P

&
CISTER

Research Center in

Computing Systems

Conference Paper

Extending publish/subscribe mechanisms to
SOA applications

Michele Albano
Luis Lino Ferreira
José Sousa

CISTER-TR-160402

2016/05/03

Conference Paper CISTER-TR-160402 Extending publish/subscribe mechanisms to SOA applications

Extending publish/subscribe mechanisms to SOA applications

Michele Albano, Luis Lino Ferreira, José Sousa

CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Ant6nio Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: mialb@isep.ipp.pt, lIf@isep.ipp.pt, 1110852@@isep.ipp.pt
http://www.cister.isep.ipp.pt

Abstract

The Event Handler systems is part of theArrowhead Framework, which aims to apply Service OrientedArchitecture
to the embedded systems' world. The EventHandler system is a component that supports the handling ofevents,
and in that sense it enriches service-oriented applicationswith the capabilities of interacting via the
publish/subscribeparadigm. In fact, the Event Handler core system is in charge ofthe notification of events that
occur in a given Arrowheadcompliant installation, manages producers and consumers ofevents, allows filtering of
messages, and manages historical dataregarding events. This latter capability is performed either onlocal files, on
a database, or through another component of theArrowhead Framework - the Historian system. Two examples
ofthe application of the Event Handler system are described: themanagement of application faults, and the
support to quality ofservice of orchestrated services.

© CISTER Research Center 1
www.cister.isep.ipp.pt

Extending publish/subscribe mechanisms
to SOA applications

Michele Albano, Luis Lino Ferreira, José Sousa
CISTER, ISEP/INESC-TEC,
Polytechnic Institute of Porto

Porto, Portugal
{mialb,llf,jsous} @isep.ipp.pt

Abstract—The Arrowhead Framework is a European effort
that aims to apply Service Oriented Architecture to the
embedded systems' world. The Event Handler system is a
component that supports the handling of events, and in that sense
it enriches service-oriented applications with the capabilities of
interacting via the publish/subscribe paradigm. In fact, the Event
Handler system is in charge of the notification of events that
occur in a given Arrowhead compliant installation, manages
producers and consumers of events, allows filtering of messages,
and manages historical data regarding events. This latter
capability is performed either on local files, on a database, or
through another component of the Arrowhead Framework - the
Historian system. The net result of the integration of the Event
Handler in an Arrowhead Framework simplifies and empowers
the communication of its components, as it is demonstrated in the
paper with two examples: the management of application faults,
and the support to quality of service of orchestrated services.

Keywords—components; system of systems; service oriented
architecture; embedded devices

[. INTRODUCTION

The Arrowhead Framework [1] implements the grand
vision of applying the Service Oriented Architecture (SOA) to
the world of the Internet of Things [2]. To this aim, the
distributed applications are supported by systems that compose
systems of systems, and all interactions are based on the
production and consumption of services. The Arrowhead
Framework is currently supporting a large number of scenarios,
spanning from virtual markets of energy [3] to management of
intelligent elevators [4].

Even though SOA provides many benefits, such as the
normalization of interaction processes [5], it imposes a rigid
structure to the system of systems. The Event Handler system
is a component that supports the handling of events, and in that
sense it enriches service-oriented applications with the
capabilities of interacting via the publish/subscribe paradigm.
In fact, the Event Handler system is in charge of the
notification of events that occur in a given Arrowhead-
compliant installation, manages producers and consumers of
events, allows filtering of messages, and manages historical
data regarding events. This latter capability is performed either
on local files, on a database, or through another component of
the Arrowhead Framework - the Historian system. Two use
cases involving the Event Handler system are described

978-1-5090-2339-4/16/$31.00 ©2016 IEEE

(Section V): the management of application faults, and the
support to quality of service of orchestrated services [6].

The paper starts with some background information on the
Arrowhead framework, and on the publish/subscribe paradigm
(Section 1II). Then Section III describes the applications
scenario for the Event Handler, and in Section IV a detailed
review of the services provided by the Event Handler is given.
Section V wraps up the paper with a final discussion on the
advantages of the Event Handler approach, and future work.

II. BACKGROUND INFORMATION

A. Arrowhead

The Arrowhead framework implements a Service Oriented
Architecture approach by supporting local cloud automation
functionalities [7] and offering a number of services that ease
application development, among which discovery of services,
loosely coupled data exchange between producer and consumer
services, security-related services and orchestration of services.

The Arrowhead Framework offers the above mentioned
functionalities through the definition of three groups of Core
Services, Information Assurance services (IA), Information
Infrastructure services (II) and System Management services
(SM). It defines three mandatory systems, one belonging to
each one of the three groups: Service Discovery (SD),
Authorization and Authentication (AA) and Orchestration (O),
to provide the services mentioned above. The SD system is
used to allow service consumers to find the address of
registered service producers. The AA system is used to
authenticate and provide authorization for connections between
services. The O system is used to determine the service
producers that match specific criteria, e.g. choosing between
services producers serving in the same geographical area where
the service consumers are located. It is also responsible for the
negotiation of QoS and keeping track of the system
configuration. An example of its usage pertaining to home
automation scenarios involves determining which services are
capable of providing temperature readings in a house and to
dynamically connect systems that need such kind of services
with the most adequate providers of the service (e.g. according
to the sensitivity of the readings).

Distributed applications involving systems and services can
be visualized as systems of systems, which support the

distributed application. In the case of Arrowhead, the system of
systems is structured in Local Clouds, which logically contain
a set of application systems, and at least the set of mandatory
core systems. Local Clouds can be supported by a single
network infrastructure, where all nodes use the same
technology, or by more complex infrastructure that includes
multiple network technologies. The air-conditioning systems of
a factory, composed by several temperature, humidity and dust
sensors, air-conditioning devices and displays is a good
example of a local cloud. The local cloud can be fully or only
partially controlled by the Arrowhead framework.

Using this set of systems and their services, it is
straightforward to design and implement a minimal local
automation cloud. Fig. 1 shows an example which only shows
the connection between application services (depicted in
yellow). The application services are also consumers of the
core services, depicted in red, green and blue.

Core systems

[

<]
> o— =
sf >48
=L 15
S < ci8
gL_O)i ﬂ{
= §

ITI Arrowhead Cloud
=] ——

Application
system

\

Figure 1 - Arrowhead application supported by the core services

The set Core Services offered by the Arrowhead framework
is getting expanded, and new support systems are being
developed, to be used together with the mandatory ones by the
application systems. The set of support systems comprises the
Historian and Configuration Manager, which carry obvious
names. This paper focuses a new support system, the Event
Handler system, which enriches the communication paradigms
available to the application systems with Publish/Subscribe.

B. Publish/Subscribe communication

A limitation of SOA systems is that communications are
based on a client/server paradigm, leading to a strong coupling
of the involved parties. The Core Services of Arrowhead are
usefully in facilitating the communication process, but there are
scenario that need a stronger level of decoupling, in terms of
space, time and synchronization [8]. Space decoupling means
that publisher and subscriber do not need to be aware of each
other’s location or identities. Time decoupling means that
publisher and subscriber do not need to be online and actively
collaborating in the interaction at the same time.
Synchronization decoupling allows asynchronous notification
of subscribers by using event services callbacks.

A message broker, in our case the Event Handler system
acts as an intermediary between the event producer and the
event consumer, and leads to a paradigm providing
asynchronous and highly scalable = many-to-many
communication model [9].

III. ARCHITECTURE OF THE SYSTEM OF SYSTEMS

The scenario enabled by this work is based on the
introduction of the Event Handler system in the system of
systems where distributed applications are being executed. The
interacting systems are associated to the roles of event
producers and consumers.

cmp Event Handler System /

Event Consumer 1

g oy

Event Handler

S:|—CO—

Event Producer

4037

Event Consumer 2

!
[

Historian System

Figure 2 — Event Handler components

The Event Handler system provides functionalities for the
notification of events that occur in a given Arrowhead
compliant installation. It receives events from Event Producers
and forwards them to subscribing Event Consumers (Fig. 2).
The following list details the main actors for such a system and
their roles: Event Producer is the component that creates an
event and sends it to the Event Handler; Event Handler is the
component that logs events to persistent storage, registers
producers and consumers of event, applies filtering rules to
event distribution; Event Consumer is the component that
consumes the events, forwarded by the Event Handler;
Historian service is an optional component used to store
historical data on the events.

Depending on the context, an event can represent an
exceptional occurrence on a particular system (e.g.: a value of a
variable that reaches a critical level), or a simple change of
state. Each event is classified according to a number of fields
that represent the event’s meta-data. An example of meta-data
is the severity level of the event, which can hold the values:
Debugging - information collected for debugging purposes;
Info - tracing program execution: input/output data, changes in
tagged variables, etc; Notification - state changes, execution of
functions, etc; Warning - hint that “something might go
wrong” in the near future; Error - malfunction in the system,
application failure; Critical - severe malfunction of the system,
which needs human intervention to continue its operation.

The Event Handler system has the intelligence of applying
filtering rules to incoming events, based on the meta-data of the
event (e.g.. severity level of the events), the system that
produced the event, etc, to restrict the forwarding to the Event
Consumers of events that are of their interest only.

Another function performed by the Event Handler is the
storage of information regarding events, for future access. It
occurs either on a filesystem local to the Event Handler system,
or on a DB — which can be co-located with the Event Handler
or on remote computer, or through a Historian service, which is
another Arrowhead service used to store data [10].

Since the communication is service oriented, the Event
Handler system receives feedback from the consumer

Ewent Handler

sd regis e riystem s
1 |

Ewvent Producer
| regiseConsumer(uid, consemeDas) |

Subsibert

1

1

1

| |
|

1 add Consumeruid, con=merDats)
: ack): Repaonse

|

1

1

1

i

1
e gi serProdu cer(uid, producerData) !
Lo

Datsba= | Filz |
Hisionan

Submriberd \

nf{=went)

: 3

soreEvenimstadat)

|

|

|

|

|

add Produ cenjuid, producerDats) I

|

- ok Respon =) |
g |
|

I |

1 |

loop 1 |
— publishEventievent | I
I

] ; Iapphfl-'-ltar{emrt} |

|

|

not HEventizvent) [I

|

notifyE =

T

|

|

|

f

|

acK): Respons I

|

|

|

|

i

B
&
=

Sy S BT ittt g (O it e LT b Ot B e o L

Figure 3 - Interactions between the systems

regarding the correct delivery of an event. When the Event
Handler system does not receive positive feedback - or no
feedback at all - it can consider that the event was lost. In this
case, the Event Handler logs regarding the event indicate that
the event was not delivered to the specific consumer;
moreover, the Event Handler can generate an event - routed
through itself - to parties interested in event delivery faults.

To implement these goals, the Event Handler workflow is
enriched with a storage step, as described in Fig. 3. A number
of Producers and Consumers register themselves, afterwards
the producers send events to the Event Handler, which
computes which consumers should receive the event, routes the
event, and dumps the event on a storage area together with
information regarding which subscribers received the event

IV. STRUCTURE OF THE EVENT HANDLER SERVICES

In the paradigm of Arrowhead, which is based on services,
the structure of a distributed application is necessarily based on
the description of the services it consumes and produces.

The Event Handler concept is built on 4 services — the
Registry, Publish, Notify and GetHistoricalData services — that
define all the operations that are performed in the context of the
extension of the Publish/Subscribe paradigm to the SOA world.

The Event Handler Registry service is offered by the Event
Handler system in order to store and keep track of all the
consumers and producers in the system of systems. If a
consumer wants to receive events, or a producer wants to

publish events, they need to register through this service. In
particular, at registration time the producer advertises the kind
of events it produces; the consumer specifies the filtering rules
regarding incoming events by defining a set of conditions that
are applied to all incoming events, to compute which
subscribers will receive each event. This service is also used to
retrieve information on registered systems.

The Publish service and Notify service are used to deliver
data regarding the events. A producer system accesses the
Publish service of the Event Handler to provide the events it
produces. The Event Handler computes which consumers must
receive the event, and then accesses the Notify service of each
selected consumer, to provide to it the incoming event. Direct
consequence of this approach is that each event consumer must
be a service provider, to allow the Event Handler to contact it
when the latter has events to deliver.

The GetHistoricalData service applies filtering rules to
permanently stored events (in a database, log file or through the
Historian) and returns data regarding events. The service
receives a Filter data type, which is analogous to the filter used
when events are considered for delivery to event consumers.
The returned data concerns the event under inspection, all the
consumers that were contacted regarding the event on the first
place, and whether each consumer received it or not.

V. SAMPLE APPLICATIONS

Two different use cases of the Event Handler system are
described here, demonstrating which compose its

functionalities with other Arrowhead services to close the
circle on SOA embedded applications.

A. Management of Faults

The management of abnormal states for distributed
applications can be tricky in the SOA world, since it involves
providing a number of custom interfaces to allow other systems
to collaborate in identifying application faults. The Event
Handler is thus a storage point for logs regarding faults, and a
routing element to allow monitoring system to receive online
communications regarding faults from application services.

The example in Fig. 4 regards a temperature sensor whose
data is being consumed concurrently by two applications. The
sensor uses the Event handler to inform both applications that a
fault has been detected, and to log fault details on a database.

Sensor fault - :
Application 1
Sensor fault

sensor

Sensorfault |
Application 2

Figure 4 — QoS Monitor building blocks

B. Support QoS through Orchestration Push

In Arrowhead-enabled applications, service consumers can
ask for QoS regarding service fruition through the Orchestrator
system, which provides a matching engine between the
requirements set by the service consumer and the capabilities
stated by the service producer and the network connecting
them. In this context, monitoring QoS can represent an
excessive hurdle for service consumers, since these latter
systems would need to provide means to receive asynchronous
notification regarding QoS performance. An alternative is to
connect a system performing the monitor of the QoS to the
Orchestrator, via the Event Handler system.

QoS Manager System

Figure 5 — QoS Monitor building blocks

Every time that the QoS is not respected, the QoS monitor
will produce events, and the Orchestrator will receive them
since it registers itself to the Event Handler every time it
provides orchestrated services to a service consumer. Thus, the
Orchestrator will be able to recognize the need to change the

configuration of the System-of-systems on the fly. To this aim,
the Orchestrator subscribes to QoS-faults messages, performs
computation of a new configuration and pushes these changes
to involved service consumers — every time QoS is not
respected. Fig. 5 depicts the scenario discussed above.

VI. CONCLUSIONS

The Event Handler system proved to be a feasible solution
to the problem of monitoring system events and conveying
them to interested parties in a SOA scenario. In a more general
sense, this paper provided an outline regarding the extension of
publish/subscribe mechanisms to SOA applications.

Future work regards the measurement of the benefits
provided by the Event Handler system, performed on real
application scenarios. To this aim, both application services
and core services in Arrowhead local clouds are getting
integrated with the proposed system, to use its capabilities to
manage events.

ACKNOWLEDGMENTS

This work was partially supported by National Funds through FCT/MEC
(Portuguese Foundation for Science and Technology) and co-financed by
ERDF (European Regional Development Fund) under the PT2020 Partnership,
within the CISTER Research Unit (CEC/04234); also by FCT/MEC and the
EU ARTEMIS JU within project ARTEMIS/0001/2012 - JU grant nr. 332987
(ARROWHEAD); and by the European Union under the H2020 Framework
Programme (H2020-EE-2014-2015), EU ECSEL JU grant agreement nr.
662189 (MANTIS).

REFERENCES

[1] Arrowhead Project, Enabling Collaborative Automation by Networked
Embedded Devices, online at: http://www.arrowhead.cu/

[2] Derhamy, H., Eliasson, J., Delsing, J. and Priller, P., A survey of
commercial frameworks for the Internet of Things. In Emerging
Technologies & Factory Automation (ETFA), 2015 IEEE (pp. 1-8).

[3] Ferreira, L.L., Siksnys, L., Pedersen, P., Stluka, P., Chrysoulas, C., Le
Guilly, T., Albano, M., Skou, A., Teixeira, C. and Pedersen, T.,
Arrowhead compliant virtual market of energy. In Emerging Technology
and Factory Automation (ETFA), 2014 IEEE (pp. 1-8).

[4] Desdouits, C., Alamir, M., Boutin, V. and Le Pape, C., Multisource
elevator energy optimization and control. In Control Conference (ECC),
2015 European (pp. 2315-2320).

[5] Rosen, Michael, Boris Lublinsky, Kevin T. Smith, and Marc J. Balcer.
Applied SOA: service-oriented architecture and design strategies. John
Wiley & Sons, 2012.

[6] Albano, M., Garibay-Martinez, R. and Lino Ferreira, L., Architecture to
Support Quality of Service in Arrowhead Systems. INForum-Simposio
de Informética (INFORUM 2015).

[7] Colombo, A.W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka, P.,
Harrison, R., Jammes, F. and Lastra, J.L., 2014. Industrial cloud-based
cyber-physical systems. The IMC-AESOP Approach.

[8] M. Albano, L.L. Ferreira, L.M. Pinho, A.R. Alkhawaja, “Message-
oriented middleware for smart grids”, Computer Standards & Interfaces
(2015), vol.38, pp. 133-143, Elsevier, DOI 10.1016/j.cs1.2014.08.002

[91 P. T. Eugster, P. Felber, R. Guerraoui, A-M. Kermarrec, “The Many
Faces of Publish/Subscribe”, ACM Computing Surveys 35(2), 2003, pp.
114-131

[10] Pereira, Pablo Punal, Jens Eliasson, and Jerker Delsing. "An
authentication and access control framework for CoAP-based Internet of
Things." In Industrial Electronics Society, IECON 2014-40th Annual
Conference of the IEEE, pp. 5293-5299. IEEE, 2014.

