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Abstract—A steady increase in the number of cores within
many-core platforms causes increasing contentions for the inter-
connect medium and leads to non-negligible latencies of inter-
core communication. In order to study the worst-case execution
times of applications, it is no longer sufficient to only take
into account schedulability requirements, but the communication
delays also have to be considered. In this paper we focus on
the worst-case communication delays of applications, assuming
a Limited Migrative Model (LMM). LMM is an approach based
on the multi-kernel paradigm - a promising step towards scalable
and predictable many-cores. The contribution of this paper is
threefold. First, we extend LMM by allowing inter-application
communication, and adapt the existing worst-case communication
delay analysis, to make it applicable to the enhanced model.
Then, we propose a novel analysis. Finally, we compare these two
methods. The experiments show that the new approach renders
tighter upper-bound estimates in more than 90% of the cases,
while demonstrating a comparable runtime performance.

I. INTRODUCTION

The miniaturisation process in the semiconductor tech-
nology reached the stage where further processing power
enhancements related to single-core systems are no longer
affordable [1]. In order to satisfy the ever increasing demand
for more powerful computational devices, chip manufacturers
took a design paradigm shift [2], [3] and started interconnect-
ing multiple cores within a single chip. Nowadays, platforms
containing several cores (multi-cores) and more than a dozen
of cores (many-cores) have become commonplace in many
scientific areas, most notably high performance computing,
while they are still an emerging technology in others, like real-
time embedded systems. This paper focuses on the latter.

In many-cores, the Network-on-Chip (NoC [4]) architecture
has become the predominant interconnect medium due to
its scalability potential [5]. On such platforms the wormhole
switching technique [6] is widely applied (e.g. [2], [3]) because
of its good throughput and small buffering requirements [5].

In order to integrate many-cores in the real-time embedded
domain, an OS paradigm is needed, such that it allows the
system designer to exploit the full potential of the underlying
hardware, while assuring predictability and scalability [7], [8],
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which are essential prerequisites for deriving execution guaran-
tees. The Limited Migrative Model (LM M) [9] is an approach
based on the concepts of the multi-kernel paradigm [7], which
is a novel OS design (e.g. [7], [10], [11]), and a promising
step towards scalable and predictable many-cores.

Contribution: This paper focuses on the worst-case com-
munication delays of applications, residing within a NoC-
based, wormhole-switched many-core platform using LM M.
Specifically, our aim is to derive, for each application, a tight
upper-bound estimate on the duration of all communication
it performs within its minimum inter-arrival period. First, we
enhance LM M to include inter-application communication,
and adapt the existing analysis [9], so as to make it applicable
to the extended model. Then, we present a novel analysis.
Finally, we compare these two approaches. The experiments
show that the new method provides tighter upper-bounds and
also demonstrates a comparable runtime performance.

II. LMM MOTIVATION AND CONCEPTS

Unpredictability, scalability, the need for load balancing
and core shutdowns are some of the key issues that make
the integration of many-cores into the real-time embedded
domain a challenging subject. The existing state-of-the-art
methodologies are not efficient in addressing all of the afore-
mentioned challenges, and this significantly limits their scope
of application, as highlighted below.

All approaches can be broadly classified into two cate-
gories: Non-Migrative Approaches and Migrative Approaches.
In the scheduling theory, non-migrative approaches [12] are
also known as Fully-Partitioned Approaches. Each application
is migrationless, and is, at design time, statically assigned
to a core where it has to execute. Migrative approaches are
further divided into Semi-Partitioned Approaches and Global
Approaches. The former category [13], [14] considers a static
assignment of an application to a core (or a subset of cores
if it migrates). A migrative application also follows design
time decisions, i.e. always executes the prescribed fraction
of work on each of the assigned cores. Conversely, in global
approaches [15], [16] an application may execute on any core.

Evidently, fully partitioned and semi-partitioned ap-
proaches are inflexible. They can be very inefficient in sce-
narios with substantial load changes, where runtime load bal-
ancing and/or core shutdowns are required for energy/thermal
management, performance enhancements or fault tolerance
reasons. Conversely, global approaches inherently support load
balancing. However, due to the necessity to maintain global
structures (e.g. ready-queue) in a centralised entity, scalabil-
ity issues arise [7], [8], and serious challenges occur when
attempting real implementations [17].



LMM [9] is a recently introduced approach in the real-
time embedded domain. Its novelty is twofold. First, it poses a
constraint that each application may execute only on a subset
of cores, which are decided at design time. During runtime, an
application may migrate between the candidate cores. Second,
the release/migration decisions of each application are made
by the application itself, which removes the requirement of
a mandatory centralised scheduling entity. This contributes to
the scalability, and yet gives the possibility to perform runtime
load balancing. So far, LM M appears to be a promising
approach, and this work is motivated by that reasoning. More
details about LM M are given in Section IV-B.

III. RELATED WORK

Contrary to the popular belief, the wormhole switching
technique [6] is not a novelty neither in academia, nor in
industry. However, it had been largely neglected because an
alternative store-and-forward switching was providing satis-
factory results [5]. But as the amount of transferred data kept
increasing, the buffering within routers became a challenge [5].
This brought the wormhole switching back into focus, and
some present many-cores employ this technique, e.g. [2], [3].

When organising the access to the interconnect medium,
platforms employ different techniques, which can be classified
as either contentionless or contention aware. An example of
the former category is the Aethereal platform [18] where a
time-division-multiple-access method is used to organise the
access to the interconnect resources. If contentions are allowed
and a platform provides only a single virtual channel, complex
traffic interference patterns may occur [19]. Several analyses
were proposed to obtain upper-bounds on the worst-case
delays [20]-[23], however, due to the complex interference
patterns, the obtained values may be overly pessimistic [20].

Conversely, if multiple virtual channels are employed [24],
[25], two benefits arise: (i) the throughput can significantly
increase [24], [25] and (ii) traffic preemptions can be im-
plemented [26]. Shi and Burns [27] proposed the worst-case
delay analysis, assuming per-priority virtual channels, flit-level
preemptions and per-packet distinctive priorities.

The aforementioned approaches are based on the assump-
tion that all traffic routes are known at design time. Yet, LM M
causes non-deterministic traffic routes (Section VI-A), which
renders these approaches not suitable to our model. Nikoli¢ and
Petters [9] recognised this problem and proposed a naive and
simplistic method to compute the worst-case communication
delays. The limitations of this method are: (i) it considers only
intra-application traffic and (ii) it treats path non-determinism
in a pessimistic way, by assuming that each application may
suffer interference from all higher priority traffic that exists
within the network, irrespective of (im)possible contentions.
In this paper we tackle the traffic non-determinism via new
techniques, and propose a novel worst-case communication
delay analysis.

IV. MODEL

A. Platform

We consider a contention-aware NoC-based many-core
platform, comprised of m X n tiles interconnected with a 2D
mesh, where each tile contains a single core and a single router,

e.g. Tilera family of processors [3]. The platform employs
a static, dimension-ordered XY routing mechanism, which is
deadlock and livelock free [28]. With this policy, packets firstly
travel on the x-axis, and upon reaching the x-coordinate of
the destination, continue along the y-axis. Moreover, the data
transfer is implemented via a wormhole switching technique
with the flow-control mechanism, where acknowledgements
use separate physical links. This means that, prior to sending,
each data packet is divided into small elements of fixed size
called flits. The first flit establishes the path, and the rest
follow in a pipelined manner. Additionally, the target platform
provides virtual channels, which are implemented as additional
flit-sized buffers within each port of each router. A virtual
channel may be used to store one flit of a preempted traffic
packet. A prerequisite is that the number of virtual channels
is at least equal to the maximum number of contentions at
any router. This requirement assures that each packet has an
available virtual channel within each port along its path, which
is a realistic assumption [29]. Indeed, on a 10 x 10 grid,
the workload of 400 packets would require on average only
8 virtual channels [29]. In this paper, the terms packet and
message are used interchangeably.

B. Software Layers

LM M builds on top of a multi-kernel paradigm, meaning
that each core runs an independent kernel instance. Kernels
communicate among each other and constitute the basic com-
munication infrastructure. Each kernel exposes some of its
functionalities to applications located on its core via system
calls. In order to interact with other applications residing on
the same or other cores, applications invoke available system
calls. Each kernel performs a local scheduling on its core.

An application may execute only on a subset of cores,
which are decided at design time. On each of the selected cores
the execution code of that application exists, constituting an
entity called dispatcher. Dispatchers of the same application
(each located on a different core) communicate and decide
whether the migration will occur, and if so, which core (dis-
patcher) is the destination. The aforementioned communication
is called agreement protocol [9], and its purpose is to elect
one dispatcher (master dispatcher), which will subsequently
release on its core the next job, on behalf of the entire appli-
cation. The job has to complete on the master’s core, it cannot
migrate (no job-level migrations). Applications are single-
threaded and implemented as recurrent tasks, therefore at any
time instant there can be only one master per application.

Once the job execution completes, the master is responsible
to start the agreement protocol again. Other dispatchers that
participate in the communication are called slave dispatchers.
If the outcome of the protocol is that the migration occurs, the
previous master becomes the slave, while the newly elected
dispatcher becomes the master. Additionally, the execution
context has to be transferred from the old to the new master,
so that the new master can release the next job on its core.

The protocol execution is termed intra-application com-
munication. Perceived from the application’s perspective, its
dispatchers exchange one master token. Thus, a master is only
a temporary role of a dispatcher. We call this property master
volatility, and it has several implications which are covered
in Section VI-A. Figure 1 gives a graphical representation of
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Fig. 1: Limited migrative model - LM M

LM M, where the current master dispatchers are emphasized
by dots over their respective names. Notice, that in LM M each
core performs a local scheduling (similar to fully partitioned
approaches), while each application still has a possibility to
migrate (similar to global approaches). These benefits come
at a price of protocol communication, and the more migrative
flexibility the applications have (the number of dispatchers),
the more substantial are the communication delays (see Fig-
ure 2). The purpose of this example is to help the reader
perceive the notion of LM M and its scalability potential. The
simulation parameters are given in Table I (Section VII).

Note, the existing definition of LM M and the accom-
panying analysis [9] only consider intra-application traffic,
i.e. agreement protocols. In this work we extend LM M and
allow applications to communicate with each other, e.g. for
synchronisation or data-sharing purposes. We term this process
inter-application communication, and it is performed by an
exchange of messages between current master dispatchers of
interacting applications. We also extend the existing analy-
sis [9] (Section VI-B), so as to match the enhanced model.

The execution workload is described by an application-set
AL {a1,a2, ..., am_1,am,}. Bach application a(C,,T,, P,,
D., M,) is characterised by its execution time C,, a minimum
inter-arrival period T, a unique priority P,, a set of dispatch-
ers D, and a set of messages M, = M;j(a) U Mg(a) U
Mpr(a), where M (a) is a set of intra-application messages,
while Mg(a) and Mp(a) represent sets of sent and received
inter-application messages, respectively. Every message m;;
from the source dispatcher d; to the destination dispatcher d;
is characterised by (i) a priority it inherits from the application
of the sender dispatcher d;, (ii) the amount of the transferred
content — size(m;;) and (iii) a traversed path — path(m;;),
consisting of nhops(m;;) hops. If both d; and d; belong to the
same application a, then m;; is an intra-application message,
i.e. mi; € Mp(a). Otherwise, if d; € D, and d; € Dy, itis an
inter-application message, i.e. m;; € Mg(a)Am;; € Mg(a').

V. BACKGROUND AND PRELIMINARIES

Before we present the main contribution of this work, let
us introduce several basic properties of the NoC contention
analysis, which are important for understanding our approach.

Prop. 1: An isolation delay of a message is equal to the
latency of its first flit to reach the destination, augmented
by the processing time of all flits at the destination router
(Equation 1). [y, is the latency of the arbitration and the
crossbar switching, [; is the latency to transfer one flit between
two successive routers, while size(f) is the size of the flit.

1

I(m) = nhops(m) X (lsw + 1t) + "size(m)—‘ X Uy

size(f)

Worst-case communication delay (in ms)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of dispatchers per application
Fig. 2: The impact of the number of dispatchers on the communication delay

Prop. 2: Due to flit-level preemptions, a message can be
blocked by the lower-priority traffic, at most for the duration
of one flit traversal, within each router on its path (Equation 2).

b(m) = nhops(m) X (lsw + 1) ?2)

Prop. 3: A message m of an application a can be
preempted only by higher priority messages which share a
part of the path with it, called directly interfering messages.
Let Mp(m) be a set of directly interfering messages of m.
Formally:

vm' € Mg 1 (P, > Pa A path(m') N path(m) # 0) = m’ € Mp(m)
3)

Prop. 4: Interference caused by a single preemption of any
m’ € Mp(m) to m is equal to the sum of its isolation and
blocking delays — I(m’) + b(m/).

Note, in scenarios with a single virtual channel, a message
might suffer interference from other higher priority messages
which do not directly interfere with it, i.e. do not share any
part of the path with it [19], [27]. However, when assuming
per-priority virtual channels (as in this work), such messages
cannot cause interference, but can influence the occurrence
patterns of directly interfering messages [27], [30]. Thus, as-
suming periodic occurrences of directly interfering messages is
an unsafe assumption, and in the analysis we have to consider
their worst-case occurrence patterns. This is a well-known
issue in the wormhole switching and a detailed explanation
can be found in the following works [27], [30].

VI. PROPOSED APPROACH
A. Challenges of LMM

Due to the master volatility in LM M (i.e. the ability
of every dispatcher to become a master), it is not possible
to predict at design time which dispatchers will be elected
masters of their applications at a particular time instant at
runtime. Furthermore, as each master initiates the agreement
protocol and performs the inter-application communication on
behalf of the entire application, message paths will highly
depend on which dispatcher performs that role. The leftmost
part of Figure 3 shows agreement protocol messages of one
application, captured at two different time instants. Depending
on which dispatcher is the current master (emphasized circle),
messages may traverse completely different paths. A similar
problem occurs when analysing the inter-application traffic.
As every dispatcher of both interacting applications can be
a master, a single inter-application message may take any of
the routes given in the left part of Figure 4. It is evident that
non-deterministic message paths render traditional worst-case
communication delay analyses inapplicable to LM M.
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Fig. 3: Intra-Application Communication

B. Extension of the Existing Approach [9]

As already discussed, Nikoli¢ and Petters [9] proposed
the analysis for LM M, assuming only intra-application traf-
fic. Their approach is path-abstracting and circumvents the
problem of non-deterministic traffic routes. Specifically, the
analysis exploits the fact that isolation and blocking delays of
a message (Equations 1-2) are the consequence of 2 properties:
(i) its size — size(m) and (ii) its path length — nhops(m).
The size of the message is deterministic, but the path is not.
Let mazhops(a) be the maximum distance between any two
dispatchers of one application. As mazxhops(a) is an upper-
bound on the path length of each intra-application message m,
the analysis covers the worst-case by assuming that each m tra-
verses that distance, Vm € M, : nhops(m) = maxhops(a).
Furthermore, it is assumed that any higher priority message (i)
will also traverse its longest possible path and (ii) will cause
interference, irrespective of its potential route. Subsequently,
this concept was applied to the entire traffic.

Now we extend that reasoning and apply the same approach
to inter-application traffic. Let a and o’ be two interacting
applications with the maximum distance between the fur-
thest dispatchers equal to maxhops(a, a’). Consequently, each
inter-application message m between a and a’ will traverse at
most that distance, so nhops(m) = maxhops(a,a’) covers
the worst-case. Similarly, the conservative assumption is that
any higher priority inter-application message (i) will traverse
its longest possible path and (ii) will cause interference.

The isolation and blocking delays of an application, del;(a)
and delg(a) are equal to the sum of isolation and blocking de-
lays of its intra-application messages and sent inter-application
messages, respectively (Equations 4-5).

delr(a) = > I(m) delp(a) = > b(m)

VmeM[(a)UMg (a) VmeM[(a)UMg (a)
@) (5)

In order to consider the worst-case interference, we have to
compute the maximum traffic that every higher priority appli-
cation ¢’ can generate within the observed time interval. For
that, we use Theorem 1, taken from the existing analysis [9].

Theorem 1. [9] The number of protocol executions of any

Tpplication a within the time interval t can be at most 1 +
t—Ca

a

Given that for each application the protocol is performed
once per its inter-arrival period, the result of Theorem 1 also
presents the maximum number of inter-arrivals of a given
application. Therefore, the maximum interference suffered
from all higher priority applications within one inter-arrival
period T,, termed dely(a), can be computed by multiplying
the maximum number of their inter-arrivals with the maxi-
mum traffic they can generate during one inter-arrival period
(Equation 6).

Application j Application j
L ¥clo
CP @ CP proxy proxy i @- -@
O@-@-ttl @O
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Fig. 4: Inter-Application Communication

deln (a) = Z

<1 + [T‘LTfiIC“’D x (delr(a’)+delg(a’)) (6)
Va'€A:P,;>Pq @

Note, a message can be stalled by other same-priority
messages of the same application with which it shares the
same virtual channel. A safe assumption is that all messages
of the same application traverse sequentially and hence each
of them contributes to the isolation delay of the application
with its entire traversal latency (see Equation 4). The same
reasoning will be used in the novel approach (Section VI-C).

The worst-case communication delay of an application is
equal to the sum of these terms:

del(a) = delr(a) + delp(a) + deln(a) (@)

C. Novel approach

Main idea: Recent insights into priority-preemptive,
wormhole-switched NoCs showed that the dominant factor in
the worst-case delay of a message is not the length of its path,
but rather the interference it suffers [29]. Thus, the pessimism
related to the approach presented in the previous section can
be attributed mostly to the conservative assumption that all
higher priority traffic can cause interference, irrespective of
(im)possible contentions. Motivated by this reasoning, we pro-
pose a novel approach, which relies on enforcing constraints,
in order to make LM M traffic deterministic and predictable.

Constraint 1. Dispatchers of an application can be positioned
only on the edges of a rectangular x X y structure, such that
no corner is left unoccupied and x,y € N. The special case is
a line-like shape, where one or both dimensions of the shape
are equal to “1”.

Constraint 2. Intra-application messages travel only on the
edges of the shape its application forms, and re-routing occurs
where needed to comply with the global XY routing policy. An
individual message rotation (i.e. clockwise or counterclock-
wise) is chosen such that the traversal distance is minimised.

The middle part of Figure 3 illustrates how dispatchers
should be placed and messages consequently routed. Shaded
dispatchers denote locations where reroutings occur. Rerout-
ings are fast on-core routines, performed in an interrupt-like
manner which can be, for example, implemented by instru-
menting the Hardwall™ technology of Tilera platforms [3].

1) Supermessages and Proxies: Constraints 1-2 make the
part of the network that intra-application traffic uses deter-
ministic. To make the traffic master independent as well, we
introduce the following concepts: supermessages and proxies.



Definition 1 (Supermessage). A supermessage is a message
which connects (i) diagonally-placed dispatchers if an appli-
cation has a rectangular shape, or (ii) terminal dispatchers if
an application has a line-like shape.

An application with a line-like shape yields 2 superme-
ssages — 1, Mgz, and does not involve reroutings, while
an application with a rectangular shape has 4 supermessages,
of which 2 with clockwise orientation Mugi, Mewa, and 2
with counter-clockwise orientation Mee1, Meez (see the right
part of Figure 3). Due to space limitations, in the rest of
this work only rectangular shapes are analysed. Indeed, any
conclusion reached for a rectangular shape can be applied to
a line-like shape by considering only one supermessage of
each orientation and treating the other one as non-existent (i.e.
M1 = Mewl'; M2 = Meet; Mews = 0 Meez = 03).

Theorem 2. Any intra-application message of an application
can be expressed by at most 2 distinctive, same-orientation
supermessages, with at most 1 rerouting.

Proof: Proven by contradiction. An intra-application mes-
sage m assumes the orientation such that the distance between
the dispatchers is minimised (Constraint 2). If ¢ is the circum-
ference of an application shape, it holds that nhops(m) < §.
As each supermessage m connects diagonal corners of a shape,

for every m it holds that nhops(m) = §.

Assume that m can be expressed with at least 3 same-
orientation supermessages. Note, as there are only two same-
orientation supermessages (e.g. my and 7m53), one of them has
to appear twice, i.e. the sequence would be {mj, ma, mj},
or {myz, m1, my}. In either case, the middle supermessage
entirely belongs to m, while the first and the last belong with
fractions €; > 0 and e > 0, respectively. Hence:

nhops(m) = e1+nhops(mi)+ez = e1+nhops(mz)+ex = 61+%+€2 > g

A contradiction has been reached. Additionally, as reroutings
occur only on places where supermessages meet, and since
any message can be expressed by at most 2 distinctive super-
messages, it can involve at most 1 rerouting. ]

Notice, that supermessages are master-independent and
their number is significantly smaller than the number of pos-
sible message paths. Thus, the intuitive idea behind our novel
approach is to transform every intra-application message into
the corresponding supermessage(s) with eventual rerouting,
and perform the analysis on such a model.

We apply a similar approach to inter-application traffic:

Definition 2 (Proxy). A proxy dispatcher is a dispatcher
which is selected at design time, and which participates in the
inter-application communication. It mediates in the message
exchange between its master and the proxy dispatcher of the
other (interacting) application.

An illustrative example of Definition 2 is given in the right
part of Figure 4. In this scenario an inter-application message
is divided into 5 different components: 1) a message from
the master sender to its proxy, 2) a rerouting on the core
of the proxy sender, 3) a message between the proxies, 4)
a rerouting on the core of the proxy receiver, 5) a message
from the proxy receiver to its master. Proxies are decided at

design time, thus a message m;; between proxy dispatchers
d; and d; is also deterministic and master-independent. An
application can have multiple proxies, each responsible for the
communication with a different application. If a proxy receives
an inter-application message during the agreement protocol of
its application, the message is stalled inside the proxy until the
protocol completes.

Theorem 3. Any inter-application message can be expressed
by (i) at most 2 distinctive, same-orientation supermessages on
the sender’s side, (ii) a message between a proxy sender and
a proxy receiver, (iii) at most 2 distinctive, same orientation
supermessages on the receiver’s side and (iv) at most 4
reroutings.

Proof: Proven directly. A message between a master
sender and its proxy complies with the rules of the intra-
application traffic, hence, according to Theorem 2, it can be
expressed by at most 2 distinctive same-orientation superme-
ssages. The same conclusion holds for the message between
a receiver proxy and its master. A message between prox-
ies is a non-constrained point-to-point message. Additionally,
messages between masters and their proxies on both sender
and receiver side each yield at most 1 rerouting (Theorem 2).
Finally, an inter-proxy message causes 1 rerouting on the core
of a proxy sender and 1 on the core of a proxy receiver. M

By introducing placement and rerouting constraints, su-
permessages and proxies, we consciously made a decision to
potentially “’sacrifice” performance (i.e. messages may traverse
longer distances and involve reroutings). Nonetheless, this
approach causes predictable and deterministic message paths,
which allows us to perform a more detailed and less pessimistic
analysis (covered later in Section VI-D), and derive tighter
worst-case communication delay estimates.

According to Theorems 2-3, all intra- and inter-application
traffic of all applications can be expressed with (i) a set of
supermessages — M, (ii) a set of proxy-to-proxy messages —
Mp, and (iii) a set of reroutings — R, which are all master-
independent and known at design time. In order to be able
to perform the analysis, the maximum number of occurrences
O(m) of each message m € (M U Mp) within a minimum
inter-arrival period of its application has to be computed. Also,
the maximum number of rerouting occurrences r(d) € R,
caused by each dispatcher d on its core within the same interval
has to be computed.

2) Finding the maximum number of occurrences: As
is evident from the previous section, the maximum number
of occurrences of both supermessages and reroutings of each
application depends on (i) the employed agreement protocol
and (ii) the amount of its inter-application traffic. So far,
3 agreement protocols have been proposed (Master-Slave,
List and Hybrid) [9]. Since the first one suffers from race
conditions, in this paper we focus only on the second and
third.

e List protocol [9] is an opportunistic agreement protocol;
if a master can continue the execution — it does so, without
initiating the communication. Otherwise it sends a request to
the first neighbouring slave assuming a clockwise orientation.
The slave tries to accommodate the execution of the next job
instance. If it can, it signals to the old master, receives a context



and becomes the new master. Otherwise it passes a request to
the next neighbouring slave, also assuming a clockwise orien-
tation. The process repeats until one dispatcher announces the
possibility to execute the next job and consequently becomes a
new master. The worst-case scenario occurs when the job can
be accommodated only by the last traversed dispatcher, and
it has to be covered'. The downside of this protocol is that
a selective scheduling policy is not easily implemented, i.e.
the first dispatcher that can execute the job will do so, while
maybe better candidates exist within non-traversed dispatchers.

By applying Theorem 2 to every message of the List
protocol, we can analytically express the entire protocol as
a function of supermessages and reroutings. Subsequently, we
can compute the isolation delay del;(List), the blocking delay
delg(List) and the rerouting delay del (List) of one protocol
execution. Furthermore, we can obtain the maximum number
of occurrences of each supermessage m during one protocol
execution Op(m) and during one context transfer O¢ ().
Finally we can compute the maximum number of reroutings
rp(d) occurring on the core of a dispatcher d, caused by one
protocol execution of its application. Due to space limitations,
the analytical steps on how to obtain these values are given in
the technical report [32].

e Hybrid protocol [9] is the agreement protocol which
consists of two phases. The first phase is initiated when a
current master sends a broadcast towards all slave dispatchers.
In this way a master requests the information from all slaves
about how likely it is that they can accommodate the execution
of the next job on their cores. The requests may require
the information regarding core utilisation, core temperature,
schedulability, etc.” Upon receiving the request, each slave
queries its kernel for requested information. When the kernel
replies, the slave sends the response back to the master. The
end of the first phase is reached when the master receives all
responses. Then, the master makes an ordered list where all
dispatchers are sorted based on the likelihood of accommodat-
ing the execution of the next job. If the master is on the top
of the list, it continues to be the master. Otherwise, the second
phase begins. It is similar to the list protocol, i.e. the master
sends a message towards the first slave. However, in this case
not to the nearest neighbour in the clockwise orientation, but
to the first dispatcher of the generated list. If the slave can
accommodate the execution, it requests the context from the
master. If not, it passes the request to the next dispatcher from
the list. The process repeats until one dispatcher informs the
master that it can schedule the job®. The worst-case scenario
occurs when only the last dispatcher of the ordered list is able
to do so. Finally, the master transfers the context to the newly
elected slave, which becomes the new master.

Similar to the List protocol, Theorem 2 can be applied
to every message of the Hybrid protocol, and the entire
protocol can also be analytically expressed as a function of
supermessages and reroutings. By doing so, we can obtain

Tn this work we assume that, at any time instant, at least one of the
dispatchers will be able to accommodate the execution of the next job.
Providing such guarantees falls into the domain of LM M schedulability
analysis, and it is covered in our work [31].

2The policy of the agreement protocol depends on the specific purpose of
the system and is immaterial for the discussion in this paper, since we study
protocols only as an infrastructure to allow load balancing under LM M.

3See Footnote 1

the isolation delay del; (Hyb), the blocking delay del g (Hyb)
and the rerouting delay delgr(Hyb) of one protocol execu-
tion. Additionally, we can compute the maximum number
of occurrences of each supermessage m during one protocol
execution Op(m) and during one context transfer O¢ ().
Finally we can compute the maximum number of reroutings
rp(d) occurring on the core of a dispatcher d, caused by
one protocol execution of its application. The analytical steps
on how to obtain these values are given in the technical
report [32].

o Furthermore, each application may perform inter-
application communication with other applications. Recall
(Theorem 3), that any inter-application message can be ex-
pressed as a function of (i) sender’s supermessages, (ii) re-
ceiver’s supermessages, (iii) a proxy-to-proxy message and
(iv) reroutings. Thus, by applying Theorem 3 to every inter-
application message of one application, we can analytically
describe its entire inter-application traffic as a function of the
aforementioned constructs. Subsequently, we can obtain the
isolation delay del;(Send), the blocking delay delp(Send)
and the rerouting delay delr(Send) of the inter-application
traffic that an application sends. In the same way, we can
obtain the isolation delay del;(Rcv), the blocking delay
delg(Rcv) and the rerouting delay delr(Rcv) of the inter-
application traffic that an application receives. Additionally,
for each supermessage 7 and inter-proxy message Mprozy
the maximum number of occurrences as a consequence of
the inter-application traffic can be obtained — O;(m) and
O1(Mprogy), respectively. Finally, the maximum number of
reroutings r7(d) that a dispatcher d induces during the inter-
application communication of its application can be computed.
The analytical steps on how to obtain these values are given
in the technical report [32].

In summary, between any two consecutive job releases
of an application, its supermessage 7 can appear Op(m)
times during the protocol execution, Oc(m) times during
the context transfer and Oj(m) times for every sent and
received inter-application message. Furthermore, each proxy-
tO-proxy message Mpyoqy may appear Or(Mprogy) times due
to inter-application traffic. Additionally, the maximum number
of reroutings that each dispatcher d induces is equal to the
sum of reroutings during a protocol execution and during inter-
application communication — r(d) = rp(d) + r7(d).

D. Performing the Analysis

Let a be the application under analysis. Its worst-case
communication delay (Equation 8), consists of several terms,
namely, the isolation delay del;(a), the blocking delay
delp(a), the rerouting delay delr(a), the network interference
delnr(a) and the rerouting interference delrr(a). Now we
describe how to compute the individual terms of Equation 8.

del(a) = delr(a) + delg(a) + delr(a) + delnr(a) + delrr(a)  (8)

o The isolation delay (Equation 9). It is equal to the sum of
isolation latencies of (i) the protocol execution, (ii) sent inter-
application messages and (iii) received inter-application mes-
sages. Depending on the agreement protocol of the application
under analysis delj(Protocol(a)) € {del;(List),del;(Hyb)}.

del;(a) = del;(Protocol(a)) + del; (Snd) + delr (Rcv) 9



e The blocking delay (Equation 10) and the rerouting
delay (Equation 11). They are equal to the sum of blocking
and rerouting latencies of (i) the protocol execution and (ii)
inter-application traffic. Depending on the selected agreement
protocol, delg(Protocol(a)) € {delg(List),delg(Hyb)},
and delg(Protocol(a)) € {delr(List),delr(Hyb)}.

delp(a) = delg(Protocol(a)) + del g (Snd) + del g (Rcv) (10)

delr(a) = delr(Protocol(a)) + del g (Snd) + del g (Rcv) (11)

e The network interference (Equation 15). First, let us
discuss the interference that a higher priority supermessage m
of an application a’ # a can cause to a, between any two
consecutive job releases of a’ (Equation 12). It is equal to the
sum of isolation and blocking latencies (i) while performing
the protocol, (ii) while transferring the context and (iii) while
performing the inter-application communication.

protocol context

§(m) = Op(m) x (Ip(M) 4+ b(m)) + Oc (M) x (Ic(M) + b(M)) +

inter-application traffic

> O (@) x (17 (M) + b(M)) (12)

VmeMg(a’)UMp(a’)

Notice, that context transfers and inter-application mes-
sages may have different sizes than protocol messages, hence
their occurrences and traversal latencies have to be computed
separately, i.e. [p(m) # lc(m) Alp(m) # l7(m). Conversely,
the blocking delay b(m) is not dependent on the message
size, but is constant for all occurrences of the supermessage
(Equation 2). Thus, bp(m) = ba(m) = by(m) = b(m).

Second, let us discuss the interference that a higher priority
inter-proxy message Mprozy Of an application a’ # a can
cause to a, between any two consecutive job releases of a’
(Equation 13). Recall, inter-proxy messages appear only in the
inter-application traffic and not in protocols.

S(mprowy) = O1(Mprozy) X ((Mprowy) + b(Mprozy)) 13)

Once we have obtained interference delays that any higher
priority supermessage and any higher priority inter-proxy
message might cause (Equations 12-13), we can compute
the total network interference dely;(a) that a suffers during
its minimum inter-arrival period. As paths of all messages
are deterministic and known at design time, we can take
that knowledge into account when performing the analysis.
Recall, that in Section V we defined a set M p(m) of directly
interfering messages of a message m. Those are higher priority
messages that share a part of the path with m and hence
can preempt it and cause interference. Similarly, here we
define a set of directly interfering messages, but of an entire
application a, termed Mp(a). A message belongs to the
set Mp(a) if it _is a directly interfering message of any

—

message m € (M(a) UMp(a)), where M (a) is the set

of supermessages of a and Mp(a) is the set of inter-proxy
messages of a. Formally:

vm' :3m € (m uMp(a)) Am' € Mp(m) =m' € Mp(a) (14)

Every message m’ € Mp(a) can cause interference
to a. Thus, the maximum network interference that a can
suffer, from all its directly interfering messages, is computed
by summing up individual interferences that each message
m’ € Mp(a) can cause (Equation 15). Individual terms are
obtained by multiplying the maximum interference that m’
can induce between any two consecutive job releases of its
application a’ (computed either by Equation 12 if m’ is a
supermessage, or by Equation 13 if m’ is a proxy message),
with the maximum number of inter-arrivals of a’.

(1 T [T“T_if"'D x 8(m’) (15)

e The rerouting interference (Equation 17). This is the
interference that an application suffers while performing its
rerouting operations. Notice that an application can suffer
rerouting interference only on cores (tiles) where itself has
dispatchers that perform rerouting operations. Let Dr(a) be
a set of dispatchers of a which induce at least one rerouting
operation on their respective cores. Formally:

delNI(a) = Z

vm/eMp (a)

Vd € Dg : rp(d) #0V ri(d) #0 = d € Dr(a) (16)

The routing interference of a (Equation 17) is computed
by summing up individual interferences that each on-core
dispatcher d’ might cause to each dispatcher d € Dg(a).

delrr(a) =

T, — C
<1 + [TiaD x (rp(d)+rr(d)) x 1,
VdeD R (a) Vd’ €c(d) a’

an

c(d) represents the core of a dispatcher d, and [, denotes
the latency of a single rerouting operation. Individual terms
are obtained by multiplying the maximum interference that
d’ can cause between any two consecutive job releases of its
application a’ with the number of its inter-arrivals.

E. Discussion

The extended version of the previous method, presented
in Section VI-B, does not involve reroutings, and hence does
not have rerouting-related components delg(a) and delgr(a)
(see Equation 7). However, the limitation of this approach is
that it treats the path non-determinism in a pessimistic manner
and computes the interference on the application-level (see
Equation 6). Conversely, the newly proposed analysis employs
application placement and rerouting constraints, in order to
express the traffic as a function of supermessages, inter-proxy
messages and reroutings. This strategy imposes longer message
distances and employs a rerouting mechanism, which both
additionally contribute to the worst-case communication delay.
However, this approach makes message paths deterministic
and known at design time. Consequently, the interference
component can be computed with much less pessimism and
hence tighter upper-bounds on the entire worst-case commu-
nication delay can be obtained. We back up this claim with
the fact that the recent insights into the priority-preemptive
wormbhole-switched NoCs [29] showed that the most dominant
factor in the worst-case communication delay analysis is the
interference component, hence deriving its upper-bound as
tight as possible is very important.
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VII. EVALUATIONS

We evaluate the proposed approach against the extended
version of the existing method [9], presented in Section VI-B,
referred to as the existing method in the subsequent text.
Specifically, we perform the comparison in terms of the analy-
sis and the runtime performance. Since platforms with priority-
preemptive wormhole-switched NoCs are still not available,
the simulations were performed on the extended version of
the SPARTS [33] simulator. For each experiment we ran-
domly generate application-sets and map them on the platform.
Subsequently, for both methods we (i) compute the upper-
bound on the worst-case communication delay (WCCD) of
each application and (ii) perform the simulations to obtain the
observed WC'CD of each application. Then, we compare the
results, and investigate how the trends change with different
application parameters, e.g. number of dispatchers, priorities,
employed agreement protocols. The analysis and simulation
parameters are given in Table I. An asterisk sign denotes a
randomly generated value, assuming a uniform distribution.

TABLE I: Analysis parameters

Platform size 10x10
Application-set size 200
Router arbitration + switch latency - g, 3 cycles
Router transfer latency - [¢ 1 cycle
Rerouting operation latency - I, 10.000 cycles
Link bandwidth 16B
Protocol message size 1kB
Context size = Inter-Application message size [1-128]* kB
Minimum inter-arrival period of applications [30-1000]* msec
Probability of inter-application communication 5 %
Simulated time 100 sec

Experiment 1. Overall Analysis Improvements

In this experiment we conducted the overall analytic
comparison of the proposed method and the existing one.
Specifically, each application had [2 — 10]* dispatchers, and
was randomly mapped on the grid with arbitrary (rectangular
or line-like) shape, assuming dispatcher placement constraints
(Constraint 1). Half of the applications executed the List
protocol, and the other half Hybrid. Then, the analytic upper-
bound on WCCD was obtained for each application of the
application-set with both approaches. Finally, we compared
the obtained values. The process was repeated for 1000
application-sets.

Figure 5 shows the improvements of the proposed approach
over the existing one. In only 9.63% of the cases the proposed
approach rendered worse results. This is further investigated
in Experiment 3. In the remaining 90.37% scenarios the

Fig. 6: Improvements wrt dispatchers

Fig. 7: Improvements wrt priorities

proposed approach reports improvements. The improvements
were expressed in percentages, using the following metric:
imp = deletale)=delnen(@) “ywhere del,q(a) corresponds to
deloia(a) ’ °

the upper-bound on WCCD of an application a obtained
by the existing method, and del,e,(a) with the proposed
method. In more than half of the cases the improvements
are greater than 50%, which means that a derived upper-
bound is at most half the one obtained with the existing
approach. Finally, in 5.46% of the scenarios the improvements
are above 90%, corresponding to an estimate that is at most
one-tenth of the value against which it is compared! That is,
delpew(a) < s5delga(a).

Experiment 2. Analysis Improvements wrt Dispatchers

In order to test the scalability of the proposed approach we
varied the number of dispatchers |d| = [2 — x]* constituting
each application. The parameter x was varied in the range
x € {4,6,8,10, 12, 14} (see the legend of Figure 6). Assuming
a certain range (e.g. |d| = [2 — 4]*), we generated and ran-
domly mapped all applications. Then, for each application we
obtained analytic WCC'D upper-bound estimates, computed
by (i) the existing method and (ii) the proposed method,
compared them with the same metric, and repeated that for
1000 application-sets. The process was performed for every
range (Figure 6).

As the number of dispatchers increases, so does the
category with worse results and the categories with smaller
improvements (until 60%), while other categories with more
significant improvements (above 60%) decrease. The expla-
nation is twofold. First, assuming the proposed approach,
more dispatchers cause more reroutings. This in turn causes
more significant rerouting interferences, which have an impact
on the derived worst-case delays. Conversely, in the existing
approach reroutings do not occur. Additionally, more dispatch-
ers cause more messages, leading to more significant and
complex message interfering scenarios. In such cases, making
an assumption that every higher priority message existing
within the network will indeed cause interference might not be
too pessimistic. Thus, as the number of dispatchers increases,
the existing method becomes less pessimistic and hence im-
provements caused by the proposed method over it are slowly
decreasing.

Experiment 3. Analysis Improvements wrt Priorities
In this experiment we investigated how the improvements

of the proposed method over the existing one change with ap-
plication priorities. This experiment also helped us to recognise
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and investigate the cases where the proposed method under-
performed. The values obtained in Experiment 1 were used,
but the comparison between the approaches was additionally
performed per-priority and depicted in Figure 7.

Improvements were measured with the same metric,
while the cases where the proposed approach underper-
formed were presented with the transposed metric: imp =
del(’ldd(gl{;ie(g”)'“”(a). It is evident that the proposed approach
performs worse for applications with higher priorities (smaller
numbers on the x-axis of Figure 7). As these applications do
not suffer significant interference, the additional delay in the
proposed approach is caused by reroutings and longer message
distances (i.e. traversal constraints expressed by Constraint 2).
As priorities decrease, the interference becomes a more dom-
inant term in the derived WCCD upper-bounds, hence the
penalty of the proposed approach slowly decays. At the priority
level 15, both the approaches provide similar results. Any
additional decrease in the priority favours more the proposed
method, where improvements report logarithmic growth. On
the far right end of the domain the average improvements of
the proposed approach asymptotically converge towards 70%.

Experiment 4. Analyis Improvements wrt Protocols

In this experiment we compared the approaches with an
emphasis on the employed agreement protocols. The compari-
son was performed for 3 different scenarios: (i) all applications
are utilising the List protocol, (ii) all applications are utilising
the Hybrid protocol, (iii) half of the applications are utilising
each protocol. For each application the W CC'D upper-bound
estimate were obtained with both approaches. The process was
repeated for 1000 application-sets. The results are plotted in
Figure 8, where the improvements of the proposed approach
over the existing one were expressed by the same metric used
in the previous experiments.

The conclusions are similar to that of Experiment 2.
The Hybrid protocol involves more messages, which in the
proposed approach induce more reroutings. Hence, the biggest
improvements are reported for the List protocol, then for
mixed protocols, while the least improvements occur with the
Hybrid protocol. Additionally, as the improvement metric is
based on the ratio, similarly to the logarithmic scale, each
additional improvement percentage covers larger part of the
domain; e.g. for improvements of 49 — 50% the follow-
ing holds: delyq(a) € {1.96 x delyew(a),2 X delyew(a)},
while for improvements of 89 — 90% the following holds:
deloig(a) € {9.09 x delyew(a), 10 X delyew(a)}. Due to that
fact, improvement ranges around 90% cover large parts of the

Fig. 9: Overall performance comparison
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domain, and cause small local maximums, visible in Figure 8.

Experiment 5. Overall Performance Comparison

The purpose of this experiment is to compare the run-
time performance of the proposed and the existing approach.
In order to do that, we used application-sets generated for
Experiment 1 and performed the simulations. The execution
of each application-set was simulated for 100 seconds with
both approaches. Within each approach W C'C'D was measured
for each application. Consequently, the obtained values were
compared and the results are presented in Figure 9.

Since the proposed approach induces longer message dis-
tances and employs the rerouting mechanism, we intuitively
expected that it will systematically suffer a significant runtime
performance penalty, when compared to the existing method.
However, we reached the surprising conclusion: not only was
the penalty negligible in almost all cases, but also for almost
40% of the scenarios the proposed approach outperformed
the existing one! We interpret these unexpected findings in
the following way. Unpredictable message paths may lead to
corner cases where a traffic becomes heavily concentrated in
certain links of the grid, resulting in significant contentions and
(almost) unbounded interference delays. This coincides with
the conclusions from our previous work [29], that network in-
terference indeed is the most dominant component in WCCD,
and also reflects the importance of having predictable message-
paths. Both these facts additionally validate the contributions
of this work. This further implies that the overall efficiency of
the system is heavily dependent on the application-mapping
process, and we see this area as a potential topic for the future
work.

Experiment 6. Analysis Tightness

Finally, in this experiment we tested the tightness of the
proposed approach. Specifically, for each application of the
application-set we compared the analytically computed upper-
bound estimate on its WCCD against the WCCD value
obtained via simulations. The input parameters are identical
to that of Experiment 1 and Experiment 5. In order to get
a better insight into the ratios between obtained values, we
have grouped applications into categories, according to their
priorities. Figure 10 illustrates the findings.

The highest observed ratio between the measured WC'C' D
and the analytically computed upper-bound estimate was
around 85%, suggesting that the analysis is correct and ren-
ders tight estimates. Furthermore, the results demonstrated
an average ratio of almost 35% for applications with high



priorities (smaller numbers on the x-axis of Figure 10). As
the priorities decreased, so did the ratio, which asymptotically
converged towards 2% for applications with very low priorities.
The explanation is as follows. As the priority decreases, the
analysis considers more and more complex interference (worst-
case) scenarios, which are less and less likely to occur during
simulations. Given our findings, that the chance of suffering
the worst-case scenario by lower-priority applications is small,
and that in many practical scenarios their occasional missed
deadlines are tolerable, several questions can be raised. For
instance, is the worst-case analysis the right approach
to treat the lower-priority applications? Or should some
other (e.g. probabilistic) techniques be applied? We see these
questions as starting points for our future work.

VIII. CONCLUSIONS AND FUTURE WORK

The Limited Migrative Model (LM M) is a promising
step towards scalable and predictable many-cores, which are
essential prerequisites for their integration in the real-time
embedded domain. Assuming LM M, we analysed the worst-
case communication delays of individual applications. First, we
extended LM M to accommodate the inter-application traffic.
Then, we enhanced the existing analysis [9], so as to make
it applicable to the extended model. Finally, we proposed a
novel approach which potentially “’sacrifices” the performance
in order to gain in predictability (i.e. determinism in message
paths). We compared the methods both in terms of the analysis
and the performance. The experiments show that the proposed
approach not only renders tighter upper-bound estimates in
more than 90% of the cases, but also demonstrates a compa-
rable runtime performance, which reflects the importance of
having deterministic traffic routes.

The future work has already been discussed throughout the
paper; we plan to develop an application mapping approach
that will use the presented analysis, together with an LM M
schedulability analysis (e.g. [31]), as feasibility tests. Addi-
tionally, providing an alternative (probabilistic?) method to
treat lower-priority workload is a challenge with an increasing
importance.
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