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Abstract 

Guaranteeing that safety-critical Cyber-Physical Systems (CPS) do not fail upon deployment is becoming an even 
more complicated task with the increased use of complex software solutions. To aid in this matter, formal 
methods (rigorous mathematical and logical techniques) can be used to obtain proofs about the correctness of 
CPS in such a way that traditional testing methods cannot. Among the most promising formal methods is the 
concept of Runtime Verification, where monitors are coupled to a target system to check its behavior during 
runtime. Although helpful, runtime verification solutions introduce an inevitable overhead in the system, which can 
disrupt its correct functioning if not safely employed. We propose the creation of a Domain Specific Language 
(DSL) that, given a generic CPS, 1) verifies if its real-time scheduling is guaranteed, even in the presence of 
coupled monitors, and 2) implements several verification conditions for the correct-by-construction generation of 
monitoring architectures. To achieve it, we plan to perform statical verifications, derived from the available 
literature on schedulability analysis, and powered by a set of semi-automatic formal verification tools. 
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Abstract—Guaranteeing that safety-critical Cyber-Physical
Systems (CPS) do not fail upon deployment is becoming an
even more complicated task with the increased use of complex
software solutions. To aid in this matter, formal methods (rigorous
mathematical and logical techniques) can be used to obtain
proofs about the correctness of CPS. In such a context, Runtime
Verification has emerged as a promising solution that combines
the formal specification of properties to be validated and monitors
that perform these validations during runtime. Although helpful,
runtime verification solutions introduce an inevitable overhead
in the system, which can disrupt its correct functioning if not
safely employed. We propose the creation of a Domain Specific
Language (DSL) that, given a generic CPS, 1) verifies if its real-
time scheduling is guaranteed, even in the presence of coupled
monitors, and 2) implements several verification conditions for
the correct-by-construction generation of monitoring architec-
tures. To achieve it, we plan to perform statical verifications,
derived from the available literature on schedulability analysis,
and powered by a set of semi-automatic formal verification tools.

Index Terms—runtime verification, cyber-physical systems,
DSL, safety, mode change

I. INTRODUCTION

Cyber-Physical Systems are physical and engineered em-

bedded systems whose operations are monitored, coordinated,

controlled, and integrated by one or more computing and

communication devices [24]. Typically, these systems are com-

posed of a network of devices that sense its environment and

perform physical activities controlled and monitored by local

or distributed software [20]. Herein we focus on safety-critical

CPS, a sub-group that complies with high safety standards to

avoid failures that could cause loss of lives, property damage,

or catastrophic environment accidents.

The automotive domain is a notable example of a safety-

critical CPS that also serves as a good use-case for this work,

due to its current trend of adding value to its software functions
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rather than focusing purely on the car’s mechanics [21]. Exam-

ples of it are services like advanced driver-assistance systems

(ADAS), entertainment, and autonomous driving. Being able

to guarantee that such complex software architectures do not

fail upon deployment can quickly become a considerable

challenge as these systems commonly face emergent partially

known, or even unknown, events. Providing such guarantees

is especially tricky in the context of CPS, as there is a need

for analyzing and verifying both functional and non-functional

properties of these systems [1].

Although it remains challenging to prove the correctness of

the numerous aspects of CPS, various tools that apply formal

methods (rigorous logical and mathematical techniques) are

currently available to specify, develop, and verify a wide

range of properties. Such techniques can offer proofs or

evidences about specific aspects of the system and reveal

inconsistencies, ambiguities, and incompletenesses that are

generally overlooked by traditional testing procedures.

Runtime Verification (RV) is currently one of the most

promising formal approaches for verifying CPS’ correct-

ness [3], [27]. RV techniques use monitors [22] that are gener-

ated and orchestrated within a software architecture. Monitors

are coupled to a target system to observe its execution and

identify, during runtime, aspects that could not be checked

during the design-phase, or errors that were not proven to be

absent via static verification methods [6].

When making use of monitors, one has to ensure that they

do not affect the functional and the safety non-functional

requirements of the system (e.g., task scheduling [18]). To

address this, we propose the creation of a DSL that can express

both functional and non-functional properties of systems while

also supporting the concept of mode changes. The envisioned

DSL will consider, at the core of its design, the correct-by-

construction generation of monitors given a formal specifica-

tion and the compliance of the monitoring solutions with the

safety requirements of the target system.

The envisaged DSL describes criteria over the properties

that the monitors should analyse, and over the timing restric-

tions for deploying tasks and monitors. These criteria will

be analyzed by schedulability analysis algorithms present in

the literature and external, (semi-)automatic formal verifica-

tion tools such as model checkers (e.g., mCRL2, UPPAAL),

SMT solvers, proof-assistants (e.g., Coq), and security-focused

formal verification tools (e.g., ProVerif). We are currently

working on the DSL syntax and experimenting with some of
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Fig. 1: Expected evolution of automotive E/E architectures.

these tools and techniques for validation purposes.

We motivate our work by modern electric/electronic ar-

chitectures present in the automotive domain. However, our

approach is generic, as it provides support to safely deploy

runtime verification solutions also applicable in other domains

with similar timing restrictions such as critical systems in the

domains of healthcare, industrial robotics, and railway.

The rest of this paper presents our motivation together with a

brief use-case contextualization in Section II, the presentation

of our DSL and its upcoming implementation challenges in

Section III, and the paper conclusion in Section IV.

II. CONTEXTUALIZATION AND MOTIVATION

Enhancements to CPS through the use of software solutions

have drastically increased during the last decade. A clear

example of this is the automotive industry, which is currently

transitioning away from the traditional signal-based electric

and electronic (E/E) architecture, purely based on distributed

electronic control units (ECUs), to a more contemporary ap-

proach using a mix of distributed ECUs and centralized high-

performance units [9]. Such a change is partially motivated

by the inability of the traditional approach to support the high

computation and communication demands of more advanced

software-based car functions [10], the desire to reduce ma-

terial production costs (traditional wiring represents both the

third most expensive and heaviest hardware component of a

car [19]), and the necessity of interacting with services and

receiving Over The Air updates [4].

Bucaioni et al. [5] classify automotive E/E architectures into

three groups:

Distributed E/E architectures (< 2019, Fig. 1(a)), date back

to the ’90s and were composed of 30 to 100+ distributed

function-specific ECUs that communicate using a single gate-

way. Such an approach creates a communication bottleneck

on the gateway and drastically increases the complexity of

network management.

Domain Centralised E/E architectures (2019 → 2023,

Fig. 1(b)) reduce the number of distributed ECUs and increase

the computational power of some units to cope with the

increased software complexity. They attempt to separate the

vehicle’s ECUs into specialized domains that perform domain-

specific functions, e.g., powertrain, infotainment, and chassis.

Each domain contains a high performance computing unit

named Domain Controller (DC) capable of managing its

associated ECUs and communicating with other DCs [12].

This approach concentrates computation and communication

within each domain while also allowing for inter-domain data

exchange and leveraging cloud-based services.

Vehicle-Centralized E/E architectures (> 2023, Fig. 1(c))

are seen as the future of automotive E/E architectures, further

further centralizing low latency in-car computation while also

integrating the idea of continuously interacting with cloud-

based services (Fig. 1(c)). Vehicle centralized architectures use

multi/many-core high-performance servers (HPS) to perform

massive data processing while sending and receiving infor-

mation through various zone controllers (gateways), which

support both legacy and newer technologies.

Newer E/E automotive architectures still face several chal-

lenges for their real-world implementation and adoption [17],

[19]. Although not explicitly tailored for the automotive do-

main, our work contributes to overcoming two crucial real-

world obstacles the newer generation of cars face: under-

utilization of resources and safety guarantees. We approach the

former by supporting the use of mode changes [25] and the

latter by proposing a correct-by-construction generation of RV

solutions with safety guarantees regarding real-time properties.

While the concept of mode changes allow systems to opti-

mize the use of its resources consonant to its current state, RV

solutions can help check, during runtime, if a system behaves

according to its specification. RV is of great importance in

the context of CPS as it helps to verify aspects that are

not verifiable with statically defined techniques either by the

nature of the problem or due to the issue of state explosion.

With these concepts in mind, we aim at creating a DSL that

supports both RV and mode changes while abstracting the

formal aspects of the correct and safe deployment of these

solutions in any CPS architecture that complies with a set of

constraints that are further detailed in the next section.

III. DSL REQUIREMENTS AND CHALLENGES

Our work consists of exploring the idea of a DSL capable

of deploying correct-by-construction RV architectures in CPS

while also abstracting the burden of performing several formal

verifications semi-manually. On top of centralizing domain



knowledge, DSLs are also known for improving productivity

and enhancing validation and verification procedures during

system design [26]. These two aspects are of crucial impor-

tance in our case as we aim at minimizing the number of

errors when deploying RV solutions while also reducing the

time to deploy CPS. This is achieved by delegating the formal

verification of the system to a compiler that includes a set

of semi-automatic formal verification tools. Summarising, our

idealized DSL should be able to:

• express both functional and non-functional CPS proper-

ties to be verified by the monitors;

• verify, statically, the schedulability of a target system and

its associated set of monitors by considering a set of sup-

ported scheduling algorithms, hardware configurations,

operating modes, and the possible mode transitions that

the system could go through. In other words, we verify

if the coupling of monitors does not impact the temporal

safety of the target system execution;

• generate correct-by-construction monitoring architectures

that exploit 3rd party formal verification tools.

A. Specifying the architectures with mode changes

On top of motivating and contextualizing our proposed

work, the E/E architectures of Fig. 1(b) and Fig. 1(c) are

also representative examples of the systems that we intend

to support. However, the applicability scope of this work

generalises these particular architectures.

The structuring elements of our envisioned DSL (Listing 1)

are nodes and operating modes. The nodes represent the

top-level software components (in the example considered,

DCs and ECUs), and the behavior of is specified by one or

more operation modes that manage the parametrization of the

computing elements of the language. Each computing elements

is classified as being either a system task or monitor.

Nodes can thus operate in different modes (in the example,

m_1 and m_2), one at a time. While a monitor is described as

tuple with its worst-case execution time (WCET), minimum

inter-arrival time (T), and relative deadline (D), a task inherits

all of these parameters and also includes its fixed priority.

Each node has an assigned mode at runtime, defining

which tasks can be executing and its respective schedulability

parameters. A transition between two modes is triggered by a

mode-change request, which consists of graciously terminating

tasks from the previous mode while starting tasks from the

new mode without compromising deadlines, resources, nor

breaking dependencies.

At its core, our DSL aims to concisely describe the as-

signment of nodes, tasks, modes, schedulability parameters,

and intra-dependencies among tasks. Further extensions to

this DSL include the support for hierarchical nodes, where

tasks can be assigned to different nodes at runtime, and the

support to a fine control over who can request mode changes

(e.g., DC issuing requests to its associated ECUs Fig. 1(b)).

Many variations of these topics have been investigated in the

literature (e.g. [14], [23]).

Listing 1: DSL syntax – initial design efforts

node DC_1(scheduler = rm, cores = 2, alloc_policy = global){

mode m_1 {

task tsk_1{T = 10 ms, D = 10 ms, WCET = 5 ms};

task tsk_2{T = 5 ms, D = 3 ms, WCET = 2 ms};

monitor mon_1{T = 5 ms, D = 3 ms, WCET = 2 ms};

}

mode m_2 {

task tsk_1{T = 30 ms, D = 20 ms, WCET = 15 ms};

task tsk_2{T = 5 ms, D = 3 ms, WCET = 2 ms};

monitor mon_1{T = 3 ms, D = 2 ms, WCET = 1 ms};

}

}

node ECU_1 (scheduler = rm, cores = 1){

mode m_1 {

task tsk_3{...}; task tsk_4{...}; task tsk_5{...};

}

mode m_2_ {

task tsk_5{...}; task tsk_6{...}; monitor mon_2 {...};

}

}

B. Scheduling Guarantees

A key concern of the proposed underlying tools are safety

requirements. Our analysis tools will address these in two

ways. Firstly, they will verify all nodes’ schedulability con-

sidering multiple modes of operation and runtime transitions

between modes. Secondly, they will calculate the overhead

caused by monitoring tasks in all nodes, helping to configure

the scheduler, and also targeting multiple modes of operation

and transitions among them.
To keep the supported system architecture as generic as

possible regarding hardware and scheduling policies, while

also being in line with industrial practices, we aim at sup-

porting fixed-priority scheduling for both single-core and

multiprocessor units (i.e., multi- and many-core). Supporting

many hardware architectures implies performing schedula-

bility analysis of several scheduling and allocation policies

on single-core and multiprocessors (e.g., global scheduling,

partitioned scheduling, and semi-partitioned scheduling) [2],

[11], [15], [16]. While the referred works present solutions

for the schedulability analysis of specific system architectures

and scheduling policies, we aim at centralizing their results in

the form of a DSL compiler.
Listing 1, although simplistic, showcases some of the chal-

lenges in dealing with mode changes, not including functional

aspects of the tasks and monitors. For node DC_1, the DSL

compiler would calculate the schedulability analysis of mode

m_1, mode m_2, and possibly (application dependent) the tran-

sitions between m_1 to m_2 and m_2 to m_1. In this example,

the number of tasks is kept the same, although some param-

eters are changed consonant to the executing mode. The case

portraited by ECU_1 is a bit different, as although parameters

are kept the same, tasks that are relevant to mode m_1 are not

relevant to m_2. Nodes’ parameters, such as the number of

cores and employed scheduler (rm = rate monotonic), are fixed

to each node and will define which schedulability analysis will

be used to verify its feasibility.

C. Runtime Verification

Apart from having the overhead introduced by monitors

checked concerning safety guarantees, we aim to develop a



DSL capable of expressing which functional (e.g., calculations

results [13], ordering of events, access restrictions [7]) and

non-functional (e.g., temporal properties [8]) aspects of the

system are to be verified against a given formal specification.

Regardless of the end-objective of what needs to be mon-

itored, user-specified monitors would have its correctness

checked by a combination of external, (semi-)automatic for-

mal verification tools like model checkers (e.g., mCRL2,

UPPAAL), SMT solvers, proof-assistants (e.g., Coq), and

security-focused (e.g., ProVerif) formal verification tools. By

doing so, we guarantee that such monitors are correct with

respect to its specification, allowing a correct-by-construction

monitoring architecture on the target system.

D. Current State of Progress

Our current efforts are distributed into two distinct domains:

DSL syntax and formal verification tools. The DSL syntax tries

to balance the trade-off between completeness and generality,

and the verification tools try to analyze the right abstractions

to provide useful feedback. These two aspects are essential to

maintaining the domain knowledge present while still covering

a broad range of system architectures.

We have been implementing and validating schedulability

analyses present in the literature (for instance [2] and [15])

with the objective of porting them to a compiler that will

complement the proposed DSL. We have also experimented

with tools like mCRL2, Coq, Verdi, and ProVerif to understand

its usefulness to our work and plan to keep on experimenting

with other tools to expand our set of validation tools.

IV. CONCLUSION

This work presented the initial concepts and ideas behind a

DSL proposal for the correct deployment of RV solutions in

the scope of CPS. With the intuit to contextualize and motivate,

we built a use case around the automotive domain to serve

as an example of the type of systems compatible with our

ideas. At the core of our work proposal is the problematic

of deploying monitoring solutions in such a way that: 1)

safety aspects are considered during design time; 2) coupled

monitors do not affect the functional and the safety non-

functional aspects of the target system; 3) the code generated

for the monitoring architectures and monitors is correct-by-

construction. To address these concerns, we leverage the

available literature on schedulability analysis to perform static

scheduling verifications and use third-party formal tools to

guarantee the correctness of user-specified monitors.
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