

A Framework for Offloading Real-Time
Applications in a Distributed Environment

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-111204

Version:

Date: 12-02-2011

Cláudio Maia

Guilherme Silva

Luis Lino Ferreira

Luís Miguel Pinho

Luís Nogueira

Joel Gonçalves

Technical Report HURRAY-TR-111204 A Framework for Offloading Real-Time Applications

 in a Distributed Environment

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

A Framework for Offloading Real-Time Applications in a Distributed
Environment
Cláudio Maia, Guilherme Silva, Luis Lino Ferreira, Luís Miguel Pinho, Luís Nogueira, Joel
Gonçalves

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
This work focuses on highly dynamic distributed systems with Quality of Service (QoS) constraints (most importantly
real-time constraints). To that purpose, real-time applications may benefit from code offloading techniques, so that parts
of the application can be offloaded and executed, as services, by neighbour nodes, which are willing to cooperate in
such computations. These applications explicitly state their QoS requirements, which are translated into resource
requirements, in order to evaluate the feasibility of accepting other applications in the system.

A Framework for Offloading Real-Time Applications
in a Distributed Environment

Cláudio Maia, Guilherme Silva, Luis Lino Ferreira, Luís Miguel Pinho, Luís Nogueira, Joel Gonçalves
CISTER Research Centre

School of Engineering of the Polytechnic Institute of Porto
Porto, Portugal

{crrm, grss, llf, lmp, lmn, vjmg}@isep.ipp.pt

Abstract This work focuses on highly dynamic distr ibuted
systems with Quality of Service (QoS) constraints (most
importantly real-time constraints). To that purpose, real-time
applications may benefit from code offloading techniques, so that
parts of the application can be offloaded and executed, as
services, by neighbour nodes, which are willing to cooperate in
such computations. These applications explicitly state thei r QoS
requirements, which are translated into resource requirements,
in order to evaluate the feasibil ity of accepting other applications
in the system.

Keywords- Code Offloading, Cooperative Distributed Systems,
Real-Time

I. INTRODUCTION
In the context of cooperative distributed systems, a full-

fledged framework was developed with the objective of
integrating code offloading techniques [1], on top of a
middleware framework that provides QoS [2], and real-time
guarantees to the applications [3].

The application presented in this paper is a proof-of-
concept of the offloading algorithms proposed in [1], which
rely on the services provided by a code mobility library, named
MobFr [4]. Additionally, the formation of a coalition to run the
application is based on the CooperatES framework [2]. This
framework is capable of finding a proper coalition to run a
distributed application, based on the resource requirements
(CPU, memory, display, etc.) of the services constituting the
application. Furthermore, a real-time scheduler implemented in
the Linux kernel of the Android OS the Capacity Sharing and
Stealing (CSS), proposed in [3], supports the above framework.

CSS integrates and extends recent advances in dynamic
deadline scheduling with resource reservation. CSS proposes
the coexistence of the traditional isolated servers with a novel
non-isolated type of servers, combining an efficient
reclamation of residual capacities with a controlled isolation

performance when compared to other available server-based
solutions and has a lower overhead.

II. OFFLOADING FRAMEWORK
In order to demonstrate the framework capabilities, we are

using a physics simulation application that replicates the fall of

different kinds of geometrical figures, and its bouncing
properties, when hitting other objects or the bounds of the
physics world. Figure 1 depicts a screenshot of the

Figure 1. Physics simulation application

An object with a random shape appears on screen every
time the user pr
are drawn with a frequency of 30 frames per second (the
update period Tp), thus requiring the execution of the physics
engine with the same frequency.

Importantly, to our application, is that due to the collision
detection and path calculation algorithms used, the

objects, as shown in [1].

CPU resources assigned to this application are guaranteed
by the CSS scheduler, which guarantees that the physics
simulation task is able to execute for a time equal to tMaxCap
on every Tp interval length.

The main objective of the offloading algorithm is to
dynamically adapt to the varying execution times by offloading
computations to surrogate nodes in a timely fashion. By timely
it is meant that the user should not notice any disruption on the

execution (including communications) should be completed
prior to Tp.

To that purpose, the offloading algorithm tries to predict the
forthcoming physics simulation execution times, based on a
linear regression calculated from past execution times. When a
device needs to offload code, the physics engine distributes the

physics world by surrogate nodes. Each surrogate node is then
responsible for calculating a set of objects and returning its
results to the main node, where the simulation results are
displayed.

The Android OS was chosen to demonstrate the feasibility
the framework. The architecture, depicted in Figure 2, is
composed by two libraries, Offloading Library and MobFr,
placed at the Applications layer, and the CooperatES
framework implemented on top of the Linux kernel and
Android Runtime.

Concerning the Offloading library, it provides support to
the offloading operations required by an application. These
operations involve handling the exchange of data among the
devices that are part of the offloading coalition, which is
constituted by one main node and several surrogate nodes, as

execution times are read, and then used to perform calculations.

Underneath the Offloading library is MobFr, a service-
based QoS-enabled library capable of handling code mobility.
Among the provided features, MobFr is designed to: (i) detect
neighbour devices, by using the System Manager component
from the CooperatES framework; (ii) determine the best
candidate to run the offloaded code, according to the QoS
requirements of the application and the available resources on
the surrogate nodes. This can be achieved by using the
CooperatES framework components running within the
Android Runtime; (iii) migrate the code and initial state; (iv)
remotely control the code execution; and finally, (v) handle the
transfer of data between nodes.

III. THE COOPERATES FRAMEWORK
In the core of the Android platform there is the CooperatES

framework. This framework is responsible for providing QoS
ions by evaluating the

resource requirements of each particular application, and
evaluating if the current node has enough resources to provide
to that particular application. If this is the case, the request is
handled locally; otherwise the framework is responsible for
executing the application in a coalition of neighbour nodes.

Neighbour nodes may cooperate either because they cannot
deal alone with the resource allocation demands imposed by
users and applications, or because they can reduce the
associated cost of execution by working together.

Application requests are handled by the QoS Provider,
which is composed by the Local Provider and Coalition
Organiser components. The Local Provider is responsible for
determining if a local execution of the new service is possible

simulation application has been designed to support different
frame rates {30, 20, 10}.

Rather than reserving local resources directly, the Local
Provider contacts the Resource Managers to grant the specific
resource amounts requested by the service. If the resource

locally satisfied, the Coalition Organiser starts the coalition

formation process. The Coalition Organiser interacts directly
with the System Manager.

The System Manager is responsible for maintaining the
overall system configuration, detecting nodes entering and

and dissolution.

Finally, the framework relies on a modified version of the
Linux kernel that incorporates CSS, in order to provide the
real-time guarantees required by the applications.

Figure 2. System Architecture

ACKNOWLEDGMENT
This work was supported by the CISTER Research Unit

(608FCT) and CooperatES project (PTDC/EIA/ 71624/2006),
both funded by FEDER funds through COMPETE (POFC-
Operational Programme 'Thematic Factors of Competitiveness)
and by National Funds (PT), through the FCT-Portuguese
Foundation for Science and Technology; and the ArtistDesign
NoE ref. ICT-FP7-214373.

REFERENCES
[1] L. Ferreira, G. Silva, L. Miguel Pinho. Service Offloading in Adaptive

Real-Time Systems. In proceedings of the 6th IEEE International
Workshop on Service Oriented Architectures in Converging Networked
Environments (SOCNE), Toulouse, France, 2011.

[2] L. Nogueira, L. Miguel Pinho. Time-bounded Distributed QoS-aware
Service Configuration in Heterogeneous Cooperative Environments.
Journal of Parallel and Distributed Computing, 69(6):491 507, June
2009.

[3] L. Nogueira, L. Miguel Pinho. A Capacity Sharing and Stealing Strategy
for Open Real-Time Systems. Journal of Systems Architecture, Volume
56, Issues 4-6, April-June 2010.

[4] J. Gonçalves, L. Ferreira, L. Miguel Pinho, G. Silva, Handling Mobility
on a QoS-Aware Service-based Framework for Mobile Systems. In
proceedings of the Intl. Conf. on Embedded and Ubiquitous Computing
(EUC 2010), pages 97-104, Hong Kong, China, 2010.

