

Using NPS-F for Mixed-Criticality Multicore
Systems

Technical Report

CISTER-TR-130303

Version:

Date: 03-25-2013

Konstantinos Bletsas

Stefan M. Petters

Technical Report CISTER-TR-130303 Using NPS-F for Mixed-Criticality Multicore Systems

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Using NPS-F for Mixed-Criticality Multicore Systems
Konstantinos Bletsas, Stefan M. Petters

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.cister.isep.ipp.pt

Abstract
Hard real-­time multiprocessors scheduling has recently seen the flourishing of semi-­partitioned scheduling
algorithms - a category of scheduling schemes that combine elements of partitioned and migrative scheduling to
allow more efficient processor usage, while providing improved schedulability guarantees at the same time. Yet,
so far, semi-­partitioning has not made any inroads into mixed­-criti­cality scheduling. We aim to address this by
proposing a way of combining mixed­-criticality scheduling with semi­-partitioning. Specifically, we adapt the NPS-­F
scheduling algorithm for this purpose.

Using NPS-F for Mixed-Criticality Multicore Systems

Konstantinos Bletsas and Stefan M. Petters

CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Portugal

1. MOTIVATION
Hard real-time multiprocessors scheduling has recently seen the
flourishing of semi-partitioned scheduling algorithms – a category
of scheduling schemes that combine elements of partitioned and
migrative scheduling to allow more efficient processor usage, while
providing improved schedulability guarantees at the same time. Yet,
so far, semi-partitioning has not made any inroads into mixed-criti-
cality scheduling. We aim to address this by proposing a way
of combining mixed-criticality scheduling with semi-partitioning.
Specifically, we adapt the NPS-F scheduling algorithm [1] for this
purpose. The timeslot-based dispatching of NPS-F allows for fair-
ness and responsiveness for lower-criticality workloads with no
detriment to the schedulability guarantees of high-criticality tasks.
NPS-F can be outlined as follows. Initially, tasks are partitioned to
servers offline, using bin-packing. These servers are then mapped
to one or more processors each (using non-overlapping time win-
dows, for each server that employs multiple processors), creating
a sort of cyclic executive which repeats every S time units – the
timeslot. At run-time dispatching inside each server is dynamic,
using EDF. The share of the timeslot S reserved for each server is
static (computed offline) and depends on its workload. The princi-
ple guiding the sizing of each server is that its share of the timeslot
should be sufficiently large (according to schedulability analysis)
such that no deadlines may be missed by the tasks it serves.

2. NPS-F FOR MIXED CRITICALITIES
Our approach for adapting NPS-F to mixed-criticality workloads
consists in partitioning the high-criticality tasks (“H-tasks”) over m
non-migrating servers, each server mapped to one corresponding
processor. The remaining capacity on all processors (the shares
of the timeslot that remain unassigned) is “recycled” for mapping
servers for the non-critical workload (“L-tasks”).
Two system operation modes exist: “normal” mode and “high-criti-
cality” mode. Each H-task ⌧i has two different estimates of its
WCET: CL

i , which is considered sufficient, but lacks proof and
CH

i , which is provably always safe and possibly much greater than
CL

i . For L-tasks, only CL
i is determined. Under “normal” mode,

every task ⌧i (irrespective of its criticality) executes and both crit-
ical and non-critical tasks are guaranteed to meet their deadlines

as long as they run for no more than their low-criticality estimate
CL

i . However, as soon as any H-task overruns its CL
i , the system

switches to “high-criticality” mode: non-critical workload is idled
and the system switches to partitioned EDF scheduling of H-tasks
only, assuming a WCET of CH

i for each H-task. In high-criticality
mode, and during the mode transition, the deadlines of all H-tasks
must be met, which poses challenges.
A naive approach would (i) partition the H-tasks such that they are
schedulable under uniprocessor EDF, considering the overly conser-
vative estimates CH

i (to meet deadlines in high-criticality mode)
and, for normal mode execution, would (ii) assign budgets to the
respective servers so that they meet deadlines with WCETs of CL

i .
However, this may lead to missed deadlines during mode transition.
A conservative approach would, instead size budgets for H-task
servers according to their CH

i . However, this would be too inef-
ficient for normal mode operation, because it would limit the pro-
cessor capacity available for scheduling L-task servers. Ideally, we
would like to analytically identify the “sweet spot” between these
two extremes, so as to (i) minimise the processor capacity used
for H-task servers (i.e. maximise the capacity available for L-task
servers), while (ii) ensuring that no H-tasks may ever miss dead-
lines (even when a mode transition is triggered).

3. APPROACH OUTLINE
The approach taken centers around (i) identifying (after an overrun
has been detected in a server) the amount of execution which may
need to be executed before the respective task deadlines and (ii)
sizing the servers such that the point of detection is sufficiently
early to execute the remaining workload in time. Issues to solve are
(i) identifying the critical instant, which leads to the latest detection
of an overrun of any task and (ii) sizing the servers such that the
regular load can be executed beforehand. The particular challenge
here is that these two issues are not independent.
Pen and paper exercises with a number of case studies indicate that
most servers can be kept at substantially lower utilization than what
is required if straight CH

i is considered. The benefit of the pro-
posed approach is that it maintains the isolation to L-tasks, in most
cases with a larger share utilization than what would otherwise be
possible, leading to a more even and fair distribution of resources.

Acknowledgements: Work partially supported by National Funds through FCT (Por-
tuguese Foundation for Science and Technology) and by ERDF (European Regional
Development Fund) through COMPETE (Operational Programme ’Thematic Factors
of Competitiveness’), within SMARTS project, ref. FCOMP-01-0124-FEDER-020536.

4. REFERENCES
[1] K. Bletsas and B. Andersson, “Preemption-light multiprocessor

scheduling of sporadic tasks with high utilisation bound,” Journal of

Real-Time Systems, vol. 47, no. 4, pp. 319–355, 2011.

