SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

CAMA

A Predictable Cache-Aware Memory Allocator

Jorg Herter, Peter Backes, Jan Reineke, Florian Haupenthal

Department of Computer Science
Saarland University

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

J. Herter et al. CAMA

SAARLAND

Current Situation oNvERSITY

COMPUTER SCIENCE

What we have ...

Precise WCET analysis
Dynamic Memory Allocation

» often clearer program structure
» easy memory reuse (e.g. in-situ transformations)

... but can we have both together?

J. Herter et al. CAMA 2/24

AARLAND

Dynamic Memory Allocation & WCET Analysis == ey

What are the challenges?

LO\/\IUIEI{SLIEI\LE
x = malloc(8); < |
y = malloc(4); <— |
» x->data = y->data + 2;
How long will

Is the access to y
a cache hit?

(a) allocation
to cache sets
unknown!

(b) effects of
calls to malloc
on cache?

malloc take?

J. Herter et al.

CAMA

SAARLAND
UNIVERSITY

Cache-Aware Memory Allocation MY

= camalloc(8,2); < |
camalloc(4,32); <« |

> x—->data = y->data + 2;

™
I

~
I

How long will
a Is the access to y camalloc take?

a cache hit?
allocation effects of constant response
to cache sets calls to camalloc times!
known! on cache known!

J. Herter et al. CAMA

SAARLAND

Constant Time Allocators o

COMPUTER SCIENCE

Constant time allocators:
m (One level) Segregated list allocators
> |dea:

* manage free blocks in segregated free lists
* blocks within the same free list fall into the same size class

» Drawbacks: potential for high fragmentation
m TLSF' (two-level segregated fit)
> |dea:

* manage free blocks in segregated free lists
* use two-level approach to building size classes to decrease the
potential for fragmentation

» Drawbacks: no cache predictability

1 M. Masmano, I. Ripoll, A. Crespo, and J. Real, "TLSF: A new dynamic memory allocator for real-time systems," ECRTS '04

J. Herter et al. CAMA 5/24

SAARLAND

One-Level Segregated List Allocators)

COMPUTER SCIENCE

Take set of all free blocks ...

J. Herter et al. CAMA 6/24

SAARLAND
UNIVERSITY

One-Level Segregated List Allocators —

COMPUTER SCIENCE

Partition this set into sets containing blocks of the same size class ...

J. Herter et al. CAMA

SAARLAND
UNIVERSITY

One-Level Segregated List Allocators —

COMPUTER SCIENCE

Finally, organize these subsets in segregated free lists.
List addressed by i contains blocks of sizes € (2/,2].

J. Herter et al. CAMA

SAARLAND

Two-Level Segregated Fit Allocator (TLSF) —

COMPUTER SCIENCE

Segregated Ilst addressed by pair (/,) contains blocks of
sizes € (2245 (j+ 1)] L number of linear classes.

J. Herter et al. CAMA

SAARLAND

Cache-Aware Memory Allocation —

COMPUTER SCIENCE

CAMA adds a third layer to this scheme:

). G-]

A

L] |i+1 ... U

| 0 .. k-1

k+1|...| n |

Segregated list addressed by (k, i, j) contains blocks starting in cache
set k of sizes € (2"+2T' 2l 2 (j+1)]_

J. Herter et al.

CAMA 10/24

SAARLAND

How are we doing so far?)

COMPUTER SCIENCE

Problems solved:
m constant execution times
m explicit cache set mapping of allocated blocks
m cache influence of (de)allocation routines predictable

Open issues:

m still potential for high fragmentation, cannot just copy TLSF’s
splitting and merge operations

J. Herter et al. CAMA 11/24

SAARLAND

Splitting & Merging UNIVERSITY

COMPUTER SCIENCE

Constant-time, cache-aware splitting and merging?

splitting: split large free blocks to satisfy requests for smaller
blocks

merging: merge consecutive free blocks to satisfy later requests
for larger blocks

J. Herter et al. CAMA 12/24

SAARLAND

Splitting & Merging UNIVERSITY

COMPUTER SCIENCE

Problem: Splitting/Merging has unknown effects on cache

Merging. During deallocation, we do not know:
m whether merging will occur,
m how large the block we merge are, and hence,
m at which cache set the merged blocks start.

J. Herter et al. CAMA 13/24

SAARLAND

Splitting & Merging UNIVERSITY

COMPUTER SCIENCE

How to 'make splitting/merging cache-aware’?

m Do not store free blocks directly in the segregated free list, but
management units (descriptors) for these blocks!

m Store descriptors only in memory locations mapped to a known,
bounded range of cache sets!

J. Herter et al. CAMA 14 /24

SAARLAND

Descriptor Blocks UNIVERSITY

I —
COMPUTER SCIENCE

What information do we have to store in a descriptor?

e

ptr_managed ptr_pred ptr_left
_block _freelist _mem
size_managed ptr_succ ptr_right
_block B _freelist _mem

J. Herter et al. CAMA 15/24

SAARLAND
UNIVERSITY

Descriptor Blocks SIS
[ptr_managed H ptr_pred]l ptr_left]
_block _freelist _mem

size_managed ptr_succ ptr_right
_block _freelist _mem

Splitting Merging
update size of managed update size of managed
block, block,
update right memory update right memory
neighbor, neighbor,
add new descriptor for remove descriptors of
remainder. merged blocks.

J. Herter et al. CAMA 16/24

SAARLAND

Cache-Aware Memory Allocation —

COMPUTER SCIENCE

Summary:
m Manage not free blocks but descriptors in segregated free lists.
m 'All' accesses go to descriptor blocks.
m Descriptor blocks mapped to dedicated cache sets.
m Results in known number of accesses to known cache sets.
m Third cache set level.

J. Herter et al. CAMA 17 /24

SAARLAND

Benchmark Results—WCET Bounds for ﬂ”ﬂY
CAMA & TLSF -

Provable? WCET of the allocation routines on a MPC603e:

17
16
15 1
14
13 1 L e o e cocsmmmummem—ns | LSF (repl. Id comp.)
12 1
11
10 1 Ve - CAMA

WCET (processor cycles /10° on a MPC603e)

8 16 256 65536
requested block size in bytes

2Derived by Abslint’s a°; http://www.absint.de/ait/

J. Herter et al. CAMA 18/24

SAARLAND

Benchmark Results—WCET Bounds for ﬂ”ﬂY
CAMA & TLSF |

Provable WCET of the allocation routines on a MPC603e can be
bounded by:

m CAMA: 9,935 cycles
m TLSF: 13,026 cycles®

Provable WCET of the deallocation routines on a MPC603e:
m CAMA: 6,891 cycles
m TLSF: 5,703 cycles

316,260 cycles for the unmodified version of TLSF.

J. Herter et al. CAMA 19/24

Benchmark Results—Potential to Lower WCETUN‘VELRS”Y H
Bounds?

Assume a simple task scheduler with segregated task lists and a main
loop body:

struct task_descrs lowriority = low; allocate all objects with CAMA
struct task_descr* highPriority = high; S.t_ high and IOW priority
Tor(s b Op 1 < Tp_LTST_SIZE; i++) { objects map to disjoint cache
ggrl(cj)oz }g?u;‘d< fIPiLISTstZE,‘ J++) | Sets
[f poh priomitized tasks wattingt allocate all objects with some
y On T shTnexty constant-time allocator without
e Y ed task wairinge €Xplicit/known cache set
low = low->next; mapping

}

low = lowPriority;

J. Herter et al. CAMA 20/24

Benchmark Results—Potential to Lower WCETUN‘VERS”Y v
Bounds?

Assume a simple task scheduler with segregated task lists and a main
loop body:

struct task_descrx lngri(?rit?y = low; provable WCET USIng CAMA
struct task_descr* highPriority = high; tO Segregate I|Sts |n Cache

// 1 bound: 16

for(ioi 0? i < LP_LIST_SIZE; i++) { 67505 CyCleS
// 1 bound: 4 .
for(c])o}i o? § < HP_LIST_STZE; j++) { provable WCET otherwise:

// high prioritized tasks waiting?

10,915 cycles
high = high->next;

}

high = highPriority;

// next lower prioritized task waiting?

low = low->next;

}

low = lowPriority;

J. Herter et al. CAMA 21/24

SAARLAND

Memory Consumption/Fragmentation —

COMPUTER SCIENCE

How to benchmark fragmentation?
m Random (de)allocation traces?
m Traces from (hard) real-time applications?

J. Herter et al. CAMA

SAARLAND

Benchmark Results—Fragmentation —_—

4,000
B DLMalloc
3.000 W TLSF
B CAMA
2,000
1,000
— |I|

Absolute memory consumption for the following test cases taken from the MiBench
test suite: Susan small (A), Susan large (B), Patricia small (C), Patricia
large (D), Dijkstra small (E),and Dijkstra large (F).

J. Herter et al. CAMA

memory consumption (kilobytes)

SAARLAND

Conclusions UNIVERSITY

COMPUTER SCIENCE

m Cache-awareness does not necessarily nor overly increase
fragmentation compared to other real-time allocators.

m Predictable, cache-aware allocators do have potential do
drastically decrease WCET bounds, and . ..

m ...enable dynamic memory allocation for hard real-time
applications.

J. Herter et al. CAMA 24 /24

