

WCET Analysis Considering Contention on
Memory Bus in COTS-Based Multicores

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-111001

Version:

Date: 10-10-2011

Dakshina Dasari

Vincent Nelis

Björn Andersson

Technical Report HURRAY-TR-111001 WCET Analysis Considering Contention on Memory Bus

 in COTS-Based Multicores

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

WCET Analysis Considering Contention on Memory Bus in COTS-Based
Multicores
Dakshina Dasari, Vincent Nelis, Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: dndi@isep.ipp.pt, nelis@isep.ipp.pt, baa@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
The usage of COTS-based multicores is becoming widespread in the field of embedded systems. Providing real-time
guarantees at design-time is a pre-requisite to deploy real-time systems on these multicores. This necessitates the
consideration of the impact of the contention due to shared low-level hardware resources on the Worst-Case Execution
Time(WCET) of the tasks. As a step towards this aim, this paper first identifies the different factors that make the
WCET analysis a challenging problem in a typical COTS-based multicore system.Then, we propose and prove, a
mathematically correct method to determine tight upper bounds on the WCET of the tasks, when they are co-scheduled
on different cores.

WCET Analysis Considering Contention on
Memory Bus in COTS-Based Multicores

Dakshina Dasari∗, Vincent Nelis∗ and Björn Andersson†∗

∗CISTER-ISEP Research Centre, Polytechnic Institute of Porto, Portugal
†Software Engineering Institute, Carnegie Mellon University, USA

{dndi, nelis, baa}@isep.ipp.pt, baandersson@sei.cmu.edu

Abstract—The usage of COTS-based multicores is becoming
widespread in the field of embedded systems. Providing real-
time guarantees at design-time is a pre-requisite to deploy
real-time systems on these multicores. This necessitates the
consideration of the impact of the contention due to shared
low-level hardware resources on the Worst-Case Execution Time
(WCET) of the tasks. As a step towards this aim, this paper first
identifies the different factors that make the WCET analysis a
challenging problem in a typical COTS-based multicore system.
Then, we propose and prove, a mathematically correct method to
determine tight upper bounds on the WCET of the tasks, when
they are co-scheduled on different cores.

I. INTRODUCTION

Multicores developed using Commercially available Off-
The-Shelf (COTS) components have become an integral choice
in the design of embedded systems. Unfortunately, COTS-
based multicores are designed to increase the average-case
performance and not towards timing predictability or timing
compositionality. This makes the application of Worst-Case
Execution-Time (WCET) analysis, a key phase in design-
ing real-time systems very challenging as the system design
becomes more complex. Another drawback of COTS-based
systems is that most of the key underlying protocols, set-up
parameters, and implementation details are not documented;
either because vendors keep them confidential or the related
documents merely omit to specify them. As a consequence,
system analysts in the research community either make some
generalized assumptions which lead to non-tight WCET esti-
mates, or they base their analysis on over-simplified models
that do not reflect the underlying architecture on which the
end-application is eventually deployed. Until the industry does
not change its current trend in building systems towards
predictable systems, there is a strong need to fully analyze
the current available COTS-based systems and develop models
that efficiently capture their runtime behavior.

Apart from the unavailability of the required information,
the analysis process is further complicated by the existence of
low-level hardware resources shared between processor cores,
such as memory for instance. These shared resources give rise
to contention between the tasks (running on different cores)
eager to access them. An implication of this contention is
that the WCET of a task scheduled on a multicore system is

not an inherent property of the task itself. Rather, its WCET
is impacted by the resource accesses issued from the tasks
co-scheduled on the other cores. In a typical COTS-based
architecture, all the cores access the main memory via a
shared memory bus called “Front-Side-Bus” (FSB). Because
this FSB can get saturated, it can cause the cores to stall while
waiting for requests to be served, thereby generating a non-
negligible increase in the WCET of the tasks running on them.
Most of the WCET techniques developed for uniprocessors [1]
do not consider the impact of shared low-level hardware
resources and hence they cannot be applied to typical COTS-
based multicore systems. However, the problem of analyzing
the impact of shared hardware resource on the WCET of
the tasks is of significant importance, and among the most
interesting studies in this research field, one can cite [2], [3],
[4], [5]. Unfortunately, all these approaches are not applicable
to typical COTS-based systems, because of the assumptions
they make.

As a first contribution, we provide a description of a typical
COTS-based system, in which we identify the key unknown
parameters that prevent the system designers from deriving an
accurate timing analysis of memory transactions. That is, we
clearly draw the boundary between the parameters that can be
accurately computed (or simply found in the literature), those
that can merely be estimated through experiments, and those
marked as vendor-proprietary. Secondly, after estimating an
upper-bound on the time of a memory transaction, we provide
a WCET analysis for each task in the system, considering that
they interfere with each other while accessing the shared FSB.

II. IDENTIFICATION OF THE KNOWN/UNKNOWN

PARAMETERS IN A TYPICAL COTS-BASED SYSTEM

A. Architecture and components overview

This section gives a brief overview of a typical COTS-
based multicore system and highlights the sources of non-
determinism in the off-processor-chip boundaries, focusing on
the FSB and the memory controller. The sources of non-
determinism in the processors (e.g pipelines, branch-prediction
units, etc.) are not described here.

!"#$%$&'#!"#$%$&'

()*'#"#

!"#$%$&'#!"#$%$&'

()*'#+#

!"#$%$&'#!"#$%$&'

()*'##,#

-&%*'.#!+#(%$&'##

/#/##/

0)*1*3.4'

5*)61#-3.'#278#

-)71*3.4'
9:;<#()61*)=='*#>7?@

A',)*B##()61*)=='*

0)*1*3.4'

-B81',#
A',)*B

C*%D&3$8
()61*)=='*#

E3*'$1#A'.3%#:61'*F%$'#

<1&'*##:61'*$)66'$18##
%6.##G'*3D&'*%=8#

A)78'

H'B?)%*.

!"#$%&'($()"**
+,-

I7.3)#
E'J3$'

<1&'*#
-1*'%,364#
E'J3$'8

+"(%&'($()"*
+,-

A',)*B##I*?31'*

Fig. 1. A typical COTS-based multicores architecture.

B. A typical COTS-based multicore system

A typical COTS-based multicore system is illustrated in
Figure 1. It comprises a multicore chip, in which each core has
a Level-1 cache and the cores (may) share the Level-2 cache.
To focus on the impact of bus-contention, this paper considers
multicores with either private caches or assumes that shared
cache if present, is disabled. The multicore chip is connected to
the North-Bridge (NB) via the FSB. The NB typically handles
communications among the CPUs, the RAM, the PCI Express
(or AGP) video cards, and the South-Bridge (SB). It directly
interacts with the shared system-memory and consists of a
memory controller and a memory arbiter. Generally, a graphics
controller is connected to the NB (or is sometimes integrated
into the NB depending on the chipset design). The SB, often
referred to as the I/O Controller Hub, handles communication
with the peripherals (such as the hard-disk, keyboard, printer,
etc.) over a variety of buses (like PCI and PCI express). The
peripherals can be connected in various ways depending on
the chipset design.

As seen in Figure 1, the memory is shared over the NB
between multiple entities, which we shall henceforth refer to
as agents. The main agents that access the system-memory are
the multicore chip, the graphics controller and the SB unit.

C. Upper-bounds on memory transactions

In the typical architecture presented above, there are two
main levels of contention before a request issued from a core
can access the shared memory. First, the requests from the
different cores contend for access to the shared FSB and then,
once the requests have been brought to the memory controller
in the NB, they may still be delayed from being serviced
because of contention from other agents like the SB and the
graphics controller. Here, we are interested in the longest time

T̂R needed to serve a memory request from a core. T̂R can
be expressed as the sum of (i) the time that a request spends
on each intermediate component and (ii) the time needed to

transmit the request between components. T̂R can be formally

expressed as follows:

T̂R = tfsb + tfsb→nb + tnb + tnb→mem + tmem

+tmem→nb + tnb→fsb (1)

where tfsb is the maximum time to get access to the FSB;
tfsb→nb (tnb→fsb) denotes the maximum time to transmit the
request to (from) the NB over the FSB; tnb is the maximum
time that the service of a request is delayed, due to contention
in the NB; tnb→mem denotes the maximum time to transmit
the request from the NB to the memory, and vice-versa
regarding tmem→nb, and tmem is the maximum memory access
time (needed to load/store the requested data). The quantities
tfsb→nb, tnb→fsb, tmem→nb and tnb→mem are functions of
the speed and width of the bus (the FSB for tfsb→nb and
tnb→fsb, and the North-Bridge-to-memory bus for tmem→nb

and tnb→mem), as well as the length of the transmitted
information (the maximum length of a request for tfsb→nb and
tnb→fsb, and the length of the returned data for tmem→nb and
tnb→mem). This information is usually documented, enabling
us to accurately compute these four quantities. Concerning
tfsb, tnb and tmem, additional information is required.
Estimation of tfsb : The contention over the FSB is usually
resolved based on a simple Round-Robin (RR) arbitration
mechanism (See [6] for more details), in which all the cores
are treated equally. The order in which the cores acquire the
ownership of the bus is fixed apriori. Only one core can be
the owner of the bus at a time and only the owner of the
bus can transmit information. If m denotes the number of
cores competing for the FSB, and town switch is the maximum
number of system clock cycles to pass the bus-ownership
from one core to another, then tfsb can be computed as

tfsb
def
= (m − 1) × (tfsb→nb + town switch). As the required

information is provided, tfsb can be determined at design time.
Estimation of tnb : There exist many inter-agent arbitration
policies which can be used by the memory-arbiter to determine
the order of servicing the memory requests. We will refer to
the arbitration scheme proposed in [7]. This arbitration scheme
tries to balance the quality of service (QoS) requirements
of streaming devices with the low-latency requirements of
memory requests from the CPU. This mechanism uses the
concept of “schedule periods” which consists of a fixed
number of system-clock cycles1. In the particular schedule-
period presented in Table I, requests issued from agents
are categorized by the nature of their requests (isochronous,
asynchronous or maintenance) and each type is allotted a
minimum number of service slots.
Maintenance requests encompass refresh requests, current

calibration (ICal) and temperature calibration (Tcal) requests
issued by the system-memory (DRAM). DRAM refresh refers
to the operation which cycles through a DRAM, reading each
row and writing it back again in order to compensate for the
gradual leakage of charge from the capacitors that store the
data. These maintenance requests are typically not a part of

1For example, in a system with a system-clock-frequency of 100 MHz,
each schedule-period may span 128 cycles or 1.28 microseconds.

Resource Block Service Slots in Cycles
Maintenance(Refresh) X
Maintenance(ICal) Y
Maintenance(TCal) Z=42
Display(Isochronous) 48
CPU Requests 30
Total 128

TABLE I
A TYPICAL SCHEDULE-PERIOD FROM [7].

each schedule period 2, but must be serviced at the highest
priority whenever they occur and cannot be preempted by
other requests. Also, the number of cycles required to complete
every maintenance requests can vary from one DRAM to
another.

Isochronous (or periodic) requests are issued by streaming
devices which need bandwidth guarantees. For example, a
graphics controller typically needs f frames per second for
acceptable quality of rendering, where f is technology depen-
dent. Requests issued by the cores or other interactive devices
(like keyboard for instance) are asynchronous, i.e., the request
pattern of such components/devices is typically non-uniform
and latency-sensitive.

Memory controllers designed for providing a certain level
of QoS to all the agents segregate the requests into different
groups. Each request type is pre-assigned certain service slots
in every schedule period. As seen in Table I, the highest
priority is given to the maintenance requests, followed by
isochronous and finally asynchronous requests. If there are no
requests of a given type, then all the remaining service slots
assigned to that type are distributed amongst the lower-priority
request types [7]. This ensures guaranteed service times, while
preventing the memory controller from being idle while there
are other requests waiting to be served. The extra time tnb

due to contention for memory access in the NB depends on the
inter-agent arbitration policy in the NB. Considering the policy
described here, a request may be serviced directly (if there are
no higher-priority pending requests) or it may be serviced at
the end of the schedule period (or even in a further scheduler
period if the number of service-slots is insufficient to serve
it, or if the request requires multiple schedule periods to be
serviced). In short, the time spent by each request in the NB
is variable due to the flexible but non-predictable arbitration
mechanism. None of the parameters specified in Table I are
specified in the system manuals and hence determination of
tnb is very difficult.

Estimation of tmem : A memory transaction is generally
processed by first mapping each memory request to a bank,
row and column number and issuing commands to the memory
module. After selecting the right bank, the given row is
activated (or “opened”). The selected columns are activated
and data is read from (or written to) the selected columns with
a latency equal to the Column Access Strobe (CAS) Latency.

2For example, DRAM refresh requests may occur once every 7.8 microsec-
onds [7],or once every 6 schedule periods for a schedule period as in Table I.

The row is then pre-charged (or “closed”) before the next
access. To exploit the spatial locality of requests, the overhead
of pre-charging and reactivating the same row again can be
avoided by keeping the row open until the next request [8].
This policy always lets the current row in the open state
after a transaction. Therefore, if the subsequent transaction
requests a word which is in the opened row, then this second
transaction is served with a latency of only CAS cycles.
Otherwise, this second transaction will bear the additional
cost of closing the current row and opening the required one.
The memory latency can thus be different for each request,
depending on the transaction-re-ordering mechanisms present
in memory controllers. This adds to the non-determinism
during the computation of the overall time to serve a memory
request, because the time to access memory constitutes a
significant portion of that total time. The memory access
time for each request is variable and is influenced by the
choice of the memory-access-scheduling policies employed
by the underlying memory-subsystem. All this information
is generally undocumented and hence, obtaining an accurate
estimate of the memory latency is non-trivial.
Summary: Critical information required for computing tight
bounds on the time to serve a request is undocumented in
COTS-based systems. To re-iterate, information necessary to
compute tnb, such as the exact arbitration policy in the mem-
ory controller (which includes pre-allocated service time slots
assigned to different types of requests) is not specified and
cannot be easily obtained. Information necessary to compute
tmem, such as the exact transaction scheduling and re-ordering
policy employed by the memory controller, is difficult to
obtain. The value of these key parameters is not documented

in the specifications documents and obtaining an accurate T̂R
by adding up the maximum time spent in each intermediate
component is therefore very difficult. Instead we calculate a
new upper bound TRiso on the time to complete an entire
bus transaction. This is obtained by performing end-to-end
measurements and then recording the maximum observed time
to serve a memory request. In the next section, we analyze
a simple model considering a round-robin bus arbitration
algorithm and compute the WCET using this upper bound
TRiso.

III. SYSTEM MODEL AND NOTATIONS

The hardware is composed of a set of m processor cores
denoted by π1,π2, . . . ,πm and we assume that (i) no cache
memory is shared between them and (ii) all of them share
a Front-Side-Bus to access to the shared main memory. We
assume that the application τ is composed of n tasks, in which
every task τi is characterized by a WCET Ciso

i which denotes
an upper bound on the execution time of task τi when it
executes in isolation, i.e., with no contention on the memory
bus. In that context, Ciso

i can be computed by well-known
techniques in WCET analysis (see [1] for a state of the art).
In this paper, we are interested in finding Cmix

i which denotes
an upper bound on the execution time when τi executes with
contention on the memory bus, i.e., assuming that other tasks

are running on the other cores. Clearly, the value of Cmix
i

is not an inherent property of τi, but is co-runner dependent
and depends on the memory request pattern of the other tasks
scheduled to run during its execution. We also define a Per-
Core-Request-Estimator function PCREj(t) that returns the
maximum number of requests generated by the set of tasks
assigned to core πj in any time interval of duration t. The
algorithm that computes PCREj(t) will be presented in future
work.

We consider a partitioned scheme of task assignment in
which tasks are assigned to cores before run-time and are not
allowed to migrate from one core to another. We assume a
non-preemptive scheduler and hence do not deal with cache
related preemption overheads and task-switching overheads.
Also, each task assigned to a given core releases its first job at
time zero and every task runs to its expected WCET. Whenever
a task completes earlier than its WCET (say on CPU πj),
the scheduler idles the core πj up to the theoretical WCET
of the task (the scheduler is thus non work-conserving). This
assumption is made to ensure that the number of bus-requests
within a time window, computed at design time, is not higher
at run-time due to early executions of tasks.

IV. DETERMINATION OF Cmix
i

The value of Cmix
i is clearly dependent on the bus arbitration

algorithm and the request pattern of the tasks co-scheduled on
other cores. For each task τi, we denote by RQSTi(C

iso
i) a

function that returns the maximum number of requests that τi

can generate if it executes non-preemptively in isolation for its
WCET Ciso

i . Given a Round-Robin scheduling bus arbitration
mechanism, each request generated by a task τi can be blocked
by (m − 1) requests issued from the tasks running on the
other cores. If TRiso denotes the maximum time to serve each
request when a task runs in isolation, then an upper-bound
Cmix

i on the WCET of τi considering bus contention is given
by

Cmix
i = Ciso

i +RQSTi(C
iso
i) × (m − 1) × TRiso (2)

However, Expression 2 is an overly pessimistic bound, because
it does not consider the case in which the tasks (if any) running
on the other cores (i.e., excluding the core assigned to τi)
may not be generating requests. Below, we tackle this over-
pessimism and we provide a tighter upper-bound. Let τ̄π(i)
denote the set of tasks that are not assigned to the same CPU
as τi.

Lemma 1: Considering that a task τi is executing with

contention on the memory bus, an upper bound Cmix
i on

its execution time is given by the first fixed point (i.e.,
Ck

i = Ck−1

i) of the following iterative process (the proof is
omitted here due to the space limitation). The initialization
step is C0

i ← Ciso
i and

iqlen0
i ← RQSTi(C

0
i) × (m − 1)

xrqst0i ←

P

τj∈τ̄π(i) PCREj(C
0
i)

brqst0i ← min(xrqst0i , iqlen0
i)

and the iteration step is:

Ck
i ← Ck−1

i + brqstk−1
i ×TRiso

iqlenk
i ← iqlenk−1

i − brqstk−1
i

xrqstk
i ←

P

τj∈τ̄π(i)

`

PCREj(C
k
i) − PCREj(C

k−1
i)

´

brqstk
i ← min(xrqstk

i , iqlenk
i)

V. CONCLUSIONS

The use of COTS components in real-time embedded sys-
tems is challenging as the WCET analysis gets complicated
due to the presence of shared low-level hardware resources.
The presence of such shared resources leads to contention
amongst the cores, leading to a non-negligible increase in the
WCET of the tasks. In this paper, we firstly identified the
different factors that make the WCET analysis a challenging
problem in a typical COTS-based multicore system. Then, we
proposed an iterative process that computes an upper-bound
on the WCET of the tasks, when they are co-scheduled on
different cores. Future work involves experimental validation
of the theory, carrying out further optimizations to compute
tighter WCET estimates and extending the current theory to
multicores with shared caches.

ACKNOWLEDGEMENT

This work was supported by the REHEAT project (ref: FCOMP-01-
0124-FEDER-010045) and the the RePoMuC project (ref: FCOMP-01-0124-
FEDER-015050), funded by FEDER funds through COMPETE (POFC - Op-
erational Programme ’Thematic Factors of Competitiveness) and by National
Funds (PT) through FCT - Portuguese Foundation for Science and Technology
and the RECOMP project, funded by also through the FCT, under grant ref.
ARTEMIS/0202/2009, as well as by the ARTEMIS Joint Undertaking, under
grant agreement number 100202.

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution time problem - overview of methods and survey of tools,” ACM
Transactions on Embedded Computing Systems, vol. 7, no. 3, 2008.

[2] J. Rosén, A. Andrei, P. Eles, and Z. Peng, “Bus access optimization for
predictable implementation of real-time applications on multiprocessor
systems-on-chip,” in Proceedings of the 28th IEEE International Real-
Time Systems Symposium, 2007, pp. 49–60.

[3] S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Modeling shared
cache and bus in multicores for timing analysis,” in Proceedings of
the 13th International Workshop on Software Compilers for Embedded
Systems, 2010, pp. 6:1–6:10.

[4] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo,
“Timing analysis for resource access interference on adaptive resource
arbiters,” in Proceedings of the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2011.

[5] S. Schliecker, M. Negrean, and R. Ernst, “Bounding the shared resource
load for the performance analysis of multiprocessor systems,” in Proceed-
ings of the Conference on Design, Automation and Test in Europe, 2010,
pp. 759–764.

[6] T. Shanley, Pentium Pro and Pentium II system architecture (2. ed.).
Addison-Wesley-Longman, 1998.

[7] S. Pawlowski and B. Baxter, “Apparatus for memory resource arbitration
based on dedicated time slot allocation,” U.S. Patent 6 363 461, 2002.

[8] B. Jacob, N. G. Spencer, and D. Wang, Memory Systems Cache, DRAM,
Disk. Morgan Kaufmann, 2007, pp. 497–520.

