

EPLA: Energy-balancing Packets Scheduling for Airborne Relaying Networks

Never Stand Still

Engineering

Kai Li^{*}, Wei Ni[†], Xin Wang[‡], Ren Ping Liu[†], Salil S. Kanhere^{*}, and Sanjay Jha^{*}

*School of Computer Science & Engineering, The University of New South Wales, Australia

[†]CSIRO, Australia

[‡] Fudan University, Shanghai, China

Outline

- ✦ Challenges
- ✦ System Model
- ✦ Packet Load Scheduling for UAVs
- ✦ Simulation Evaluation
- ✦ Conclusion and Future Work

Airborne Relaying Networks

✦ Sensors are deployed in remote areas.

✦ UAVs are deployed to fly over the source and the destination, establishing a multi-hop wireless relaying transmission link.

Sensor nodes transmit data to UAVs once they fly in their communication range.

Outline

- Research Background
- ✦ Challenges

- ✦ System Model
- ✦ Packet Load Scheduling for UAVs
- ✦ Simulation Evaluation
- ✦ Conclusion and Future Work

Challenges

✦ Variant link quality

~ experiments in [1] and [2] characterised the link behaviour in airborne relaying networks.

~ the wireless channels between the ground nodes (i.e., sensors and BS) and the aerial relays are highly dynamic and prone to packet loss.

Challenges

✦ Variant link quality

~ experiments in [1] and [2] characterised the link behaviour in airborne relaying networks.

~ the wireless channels between the ground nodes (i.e., sensors and BS) and the aerial relays are highly dynamic and prone to packet loss.

Limited battery capacity of UAVs

~ data collection would be frequently interrupted, because the UAV needs to be recharged.

~ round-robin relaying of multiple UAVs can relieve this problem to some extent.

Challenges

Variant link quality

~ experiments in [1] and [2] characterised the link behaviour in airborne relaying networks.

~ the wireless channels between the ground nodes (i.e., sensors and BS) and the aerial relays are highly dynamic and prone to packet loss.

Limited battery capacity of UAVs

~ data collection would be frequently interrupted, because the UAV needs to be recharged.

~ round-robin relaying of multiple UAVs can relieve this problem to some extent.

distributing the packet load while ensuring a balanced energy drain amongst the UAVs given the uncertain channel dynamics.

Outline

- Research Background
- ✦ Challenges
- ✦ System Model

- ✦ Packet Load Scheduling for UAVs
- ✦ Simulation Evaluation
- ✦ Conclusion and Future Work

Number of UAVs	N _R
Number of packets successfully received	S _i
Distance between the source node and UAV i at time t	d _{sn,i} (t)
Total number of data packets	M _R
Antenna gains of the transmitter and receiver	$G_{tx} G_{rx}$
Transmit power of of the source node	P ^{tx} _{sn}

✦ First hop: average SNR between the source node and UAV i at time t

✦ First hop: average SNR between the source node and UAV i at time t

$$\overline{\gamma}_i'(t) = rac{P_{src}^{tx}}{K_1 N_0 d_{src,i}^{K_2}(t)}.$$

the SNR threshold required for successful reception at the UAV

✦ At time t, the outage probability at UAV i

$$\Pr(\gamma_i'(t) < \gamma_0) = \int_0^{\gamma_0} p(\gamma_i'(t)) d(\gamma_i'(t)) = 1 - \exp(rac{\gamma_0}{\overline{\gamma}_i'(t)}),$$

✦ First hop: average SNR between the source node and UAV i at time t

$$\overline{\gamma}_i'(t) = rac{P_{src}^{tx}}{K_1 N_0 d_{src,i}^{K_2}(t)}.$$

the SNR threshold required for successful reception at the UAV

✦ At time t, the outage probability at UAV i

$$\Pr(\gamma_i'(t) < \gamma_0) = \int_0^{\gamma_0} p(\gamma_i'(t)) d(\gamma_i'(t)) = 1 - \exp(rac{\gamma_0}{\overline{\gamma}_i'(t)}),$$

✦ The packet error probability at UAV i

$$\begin{split} \mathrm{Pr}_{src,i}(t) &= 1 - \exp(-K_{src} \cdot d_{src,i}^{K_2}(t)), \ K_{src} &= rac{K_1 N_0 \gamma_0}{P_{src}^{tx}}. \end{split}$$

• Similar to the first hop, we define the SNR of the second hop as $\gamma_i(t)$

$$\gamma_i(t) = H_i(t) rac{\Gamma_i(t)}{N_0},$$

~ The $\Gamma_i(t)$ indicates minimum transmit power of UAV i at time t

Outline

- Research Background
- ✦ Challenges
- ✦ System Model
- ✦ Packet Load Scheduling for UAVs

- ✦ Simulation Evaluation
- Conclusion and Future Work

Relaying Protocol of Cooperative UAVs

Problem Formulation

 \blacklozenge The instantaneous bit error rate (BER) ϵ_i for UAV i

Problem Formulation

 \blacklozenge The instantaneous bit error rate (BER) ϵ_i for UAV i

$$\epsilon_i pprox \kappa_1 \exp\left[rac{-\kappa_2 \gamma_i(t) \Gamma_i(t)}{2^{
ho_i} - \kappa_3}
ight],$$

 \bullet ϵ_i is limited by the system requirement ϵ_i therefore, to fulfil the BER requirement, we have

$$\Gamma_i(t) = \delta_i(t) \cdot (2^{\rho_i} - 1),$$

$$t \delta_i(t) = rac{\kappa_2^{-1} \ln(rac{\kappa_1}{\epsilon})}{\gamma_i(t)}.$$

Problem Formulation

 \blacklozenge The instantaneous bit error rate (BER) ϵ_i for UAV i

$$\epsilon_i pprox \kappa_1 \exp\left[rac{-\kappa_2 \gamma_i(t) \Gamma_i(t)}{2^{
ho_i} - \kappa_3}
ight],$$

 $\bullet \epsilon_i$ is limited by the system requirement ϵ_i therefore, to fulfil the BER requirement, we have

$$\Gamma_i(t) = \delta_i(t) \cdot (2^{\rho_i} - 1),$$

$$t \delta_i(t) = rac{\kappa_2^{-1} \ln(rac{\kappa_1}{\epsilon})}{\gamma_i(t)}.$$

igstarrow Given the modulation level ho_i and the packet size $\mathfrak{L}_p^{s_i}$

$$\pi(s_i, \rho_i, t) = \mathfrak{L}_p^{s_i} \cdot \delta_i(t) \cdot \frac{(2^{\rho_i} - 1)}{\rho_i}.$$

$$\min_{x_{i,s,\rho_i}} \left\{ \max_{i \in [1,N_R]} \sum_{s \in \mathbb{S}_i} \sum_{\rho_i=1}^{\rho_{\mathbb{M}}} x_{i,s,\rho_i} \cdot \delta_i(t) \cdot \frac{2^{\rho_i} - 1}{\rho_i} \right\} \qquad \longrightarrow \begin{array}{l} \text{Minimise the largest energy} \\ \text{consumption of all the UAVs} \end{array}$$

-

 $\min_{x_{i,s,\rho_i}} \left\{ \max_{i \in [1,N_R]} \sum_{s \in \mathbb{S}_i} \sum_{\rho_i=1}^{\rho_{\mathbb{M}}} x_{i,s,\rho_i} \cdot \delta_i(t) \cdot \frac{2^{\rho_i} - 1}{\rho_i} \right\}$ Minimise the largest energy consumption of all the UAVs subject to: $\sum_{\rho_i=1}^{\rho_M} \left[x_{i,s,\rho_i} \Gamma_i(t) \right] \le P_{max}, \forall s \in \mathbb{S}_i$ Any data packet can only be $\sum^{\rho_M} x_{i,s,\rho_i} \leq 1, \, \forall s \in \mathbb{S}_i$ forwarded by one AMC mode of a UAV $\sum_{\{i,s,\rho_i\}}\sum_{k=1}^{\rho_M} x_{i,s,\rho_i} = 1, \, \forall s \in \bigcup_{i=1}^{N_R} \mathbb{S}_i$ The packets that have been $i \in \{j:s \in S_i\} \rho_i =$ correctly received by the UAVs is forwarded by one of the UAVs that have correctly received the packet

 $\min_{x_{i,s,\rho_i}} \left\{ \max_{i \in [1,N_R]} \sum_{s \in \mathbb{S}_{+}} \sum_{\rho_{+}=1}^{\rho_{\mathbb{M}}} x_{i,s,\rho_i} \cdot \delta_i(t) \cdot \frac{2^{\rho_i} - 1}{\rho_i} \right\}$ subject to: $\sum_{\rho_i=1}^{\rho_M} \left[x_{i,s,\rho_i} \Gamma_i(t) \right] \le P_{max}, \forall s \in \mathbb{S}_i$ $\sum^{\rho_M} x_{i,s,\rho_i} \leq 1, \, \forall s \in \mathbb{S}_i$ $\sum_{i \in \{j: s \in \mathbb{S}_j\}} \sum_{\rho_i = 1}^{\rho_M} x_{i, s, \rho_i} = 1, \, \forall s \in \bigcup_{i=1}^{N_R} \mathbb{S}_i$ $\sum_{i \in \{j: s \in \mathbb{S}_j\}} \sum_{s \in \mathbb{S}_i} \sum_{\rho_i = 1}^{\rho_M} \frac{x_{i, s, \rho_i}}{\rho_i} \leq \frac{T}{\mathfrak{L}_p}$ All UAVs complete forwarding packets in the scheduled timeslot of T

Minimise the largest energy consumption of all the UAVs

Any data packet can only be
 forwarded by one AMC mode of a UAV

The packets that have been correctly received by the UAVs is forwarded by one of the UAVs that have correctly received the packet

EPLA Heuristic

Energy balancing and modulation adjusting are decoupled and conducted in an iterative manner.

The above steps are repeated until the difference of energy consumption stops

Outline

- Research Background
- ✦ Challenges
- ✦ System Model
- ✦ Packet Load Scheduling for UAVs
- ✦ Simulation Evaluation

Conclusion and Future Work

Simulation Model and Parameters

✦ The UAVs are uniformly distributed on the circular trajectory between the source and BS.

Simulation Model and Parameters

✦ The UAVs are uniformly distributed on the circular trajectory between the source and BS.

✦ The radius of the circular trajectory r changes from 200m to 1000m.

Simulation Model and Parameters

✦ The UAVs are uniformly distributed on the circular trajectory between the source and BS.

✦ The radius of the circular trajectory r changes from 200m to 1000m.

✦ The distance between the source node and BS is 2km and all the UAVs fly at the same speed which is 10m/s. The wireless links between the source node and UAVs, UAVs and the BS are modelled by block fading channels.

Compared with the optimal strategy

Compared with the optimal strategy

UAVs	Optimal Schedules		EPLA		
	mean	variance	mean	variance	
1	0.56s	0.000022	0.039s	0.000015	
2	19.06s	1.6291	0.0438s	0.000013	Runtime
3	42.6540s	0.5993	0.0477s	0.000039	
4	50.0191s	12.4113	0.0507s	0.000019	
5	129.1360s	147.9916	0.0664s	0.00003	

✦ Comparison of network yield with different packet scheduling algorithms. The error bar shows the standard deviation over 100 runs.

✦ The performance of network lifetime with different packet scheduling algorithms. The error bar shows the standard deviation over 100 runs.

✦ The performance of network lifetime with different packet scheduling algorithms. The error bar shows the standard deviation over 100 runs.

Outline

- Research Background
- ✦ Challenges
- ✦ System Model
- ✦ Packet Load Scheduling for UAVs
- ✦ Simulation Evaluation
- ✦ Conclusion and Future Work

Conclusion and Future Work

✦ We proposed an energy-efficient relaying scheme which can extend the lifetime of cooperative UAVs in human-unfriendly environments;

✦ An NP-hard optimisation problem was formulated to guarantee packet success rates and balance energy consumption;

✦ A practical suboptimal solution was developed by decoupling energy balancing and modulation selection;

✦ It is also revealed that our scheme can increase network yield by 15%, and extend network lifetime by 33%, compared to existing greedy algorithms;

✦ More UAV trajectories will be investigated in our experiment. To increase communication range of the UAV, a hybrid antenna for the UAV will be combined with EPLA algorithm.

Reference

♦[1] Bekmezci, O. K. Sahingoz, and S. Temel, "Flying ad-hoc networks (fanets): a survey," Ad Hoc Networks, vol. 11, no. 3, pp. 1254– 1270, 2013.

 ◆[2] N. Ahmed, S. S. Kanhere, and S. Jha, "Utilizing link characterization for improving the performance of aerial wireless sensor networks," Journal on Selected Areas in Communications, vol. 31, no. 8, pp. 1639–1649, 2013.

Thank You!

Email: kail@cse.unsw.edu.au

Blank Page

