Security in Embedded Systems The Wireless Sensor Network case

Walter Tiberti

University of L'Aquila (Italy) Centre of Excellence DEWS DISIM dept.

23 April 2019

(日)

Agenda

- 3 Embedded Systems Security
- 4 Security in WSN
 - Cryptography

5 Our Works

- TAKS
- Intrusion Detection

Securing IEEE 802.15.4e

Agenda

Introduction

- Security
- 3 Embedded Systems Security
- Security in WSNCryptography
- 5 Our Works
 - TAKS
 - Intrusion Detection

Who am i

Walter Tiberti

- MoS in Computer and System Engineering
- PhD student @ University of L'Aquila (supervisor: L. Pomante)
- Github/Gitlab: wtiberti
 - Embedded Systems
 - Low-level software (e.g. firmware, drivers, OSes etc.)
 - Reverse-Engineering, Malware Analysis, Penetration Testing
 - Cryptography, Intrusion Detection and Countermeasures
 - Digital Electronics Design and Implementation

・ロット (雪) (日) (日)

UNIVERSITÀ DEGLI STUDI DE L'AQUILA

3

Introduction Security Embedded Systems Security Security in WSN Our Works 0000000 000000 0000000

L'Aquila (Italy)

ъ

Introduction Security Embedded Systems Security Security in WSN Our Works

Spanish Fort, Fontana Luminosa

Introduction Security Embedded Systems Security Security in WSN Our Works

ur Works Securing IEEE 802.15.4e

Basilica di Collemaggio, P. del Duomo

A B > 4
 B > 4
 B

L'Aquila: University

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

L'Aquila: view from Monteluco di Roio

ERSITÀ LI STUDI AQUILA

ヘロト ヘ戸ト ヘヨト ヘ

DEWS

• Center of Excellence DEWS

 Design methodologies for Embedded controllers Wireless interconnect and System-on-chip

LI STUDI

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Embedded Systems Workgroup: Core members

• Coordinator: Luigi Pomante

- Senior Researchers:
 - Tania Di Mascio (Human-Machine interf., coordination)
 - Marco Santic (WSN, Localization)
- PhD Researchers:
 - Giacomo Valente (Digital Design, Monitoability)
 - Paolo di Gianmatteo (Machine Learning)
- PhD Students:
 - Vittoriano Muttillo (HW/SW Co-design)
 - Walter Tiberti
 - Gabriella D'Andrea (Reconf. Platforms)
 - Federica Caruso (Human-Machine interfac.)

= 900

・ロト ・雪 ト ・ ヨ ト ・

Agenda

Introduction

- Security
- 3 Embedded Systems Security
- Security in WSNCryptography
- 5 Our Works
 - TAKS
 - Intrusion Detection

Un-security

No system is secure

・ロット (雪) (日) (日)

= \$\\$<</p>\$\\$<</p>

Un-security

• No system is secure

Un-security: assumptions to make

- Basic assumption: no system is secure
- Basic assumption: attackers have **infinite** resources (e.g. money, time, tries etc.)

Un-security: assumptions to make

- Basic assumption: no system is secure
- Basic assumption: attackers have **infinite** resources (e.g. money, time, tries etc.)
- Basic assumption: compilers can fail, hardware can fail (e.g. SPECTRE, MELTDOWN, ROWHAMMER)

Un-security: assumptions to make

- Basic assumption: no system is secure
- Basic assumption: attackers have **infinite** resources (e.g. money, time, tries etc.)
- Basic assumption: compilers can fail, hardware can fail (e.g. SPECTRE, MELTDOWN, ROWHAMMER)
- Basic assemption: People can fail too!

Un-security: assumptions to make

- Basic assumption: no system is secure
- Basic assumption: attackers have **infinite** resources (e.g. money, time, tries etc.)
- Basic assumption: compilers can fail, hardware can fail (e.g. SPECTRE, MELTDOWN, ROWHAMMER)
- Basic assemption: People can fail too!
- While we are talking, *vulnerabilities* are exploited, found, reported etc.

Date #	D	A	V	Title	Туре	Platform	Author
2019-04-17	<u>*</u>		1	Oracle Java Runtime Environment - Heep Corruption During TTF font Rendering in Glyphiterator:setCurrGlyphiD	DoS	Multiple	Google Security Research
2019-04-17	ŧ		~	Oracle Java Runtime Environment - Heap Corruption During TTF font Rendering in sc., FindExtrema4	DoS	Multiple	Google Security Research
2019-04-17	ŧ		×	DHCP Server 2.5.2 - Denial of Service (PoC)	DoS	Windows	Victor Mondragón
2019-04-17	±		×	ASUS HG100 - Denial of Service	DoS	Hardware	YinT Wang
2019-04-17	ŧ		×	MailCarrier 2.51 - POP3 RETR'SEH Buffer Overflow	Remote	Windows	Dino Covotsos
2010.04.16	+			Microsoft Windows 10 1000 - I LIKEN DoetLondoDoetDaw8Miles CEPTIONL OD IEPT DOINTEDC Daws Condition Deviation Excelution	Local	Westman	Crocke Serurity Desearch

Example: ExploitDB website

https://www.exploit-db.com/

Cryptography?

- Cryptography **not necessarily** means Security
 - A system using cryptography can be still vulnerable to other (often subtle) attack vectors
 - Once the keys are known, cryptography is useful no more
 - While cryptographic schemes, on paper, are super-secure, **very** often their implementation isn't so.
 - Examples: PODDLE, CRIME, Heartbleed
 - https://www.acunetix.com/blog/articles/ tls-vulnerabilities-attacks-final-part/
 - Nonces generated by weak PRNG can be learned and replicated
 - Each cryptographic scheme has its issues (e.g. small exponents, backdoor curves)
- Rule Thumb: "Don't roll your own cryptography"

UNIVERSITÀ DEGLI STUDI DE L'AQUILA

= nar

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

How to approach security?

- The attack is the best defence & The defence is the best attack
- Assess your system by attacking it (Penetration Testing)

How to approach security?

- The attack is the best defence & The defence is the best attack
- Assess your system by attacking it (Penetration Testing)

Learning Platforms

- OverTheWire: http://overthewire.org/wargames/
- HackTheBox: https://www.hackthebox.eu/
- ExploitEducation: https://exploit.education/

(日)

UNIVERSITÀ DEGLI STUDI DE L'AQUILA

3

Agenda

- Introduction
- 2) Security
- 3 Embedded Systems Security
 - Security in WSNCryptography
- 5 Our Works
 - TAKS
 - Intrusion Detection
- 6 Securing IEEE 802.15.4e

Introduction Security Embedded Systems Security Security in WSN Our Works 00000000 000000 0000000

Securing IEEE 802.15.4e

Security in Embedded Systems

Let's now focus on Embedded Systems (in general)

- Let's now focus on **Embedded Systems** (in general)
- First: too often, the security aspects are left aside during the design phase.

- Let's now focus on **Embedded Systems** (in general)
- First: too often, the security aspects are left aside during the design phase.
- Embedded Systems are even **more vulnerable**, since they are often designed to work in constrained application-specific contexts.
 - Simpler protocols

- Let's now focus on **Embedded Systems** (in general)
- First: too often, the security aspects are left aside during the design phase.
- Embedded Systems are even **more vulnerable**, since they are often designed to work in constrained application-specific contexts.
 - Simpler protocols
 - Simpler HW designs

- Let's now focus on **Embedded Systems** (in general)
- First: too often, the security aspects are left aside during the design phase.
- Embedded Systems are even **more vulnerable**, since they are often designed to work in constrained application-specific contexts.
 - Simpler protocols
 - Simpler HW designs
 - Lighter SW: simpler or no OS, applications deal directly with the HW (and malicious code can access HW easilly)

Security in Embedded Systems

- Let's now focus on **Embedded Systems** (in general)
- First: too often, the security aspects are left aside during the design phase.
- Embedded Systems are even **more vulnerable**, since they are often designed to work in constrained application-specific contexts.
 - Simpler protocols
 - Simpler HW designs
 - Lighter SW: simpler or no OS, applications deal directly with the HW (and malicious code can access HW easilly)
 - Light or no memory management (e.g. no virtual memory, no access controls etc.): memory access is often unrestricted

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Embedded Systems: Security failures (1)

Embedded Systems: Security failures (1)

- Philips Hue lightbulbs
- https://youtu.be/Ed10jAuRARU

Embedded System Security: Future

• More powerful?

Embedded System Security: Future

• More powerful? Embedded Systems will start performing like modern bigger platforms, with all the common security issues

Embedded System Security: Future

• More powerful? Embedded Systems will start performing like modern bigger platforms, with all the common security issues

Example: Raspberry PI

- Quad-core ARM CPU, GBs of RAM
- BT, 802.11, HDMI, Ethernet
- Can run normal OS

UILA

Embedded System Security: Future

- More powerful? Embedded Systems will start performing like modern bigger platforms, with all the common security issues
- Smaller?

Embedded System Security: Future

- More powerful? Embedded Systems will start performing like modern bigger platforms, with all the common security issues
- Smaller? Less memory, less performance, smaller CPU/MCU, harder to implement security-related functionalities

MSP430-based board (16 bit)

(日)

• 10 KB or RAM, 48 KB of Flash storage

Learning Platforms

MSP430 security

Microcorruption: https://microcorruption.com

Disassembly						Register State	Current Instruction
1000 1000 1000 1000	2041 2041 - State Constant - State Constant - State Const				-	pe 4403 sp 5000 es 0300 eg 5063 #94 6100 218 6000 c68 5000 217 5068 #08 5003 218 6000 s33 0408 s31 6088 z12 3000 x33 6060 s14 6060 z15 5068	Tiel Diel my Histoff, sp
44001	1543	441.0	#-0a1, #5			Debugger Console	
44061	2542 1254		etabete, at			The second se	
	2640 0000 0734 0734 8245 3405 2733 8645 0230 2753 8645 0230 2755 9645 0230 2755 0238 0755 0238 0756 0238	628 38 809 400 100 100 100 100 100 100 100 100 100	ets ets Hant24 c_min_class_b Hant24 c_min_class_b Hant24 c_min_class_b Hant24 c_min_comp_de His His Hant21 comparison	ariato 23) (eriato		Binade to the sum entropyet. Binade to the sum entropyet. Binade State (a = barry: Due to sum entropy	no generative. You have the seak theor Jonk. You I on thing, and then a state interfaces, typing a "nontinue".
00001	0000 4400 00	100 0010			- 5		
0018:	-				-		
+4101	0000 0540 01	24 82 45	Sell 2681 9645 9645	and the second s			
44201	0024 0925 30	140.0000	0215 0824 8245 5cm	-6-8186-Eh-			
	1580 1540 00	24 2425	3150 NOTE 3240 al 44				
	MIL2 3845 08	FAS MESS	7844 OF41 8012 8444			10 Console	
				*** 18.0RCH		10000000000	
	**** 1012 58	145 MI12	9044 0243 31.50 44.00	.DHED.CSP6.			
44701	- 33 mil 20-00 mi		8845 5445 8828 0012	2			
	\$7.45 10.41 Se	42 1210	1051 0451 Du21 3150	MEDAND. S. S Mr.			
		COLUMN TWO IS NOT	TATA MARY MANY MANY	A COM COMM			
44801	0810 0224 05						

・ロット (雪) (日) (日)
Agenda

- Introduction
- Security
- 3 Embedded Systems Security
- Security in WSNCryptography
 - 5 Our Works
 - TAKS
 - Intrusion Detection
- 6 Securing IEEE 802.15.4e

Wireless Sensor Networks

- Wireless Sensor Network (WSN)
- Quick recap
 - Small, energy-constrained (battery-powered) nodes (called motes)
 - Motes are equipped with a radio transceiver for wireless interconnection
 - A set of sensors are embedded in the mote (directly or by means of sensorboards
 - Small storage, small performance, small costs
 - Flexible platforms: motes can be densely distributed and/or organized to cover big areas

3

・ロット (雪) (日) (日)

IEEE 802.15.4

- Nowadays, the term WSN is becoming more vague
- In this presentation, we will discuss about IEEE 802.15.4-based WSN

Security Overview

In general, in WSNs:

- Mote hardware side: often no security (i.e. attackers can **access the IO pins** with no effort.
- Some mote MCU have hardware primitives for symmetric/public-key cryptography (e.g. the TI CC3825)
- The radio channels used are (mostly) in theunlicensed ISM 2.4GHz bands (i.e. everybody can listen and transmit over the channel)
- The SoA OS for WSN (TinyOS, ContikiOS, RIOT) have only few security features. External software can provide other features with limitations (e.g. TinyECC)
- ilt is easy to perform different jamming attacks (from constant jamming to dynamic self-adapting jamming)
- Some of the 2.4GHz channels of IEEE 802.15.4 **collides**

DE L'AQUILA

WSN: Using Symmetric Ciphers?

- Using Symmetric Cryptography schemes (e.g. block ciphers such as AES or stream ciphers e.g. Salsa/Chacha20) are generally fast and lightweight, but they requires the secret key to be available (e.g. preprogrammed) before any transmission
- ullet \to Key Distribution Problem

WSN: Using Public-Key Cryptography? (1)

• Using *Public-Key Cryptography schemes* solves the key distribution problem (e.g. Diffie-Helman) but is expensive in terms of performance and storage.

WSN: Using Public-Key Cryptography? (2)

Example: RSA

With a maximum of ~ 100 bytes available as MAC payload and using a SoA key size e.g. 2048 bit = 256 bytes, every transmission which requires a key exchange has to be *splitted*.

Example: ECC

Even though ECC keys require less space (e.g. 192bits) the computation involved (e.g. Point Addition/Multiplication) are possible but they can be very expensive.

DE L'AQUILA

(日)

From the IEEE 802.15.4 standard

- Section 9 "Security"
- AES 128bit CCM as (authenticated) symmetric encryption
- Not enough information to implement a complete solution:
 - 128bit AES is not super-secure
 - CCM mode (CTR+HMAC) have problems is the nonces are not carefully "choosen"
 - No mechanism for key distribution or storage

Key storage?

Consider the following C source code

```
1 #include <stdint.h>
 2 #define KEYLENGTH 128
 4 uint8 t supersecretkey[KEYLENGTH/8] = {
   0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
    0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88
7 };
 8
9 int main()
10 {
11
           // .. application code ...
12
           while(1);
13
14
           return 0;
15 }
```


Key storage?

Compiling into IHEX format for mote programming:

Consider the following C source code

```
1 #include <stdint.h>
2 #define KEYLENGTH 128
 4 uint8 t supersecretkey[KEYLENGTH/8] = {
    0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
    0x11. 0x22. 0x33. 0x44. 0x55. 0x66. 0x77. 0x88
7 };
9 int main()
10 {
11
           // .. application code ...
12
           while(1);
13
14
           return 0;
15 }
```


Introduction Security Embedded Systems Security in WSN Our Works

Key storage...failure

Dumping data from Flash/EEPROM chips:

Introduction Security Embedded Systems Security

Security in WSN Our Works

ks Securing IEEE 802.15.4e

IEEE 802.15.9 standard

IEEE 802.15.9

- Recent standard, it addresses the Key Transport mechanisms
- Overview:
 - Additional layer on top of MAC (MPX)
 - Fragmentation and Multiplexing
 - Additional (vertical) layer for Key management (KMP)

Agenda

- Introduction
- 2 Security
- 3 Embedded Systems Security
- 4 Security in WSN• Cryptography
- 5 Our Works
 - TAKS
 - Intrusion Detection

 Introduction
 Security
 Embedded Systems Security
 Security in WSN
 Our Works
 Securing IEEE 802.15.4e

- Ad-hoc cryptographic cryptography techniques
- Topology Authenticated-key Scheme (TAKS)
- **Hybrid Cryptogrphy**: TAKS use both public-key and symmetric cryptography features
- Lightweight: designed to run on top of WSN platforms

TAKS

Features:

- **Objective**: creating a *shared secret* with public-key like mechanisms to be used as symmetric key for encrypting/decrypting and to generate a *signature* for authentication.
- How? Vector algebra over finite fields (usually $GF(2^n)$)
- Two mode of operation: Point-to-Point (star topologies) and Cluster-wise (for cluster-wise topologies)

 Introduction
 Security
 Embedded Systems Security
 Security in WSN
 Our Works
 Securing IEEE 802.15.4e

TAKS: idea

- A WSN topology is planned (Planned Network Topology - **PNT**)
- A set of *Key components* is generated offline for each node in the PNT (Local Configuration Data **LCD**)
 - a node-local, private component (Local Key Component, LKC) is pre-programmed in the mote
 - a set of public components (Transmit Key Component - TKC)
 - a set of restricted components (Topology Vector TV) known only to the motes enabled to communicate with target node

э.

(日)

Our Works Securing IEEE 802.15.4e

TAKS: block diagram

TAKS: block diagram

- The **TAK()** function combines the nonce and two components into the *shared secret SS*
- Multiple definitions of TAK() are possible. An example is¹:

$$\mathsf{TAK}_{i \to j} = \alpha * \mathsf{LKC} \times \mathsf{TV}_{i \to j} = \mathsf{KRI} \times \mathsf{TKC}_{i \to j}$$

$$= \alpha * \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ lkc_1 & lkc_2 & lkc_3 \\ tv_1 & tv_2 & tv_3 \end{vmatrix} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ kri_1 & kri_2 & kri_3 \\ tkc_1 & tkc_2 & tkc_3 \end{vmatrix}$$

¹In this case, LKC, TV and TKC are 3-dimensional vectors over $GF(2^{\mathbb{P}})$ 9.00

DE L'AQUILA

 Introduction
 Security
 Embedded Systems Security
 Security in WSN
 Our Works
 Securing IEEE 802.15.4e

TAKS: Sending..

- Alice wants to transmit to Bob a message
- Alice has LKC_a and Bob's TKC_b. She uses the TAK() function to combine the two key components
- Alice generate a nonce (α) and multiplies it with the result of the component combination to obtain a shared secret SS
- She uses SS as symmetric key to encrypt the data and to generate a message authentication code from the cipher text
- Alice creates also the key reconstruction information d_a
- Finally, Alice sends *ciphertext*|*d_a*|*MAC* to Bob

・ロット (雪) (日) (日)

TAKS: ..Receiving

- Bob receives ciphertext|d_a|MAC from Alice
- Due the construction of TAK(), $TAK = LKC_a \cdot TKC_b = -LKC_b \cdot TKC_a$, Bob uses $d_a \cdot LKC_b = (-\alpha \cdot TKC_a) \cdot LKC_b = SS$ to derive the SS
- Bob checks the *MAC* and, if valid, decrypts the message with *SS*

Practical Example

Demo

ECTAKS: Prologue

- Elliptic Curve Cryptography (ECC)
- Old concept, but recently re-discovered
- Public-Key scheme (ECIES, ECDSA, ECDH, ECQV)
- Curve, Point, PointAdd, PointMul, ECDLP
- PubKey = Point, PrivKey = Scalar
- Standard Curves

 Introduction
 Security
 Embedded Systems Security
 Security in WSN
 Our Works
 Securing IEEE 802.15.4e

ECTAKS

Work-in-Progress

- Elliptic Curve-based TAKS (ECTAKS-ECIES, ECTAKS-ECDSA)
- Idea: add TAKS mechanism to EC Points:
 TAKS Key Components = Points
- TAK function combines points into a private (scalar) key, which can be used to generate the ECC Public Key
- Target platforms: *TinyOS*, *Contiki-OS*, *RIOT-OS*

(日)

 Introduction
 Security
 Embedded Systems Security
 Security in WSN
 Our Works
 Securing IEEE 802.15.4e

ECHARP-WSN

- Work-in-Progress
- ECC HW Accelerator on Reconfigurable Platform for WSN motes
- Idea: Faster processing \rightarrow Less Time \rightarrow Less Energy
- We are developing a ECC HW Accelerator to be embedded and controlled by WSN motes and activated on-demand (default: *power off*)
- Full **RTL** design to improve area occupation, performances and energy impact
- Flexible: no assumption is taken, e.g. any curve can be used and changed at runtime

DE L'AQUILA

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

 Very good initial results (PointAdd, PointDouble, PointMul)

Example: block diagram for ECIES

590

WSN: Detect anomalies and attacks

Intrusion Detection Systems for WSN

• Scenario: an attacker targets the WSN and tries to change the behavior of motes remotely in order to manipulate the data exchanged or to leak information (e.g. cryptographic keys)

WIDS

- WSN Intrusion Detection System (WIDS)
- Design of a WSN IDS based on Weak Process Models(WPM
- Attacks are modeled into WPM represented as a graph in which the nodes are the states in which the mote could be at any time and the edges are the possible transitions from and to states
- WIDS tries to perform a state estimation based on events (observables)

WIDS example

WIDS implementation: *TinyWIDS*

- Implementation of WIDS on top of TinyOS
- Acquisition of data from the hardware and lower software-layer of the motes in the form of **Metrics**
- Metrics are checked against thresholds. If the checks fails, **observables** are created
- Observables are collected at runtime and the WPM attack models are updated
- If any attack model has an estimated state considered dangerous, a notification is sent

(日)

TinyWIDS architecture

WIDS: Countermeasures to attacks

• Work-in-Progress

- Question: When an attack is detected, what can we do?
- We are studing different techniques to both **contain the attacks** and **retrieving information** of it upon detection

Agenda

- Introduction
- 2 Security
- 3 Embedded Systems Security
- Security in WSNCryptography
- 5 Our Works
 - TAKS
 - Intrusion Detection

TAKS in IEEE 802.15.4e

- Done here at CISTER!
- TAKS has been adapted and implemented in the Omnet++ based DSME MAC Behavior of the IEEE 802.15.4e (OpenDSME)
- OpenDSME has been enhanced by adding support to:
 - IEEE 802.15.4-2015 MAC layer Information Elements (IE)
 - Specific TAKS IE (Header IE)
 - Generic packet content (GenericPayload)
- The code is on Github: https://github.com/ wtiberti/openDSME/tree/Security

・ロット (雪) (日) (日)

UNIVERSITÀ DEGLI STUDI DE L'AQUILA

= 900

TAKS in IEEE 802.15.4e

UNIVERSITÀ DEGLI STUDI DE L'AQUILA

э.

TAKS in IEEE 802.15.4e

Before:

- [4] (Byteschunk): Byteschunk, length = 10 B, bytes = {9, 54, 69, 143, 142, 209, 145, 7, 15, 150} mutable = false (bool) complete = true (bool) correct = true (bool) properlyRepresented = true (bool) chunkLength = 80 (inet::b)
 - bits[3] (string)
 - bytes[1] (string)
 [0] 09 36 45 8F 8E D1 91 07 0F 96

After:

plainbuffer <hex> 🛱 plainbuffer : 0x33A7130 <ascii> 🕱 🔶 New Renderings</ascii></hex>																
Address	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
0000000033A7120		00 01	00001	0 0 0 1	00 01	00 01	00 01	0 0 0 1	1	0 0 0 1	00 01	00 01	0 0 0 1	00 01	0 0 0 1	00 01
0000000033A7130	ъt	_∧ e	_A S	_≜ t	Δ -	_≜ D	<u>_</u> A	_A Τ	_ А			0 0 0 3	00	00	00	00 01
00000000033A7140	0	0 0 1 F	7	000	00001	00001	00	00001	Á	00001	00	00	00001	00001	00001	00
00000000033A7150	0	1		ô	ÿ	0 0 7 F	00001	0001		÷	В	ô	ÿ	0 0 7 F	00001	00001
0000000033A7160	000	0001	000	00	000	0001	00	00	0001	000	00	00	000	00001	00	00
0000000033A7170	000	00001	000	00	000	00001	00	00	00	00	00	00	000	00001	00	00
0000000033A7180	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

(日)

UNIVERSITÀ DEGLI STUDI DE L'AQUILA

References

TAKS / WIDS / TinyWIDS:

https:

//ieeexplore.ieee.org/document/5345623

• https:

//ieeexplore.ieee.org/document/6583643

• https:

//ieeexplore.ieee.org/document/6775056

• https:

//ieeexplore.ieee.org/document/5703728

• https:

//ieeexplore.ieee.org/document/4660137

https://dl.acm.org/citation.cfm?doid 3178291.3178293 UNIVERSITÀ DEGLI STUDI DE L'AQUILA

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~
Thank you!

