it is totally transformed

to a red color due to the change of the sensor. This change will affect the accuracy of the segmentation

model and lead to a significant domain shift. The second factor is the resolution factor. Images of

Vaihingen are captured using a resolution of 9 cm per pixel. Images of Potsdam are captured using

a resolution of 5 cm per pixel. Going from one resolution to another could affect the ability of the

segmentation model to accurately identify the classes and therefore generate a domain shift. The third

factor of domain shift is the structural representation of the classes. Many classes show a difference

of representation passing from the Potsdam dataset to Vaihingen dataset. For example, buildings

in Postdam and Vaihingen are very comparable as they correspond to the building style of modern

German towns. There is not much difference in the representation of the class building when going

from Potsdam to Vaihingen. However, for other classes like ;ow vegetation and trees, there is a clear

difference. In fact, Vaihingen contains agricultural areas, while Potsdam does not contain this kind of

areas. Types of trees and vegetations differ when switching between the two datasets. The difference

is clearer in the low vegetation class than in the trees class. In fact, there are similarities between most

tree types of Vaihingen and Potsdam.

The domain shift between Potsdam and Vaihingen is generated from a combination of the three

factors (imaging sensors, resolution, class representation). This allows us to study the effect of our

proposed algorithm on reducing the domain shift related to every factor. Table 2 summarizes the effect

of these factors on the domain shift of every class. The estimation of the factor impact is made after a

careful analysis of every class on both domains. We can note that the effect of the resolution on the

domain shift is low on all classes. In fact, passing from 5 cm per pixel to 9 cm per pixel does not affect

the accuracy of the segmentation model very much. The feature extraction layers of the model have

the ability to manage this scale of resizing. We note that the class building is mostly affected by the

sensor factor; thus, it will be a study case for the effect of our algorithm on reducing domain shift

made by the sensor factor only. The trees class will similarly be a study case, as it is mostly affected by

the sensor factory and moderately affected by the class representation factor. The impervious surfaces

and cars classes are not really affected by the three factors, so they will be a study case for the effect

of our algorithm on classes that are not subjected to a domain shift when passing from one dataset

to another. Classes low vegetation and clutter are highly affected by the sensor factor and the class

representation factor. They will be a study case to study the effect of our algorithm on reducing the

domain shift related to these factors combined.

Table 2. Effect of the domain shift factors on every class when passing from the Potsdam dataset to the

Vaihingen dataset.

Factor of Domain Shift Resolution Sensor Class Representation

Impervious Surfaces low low low
Buildings low high low

Low vegetation low high high
Trees low high medium
Cars low low low

Clutter low high high

5.1.3. Evaluation Metrics

To measure the efficiency of the semantic segmentation algorithms, we used four measures: the

accuracy, the precision, the recall, and the F1 score. They are expressed using TP (true positives), TN

(true negatives), FP (false positives), and FN (false negatives). If we consider a class C, TP corresponds

to the number of pixels classified as C. TN is the number of pixels that do not belong to the class

C, and the segmentation model did not classified them as C. FP is the number of pixels that are
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classified falsely as C while they belong to other classes. FN is the number of pixels that belong to

the class C, but the segmentation model associated them falsely to other classes. These measures are

defined below:

Accuracy =
TP + TN

TP + TN + FP + FN
, (10)

Precision =
TP

TP + FP
, (11)

Recall = Sensitivity =
TP

TP + FN
, (12)

F1 Score = 2 ∗
Pecision ∗ Recall

(Precision + Recall)
. (13)

Moreover, we also used the intersection over union (IoU) to measure the efficiency of the

segmentation. Since we have six different classes, IoU is calculated for every class separately.

Then, the mean IoU of all classes is caculated. Equation (14) represents how to calculate the IoU for

two different data samples, A and B.

IoU(A, B) =
size(A ∩ B)

size(A ∪ B)
(14)

5.2. Experimental Settings

5.2.1. Step 1: Training the Segmentation Model

We first started with training a segmentation model on the source dataset. We chose Potsdam

as the source dataset because it is far greater than the Vaihingen dataset. In fact, in real scenarios,

target datasets are smaller and less structured than the source datasets. Then, we performed the

segmentation using a state-of-the-art segmentation model, which is BiSeNet (bilateral segmentation

network) [51]. It is currently the fastest segmentation model tested on the Cityscapes dataset [10]

without affecting the accuracy. It achieves a 74.7% mean IoU on the CityScape dataset, with a speed of

65.5 frames per second [52]. The state-of-the-art on the CityScape dataset is PSPNet [5] that achieves

a mean IoU of 81.2% but at a very low speed: 0.78 frames per second [52]. The factor of speed is

significantly important in aerial image processing, as we need to process the video streams captured

from aerial vehicles in real time. Figure 8 represents the architecture of BiSeNet.

Figure 8. Architecture of the bilateral segmentation network (BiSeNet).

The experiments related to this research work were conducted on a GPU machine with the

following characteristics:

• CPU: Intel Core i9-8950HK (six cores, Coffee Lake architecture);
• Graphic card: Nvidia GTX 1080, 8GB GDDR5;
• RAM: 32 GB RAM;
• Operating system: Linux (Ubuntu 16.04).
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To train BiseNet on Potsdam, we used the Semantic Segmentation Suite [53], which is an open

source framework that provides the implementation of many segmentation models in Tensorflow [54].

We used as the feature extractor for BiSeNet a state-of-the-art network, which is ResNet101 [55]. We ran

the training for the Postdam dataset for 80 epochs, and the batch size was 1 image per batch. We did not

use image augmentation techniques. As an optimizer for the training, we used ADAM optimizer [56],

with the learning rate set to 0.0001. The training converges fast in less than 15 epochs, and the average

segmentation accuracy exceeds 86%. Figure 9 shows the evolution of the training loss of BiSeNet on

the Potsdam dataset over epochs.

Figure 9. Loss of training BiseNet on the Potsdam dataset.

Figure 10 shows the evolution of the segmentation accuracy of BiseNet on the Potsdam validation

dataset over epochs. We can see that segmentation accuracy exceeds rapidly 86% in a few epochs.

Figure 10. Evolution of average accuracy of BiseNet trained on Potsdam.

Figure 11 shows the evolution of the segmentation accuracy of every class on Potsdam validation

dataset over epochs.

After finishing the training, we saved the weights of the BiSeNet model to be used later in Step

4 of the algorithm.
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Figure 11. Evolution of per class accuracy of BiseNet trained on Potsdam.

5.2.2. Step 2: Training Our Proposed GAN Architecture

To train our proposed GAN architecture described in Section 3, we constructed two datasets: one

for Potsdam and the other for Vaihingen. For each dataset, we collected randomly 400 images of a size

of 512 × 512 from the original TOP images and divided these images into a training subset of 300 images

and a test subset of 100 images. The proposed GAN architecture trains to translate images from the

Potsdam domain (source domain) to the Vaihingen domain (target domain). The GAN architecture

was implemented using Keras [57], which is a high-level deep learning framework developed in

Python. We used Tensorflow [54] as a backend for the training. We set the slope α for Leaky ReLU

as 0.2. We used as an optimizer for the training the ADAM optimizer [56], with the learning rate

set to 0.0002. We trained the model until we got the discriminator accuracy superior to 92% and the

generator loss inferior to 3. The convergence of the discriminator and the generator just needed a few

epochs of joint training.

5.2.3. Step 3: Translating the Source Dataset to the Target Domain

Once the training of the proposed GAN architecture was done, we used it to translate the full

dataset of the source domain (Potsdam) to the target domain (Vaihingen). Figure 12 shows samples of

the Potsdam dataset translated to the Vaihingen domain. We note that the global style of the translated

image is imitating the style of the target domain. The images generated are similar to what we can get

as new images of the Potsdam town using the IRRG sensor used for Vaihingen images. We kept this

translated dataset to be used in the fourth step of our algorithm.
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Figure 12. Mapping images from the source domain to the target domain using our proposed GAN.

5.2.4. Step 4: Fine-Tuning the Segmentation Model with the Translated Dataset

Once the translated dataset was ready, we used it to fine-tune the trained model prepared at Step

1. We did the fine-tuning process epoch by epoch, and we tested the model on the target dataset after

every epoch to measure the improvement of average accuracy on the target dataset. We noted an

increase in average accuracy between 5%and 17%. The average accuracy value was improved from

34% to values between 39% and 52%. We got an increase of 17% after 8 epochs only. In Figure 13,

we show the improvement in average accuracy on the target dataset (Vaihingen) after every epoch of

the fine-tuning process.

In Figure 14, we show the improvement of per class accuracy on the target dataset (Vaihingen)

after every epoch of the fine-tuning process. We can see in the figure that the accuracy of two classes

(trees and building) increased highly over epochs, although the other remained practically the same.

In Section 6, we discuss the obtained results and we demonstrate the utility of our proposed approach

in the domain adaptation of aerial imagery.
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Figure 13. Improvement of average accuracy on the target dataset after each epoch.

Figure 14. Improvement of accuracy per class on the target dataset after each epoch.

6. Discussion

The implementation of our algorithm increased the average accuracy of the segmentation model

on the target dataset by a significant margin that reached 17%. Further, as presented in Table 3, similar

improvements were also seen in the precision, recall, F1, and IoU (intersection over union) measures.

These improvements made a visible amelioration on the predicted segmentation mask, as presented in

Figure 15.

Going deeper, we made a study of the effect of our algorithm on every class apart. As described

in Table 4, we have two types of effects. First, we have classes where our algorithms increased model

accuracy by a high margin (classes building and tree). Comparing these results with Table 2, we note

that these classes are characterized by a domain shift related highly to the sensor factor. If the domain

shift is related only to the sensor factor, our algorithm is very efficient in increasing the accuracy of the

model. For example, the class building, as explained in IV-A-2, is only affected by the sensor factor.

We can see its average accuracy increasing from 0.23 to 0.71. If the domain shift is related mostly to the

sensor factor, like class tree, our algorithm will be very efficient in increasing the accuracy but with

some limitations due to the other domain shift factors. Concerning other classes (impervious surfaces,

car, clutter background, and low vegetation), we can note that our algorithm has no practical effect in

increasing or decreasing the accuracy. Accuracy will be conserved by our algorithm. These classes

are, as described in Table 2, either not affected by any domain shift factor (like classes cars and

impervious surfaces) or highly affected by a factor other than the sensor factor (like clutter Background

or low vegetation).
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Figure 15. Samples of segmentation before and after implementation of our algorithm.
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Table 3. Segmentation metrics on the target dataset before and after the implementation of our algorithm.

Before After

Average accuracy 0.35 0.52
Precision 0.35 0.54

Recall 0.35 0.52
F1 measure 0.32 0.49
IoU score 0.17 0.30

Table 4. Accuracy of the segmentation on every class before and after implementation of our algorithm.

Before After

Building 0.23 0.71
Tree 0.06 0.51

Impervious surfaces 0.58 0.57
Car 0.40 0.42

Clutter background 0.94 0.93
Low vegetation 0.38 0.27

We can estimate that our algorithm conserves the accuracy of the model if there is no domain

shift or if the domain shift is related highly to a factor other than the sensor factor. This is a highly

appreciated feature, as it allows combining it with other techniques that may reduce other domain

shift factors. Our algorithm targets successfully the elimination of the sensor factor without affecting

other factors. If the domain shift between the source dataset and the target dataset is only related to it,

our algorithm is capable of improving the accuracy to a level similar to training the model on a full

labeled dataset of the target, as seen in the class building. This fact is very helpful for aerial imagery

processing, as it will relieve us from making new labeling dataset. Table 5 resumes the efficiency of our

algorithm per case.

Table 5. Efficiency of our algorithm per case.

Domain Shift Factor Efficiency Examples of Classes

Sensor High Building, Tree
Other factors Conserves efficiency Low vegetation

No Domain shift Conserves efficiency Cars

Concerning the execution time of our algorithm, we needed around 7 to 10 h to train the system.

Then, we needed 15 milliseconds to segment an image from the target domain with size 2048 × 1024.

The training of the system can be automated to work with any targeted dataset and does not need

labelling data, as it works in an unsupervised way. Step 1 of the algorithm that makes the training

of the segmentation model on the source dataset needs around 3 to 4 h using the PC configuration

detailed in the experimental settings part. Then, the training of the GAN architecture needs 2 to 3 h.

The training works in an unpredictable way but generally converges to an acceptable stage within this

period of time. The translation of the dataset needs only a few minutes. The last step of fine-tuning the

model with the translated dataset needs 2 to 3 h. This range of timing makes our algorithm practical

for adoption in real case scenarios of aerial imagery analysis, especially where the domain shift results

mostly from sensor variation.

7. Conclusions

In this work, we have proposed a new method for domain adaptation in semantic segmentation

of aerial imagery based on GANs. This method was confirmed to be efficient in targeting domain

shift that results from sensor variation between the source and the target. In this case, this method

is capable of substantially improving the accuracy of the segmentation model. In addition, it does
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not affect the ability of the segmentation model to classify classes that do not have domain shift or

classes that are subject to other domain shift factors, like variation of resolution or variation of class

representation. Moreover, it has a very minimal cost, as it does not need labeling data or other manual

work. The whole process can be trained for any new dataset and finished within 7 to 10 h. Our work is

showing the promising potential of GANs in aerial image analysis and it is, to our knowledge, the first

to treat the problem of domain adaptation in semantic segmentation of aerial imagery using GANs.

Nevertheless, our algorithm should be coupled with a supervised approach to cope with domain shift

factors other than sensor variation. In fact, these factors could only be mitigated in a supervised way

to guide the image generation process during the translation between domains.
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