

High-performance parallelisation of real-time
applications

Conference Paper

CISTER-TR-170203

Luís Miguel Pinho*

Vincent Nélis*

Eduardo Quinoñes

Paolo Burgio

Andrea Marongiu

Paolo Gai

Juan Sancho

Conference Paper CISTER-TR-170203 High-performance parallelisation of real-time applications

© CISTER Research Center
www.cister.isep.ipp.pt

1

High-performance parallelisation of real-time applications

Luís Miguel Pinho*, Vincent Nélis*, Eduardo Quinoñes, Paolo Burgio, Andrea Marongiu, Paolo Gai, Juan
Sancho

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

This paper presents an overview of theP-SOCRATES methodology and tools, instantiated in theUpScale SDK
(Software Development Kit) for the development oftime-predictable high-performance applications. The
proposedmethodology was designed to provide an integrated SDK to fullyexploit the huge performance
opportunities brought by the mostadvanced many-core processors, whilst ensuring a predictableperformance and
maintaining (or even reducing) developmentcosts of applications. The paper also provides the performanceresults
of the application of the SDK in relevant embedded usecases.

www.embedded-world.eu

High-performance parallelisation of

real-time applications

Luís Miguel Pinho, Vincent Nélis

School of Engineering of the

Polytechnic of Porto (ISEP)

Portugal

{lmp,nelis}@isep.ipp.pt

Andrea Marongiu

ETH Zurich

Switzerland

a.marongiu@iis.ee.ethz.ch

Eduardo Quinoñes

Barcelona Supercomputing Centre

Barcelona, Spain

eduardo.quinones@bsc.es

Paolo Gai

Evidence Srl

Italy

pj@evidence.eu.com

Paolo Burgio

University of Modena

Italy

paolo.burgio@unimore.it

Juan Sancho

ATOS

Spain

juan.sancho@atos.net

Abstract—This paper presents an overview of the

P-SOCRATES methodology and tools, instantiated in the

UpScale SDK (Software Development Kit) for the development of

time-predictable high-performance applications. The proposed

methodology was designed to provide an integrated SDK to fully

exploit the huge performance opportunities brought by the most

advanced many-core processors, whilst ensuring a predictable

performance and maintaining (or even reducing) development

costs of applications. The paper also provides the performance

results of the application of the SDK in relevant embedded use-

cases.

Keywords—high-performance; real-time; parallelisation

I. INTRODUCTION

Nowadays, the prevalence of electronic and computing
systems in our lives is so ubiquitous that it would not be far-
fetched to state that we live in a cyber-physical world
dominated by computer systems. All these systems demand for
more and more computational performance to process large
amounts of data from multiple data sources, and some of them
with guaranteed processing response times. In other words,
systems required to deliver their results within pre-defined (and
sometimes extremely short) time bounds. Examples can be
found for instance in intelligent transportation systems for fuel
consumption reduction in cities or railway, or autonomous
driving of vehicles.

The computer electronic devices on which these systems
depend on are constantly required to become more and more
powerful and reliable. In order to cope with such performance
requirements, chip designers have started producing chips with
dozens or hundreds of cores, interconnected with complex
networks on chip. This radical shift in the chip design paved

the way for parallel computing: rather than processing the data
sequentially, the cooperation of multiple processing elements
within the same chip allowed systems to be executed
concurrently, in parallel.

Unfortunately, the parallelization of the computing
activities brought upfront many challenges, because it affects
the timing behavior of systems as well as the entire way people
think and design applications. Therefore, although many-core
processors are promising candidates to improve the
responsiveness of these systems, the interactions that the
different computing elements may have within the chip, can
seriously affect the performance opportunities brought by
parallel execution. Moreover, providing timing guarantees
becomes harder, because the timing behavior of the system
running within a many-core processor depends on non-explicit,
unwanted interference on shared resources (e.g., caches,
memory banks), most of the time not know by the system
designer. This makes system analysts to be struggled trying to
provide timing guarantees for such platforms. Finally, most of
the optimization mechanisms buried deep inside the chip are
geared only to increase average performance and execution
speed rather than providing predictable time behavior.

P-SOCRATES (Parallel Software Framework for Time-
Critical Many-core Systems) [1] was a European project,
which has developed a novel methodology to facilitate the
deployment of standardized parallel architectures for real-time
applications. This methodology is implemented (based on
existent models and components) to provide an integrated
software development kit to fully exploit the huge performance
opportunities brought by the most advanced many-core
processors, whilst ensuring a predictable performance and
maintaining (or reducing) development costs of applications.

The paper provides an overview of the P-SOCRATES
methodology and tools (the UpScale Software Development
Kit), as well as the results of its application on relevant
embedded use-cases. This evaluation showcases that the
integration of time-predictability in the design methodology
and software stack is performed without average performance
loss and with similar energy consumption.

II. THE P-SOCRATES METHODOLOGY

P-SOCRATES considered a holistic approach [2] with a
complete and coherent software system stack, able to bridge
the gap between application design and hardware many-core
platform (Figure 1). The project combined a parallel
programming framework with real-time techniques and
operating systems.

Fig. 1. P-SOCRATES holistic approach

The use of parallel programming models is fundamental to
exploit the performance out of parallel architectures and
provide good programmability (and so productivity) of high-
performance systems. Among the different models, OpenMP
[3] has become one of the most used parallel programming
models due to its simplicity and scalability in shared memory
systems such as current many-core processors. OpenMP
defines task annotations to represent independent units of work
that can run concurrently. It also provides directives to define
data dependencies between the tasks and more recently an
offloading model where a part of the code can be offloaded to
an accelerator.

The model of the project considers real-time applications
with multiple real-time concurrent activities. Each one of these
is a recurrent loop of real-time jobs. Each job starts executing
in one core, and then offloads the computational intensive parts
to a many-core accelerator cluster.

High-performance parallel frameworks (Figure 2) base
scheduling decisions on information available at run-time – i.e.,
the task dependency graph and processor resources availability
– which makes it difficult to provide real-time guarantees. The
reason is that the way tasks use shared processor resources
determines the interferences that different tasks will suffer
when accessing them, affecting the overall execution time of
the application. A different usage of processor resources will
result in a different execution.

Fig. 2. High-performance computing approach

Fig. 3. P-SOCRATES apporach to extract information at design-time

In order to provide real-time guarantees without
performance degradation, it is required to statically identify at
design time which run-time configuration is needed, so the
usage of shared processor resources is fixed and time
guarantees can be provided (Figure 3). Therefore, it is of
paramount importance to recover, at design time, relevant
information to fix the usage of processor resources and so
provide timing guarantees. Figure 4 shows these two extremes
on a spectrum of potential solutions – the more we fix the
usage of the system resources, tighter analysis can be provided,
thus increasing guaranteed performance. However, caused by
preventing dynamicity, average performance is decreased.

Fig. 4. Performance vs. predictabiltiy spectrum

The approach of the project is thus to, at compile time,
extract a Direct Acyclic Graph of the data-flow and control-
flow dependencies between the OpenMP tasks. This graph is
extended to consider OpenMP task parts, which is task code
executed between two task scheduling points. At compile-time,
if all information is recovered, one could potentially provide
tight execution bounds. Unfortunately, not all information can
be recovered at compile time as there is information only

www.embedded-world.eu

available at run-time. This is the case, for instance, of data
dependencies based on pointers, variable values or loop
boundaries. In case the data-dependency cannot be solved or
loop boundaries are not known at compile-time, it is required
to consider conservative approaches in order to guarantee the
functional correctness of the program. Thus, if there is an
unknown data-dependency, the construction of the graph must
consider that this data-dependency exists. Similarly, if a loop
boundary is unknown, it is required to determine an upper
bound of the maximum number of loop iterations [4].

Afterwards, a new timing analysis approach is used to
annotate these task parts with worst-case execution time
estimates. The WCET estimates are based on a measurement-
based approach, considering that the WCET of an OpenMP
task is based on the sum of two terms: the first one is its
intrinsic execution time, i.e. the time it spent executing the
instructions of the code, whereas the second part is due to the
stalling time, i.e. the time spent by the analyzed code waiting
for a shared software or hardware resource to become
available. This information is then used by the mapping and
scheduling algorithms [5] to properly select the most suitable
resource allocation strategies.

Two resource allocation approaches are considered. In the
dynamic approach, OpenMP task-to-thread mapping is based
on a global queue, and thread scheduling is also global within
one parallel cluster, allowing migrations. This allows to
achieve higher performance (with load balancing) but with
more complex and pessimistic response time analysis. In the
second configuration, a mapping algorithm statically builds the
required run-time configuration, efficiently assigning tasks-to-
threads in order to guarantee timing requirements. Thread
scheduling uses a partitioned per-core scheduler. Note that in
both cases the scheduling approach is based on a limited
preemptive model, which only allows preemption at OpenMP
task scheduling points, reducing cache invalidations issues.

III. THE UPSCALE SDK

The UpScale Software Development Kit (SDK) [6]
incorporates all software components required to execute, in an
efficient and time predictable way, a system composed of real-
time tasks, which internally use the OpenMP tasking model for
acceleration.

Fig. 5. UpScale SDK

Figure 5 shows the SDK components described below:

 Compiler flow. This component: (1) generates the
binary application image that will execute on the many-
core accelerator and (2) generates the application Direct
Acyclic Graph (DAG) used for the timing analysis and
run-time components.

 Analysis flow. This component is in charge of deriving
timing guarantees of the parallel execution considering
execution time traces of the application running on the
many-core platform and incorporated in the DAG.
Timing guarantees are derived by means of execution
time bounds and static scheduler or dynamic scheduler
supported with response time analysis.

 Execution stack. In charge of orchestrating the parallel
execution of the application in a time predictable
manner, based on the DAG.

The compiler flow, orchestrated by the Mercurium source-
to-source compiler [7], is in charge of compiling each of the
OpenMP applications that compose the system. Moreover, the
compiler will generate a Direct Acyclic Graph (DAG) of the
control-flow and data-flow dependencies of the OpenMP tasks
of the application, referred to as OpenMP-DAG, including all
the information required to perform the timing and
schedulability analysis.

The Analysis flow, orchestrated by the Analyzer, based in
the QuickTrace tool [8], is in charge of annotating each DAG
node with estimates of worst-case execution time (WCET),
with the methodology referred in Section I, feeding a
schedulability analysis tool, which is able to provide the timing
guarantees to the applications.

The execution stack is composed by a Real-Time Operating
System (RTOS) and runtime library that synergistically
orchestrate the parallel execution in a time predictable manner
as estimated by the analysis flow. It consists of a lightweight
OpenMP runtime implementing the OpenMP tasking model
[9], on top of the ERIKA real-time operating system [10]. The
execution stack can be configured in one of the two approaches
(dynamic and static) presented in Section I.

This SDK is released open source, under commercial-
friendly open source licenses.

IV. EVALUATION

The methodology and SDK has been evaluated over three
use case applications defined in the project, two in the
embedded domain, which are presented in this paper. The SDK
has been used in order to enhance the parallelization strategies
applied to the applications, and a round of evaluations has been
done to compare the performance against other software
setups, in particular when a non-sequential strategy is followed
or using the standard SDK provided by the manufacturer.

A. Setup

The hardware board used during the experiments is the
Kalray Bostan MPPA [11], which is the second generation of
Kalray’s manycore processor family. Bostan brings an ASIC-
level of performance (high computing, low power consumption

PE	
PE	

PE	
PE	

PE	
PE	

PE	
PE	

PE	
PE	

PE	
PE	

PE	
PE	

PE	
PE	

PE	
PE	

PE	
PE	

PE	

PE	

Real- me	OS	

OpenMP	run me		

libraries	

Sched
uler	

Map

per	

PE	

PE	

Timing	&	
sched	
analysis	

Run- me	tracing	

Compi
ler	

DAG	Genera on	

OpenMP	

source-

code	

Compiler	Flow	

Analysis	Flow	

Execu on	Stack	

and real-time processing) with full programmability. Bostan
runs 288 C/C++ programmable cores, optimized for
networking and storage applications, and includes high speed
interfaces like 80GE and PCIe x16 lane Gen3 directly
connected to the large matrix of 288 cores and 128 crypto co-
processors, whose core is a 64-bit Very Long Instruction Word
(VLIW).

The processor is divided into clusters: 4 clusters which
have more powerful cores, intended to perform the input-
output with the outside (IO cores) and 16 computing clusters,
each with 16 “working” cores. In the model considered in the
project, applications start executing in the IO cores, and offload
parallel computation into the computing clusters. A major
restrictive factor of this model is that each cluster only provides
2Mb of local memory. This impacts in the parallelization
strategies used.

The hardware manufacturer provides its own development
environment for this board, the Kalray AccessCore™ SDK,
providing a standard C/C++/Fortran based environment
including all the tools to quickly develop, debug, and optimize
high-performance applications for the MPPA processor.

Three different SW setups were used to evaluate the use
case applications:

 Sequential – In sequential mode the application does
not take advantage of the many-core architecture
embedded in the Kalray board. On the contrary, the
application does not spawn any cluster cores, leveraging
the execution just to one core (IO core in the Kalray
nomenclature).

 Parallel Kalray baseline – In baseline mode the
application has been parallelized using the annotations
and instructions provided by the HW manufacturer,
using the Kalray AccessCore SDK 2.2.2. In one of the
use cases it was also possible to compare with a low-
level thread-based parallel baseline.

 Parallel P-SOCRATES – The consortium ported the
SDK to the Kalray Bostan MPPA board. The evaluation
focus is on the use of the SDK with a dynamic
scheduling approach, where better average performance
is expected, due to the higher adaptability.

B. The Infra-red application use case

The first use case is a computational intensive part of an
application for pre-processing sampling of infra-red H2RG
detectors in satellites [12]. The infra-red application, developed
by the ESA under the license GPL, is for the Euclid spacecraft,
whose objective is to better understand the geometry of dark
energy and dark matter by measuring the red-shift of galaxies
at varying distances from Earth. The computational intensive
part is composed of seven stages (Figure 6) executed
sequentially, i.e. one after the other, within a loop iterating
given number of times.

These processing steps require different memory
requirements, ranging from 8 to 48.5 Mb. The memory
consumed by the application makes it impossible to be
processed in a single MPPA cluster. The stages must be
executed in order because the same frame is processed among

the different stages. Hence, we use a wave-front parallelization
strategy, in which the frame is divided in N × N blocks,
assigning each of them to a different task.

Fig. 6. Structure of infra-red application use case

Fig. 7. Parallel decomposition of the infra-red application use case

Ideally, for each stage, the computation of each block
would be assigned to a different task. Unfortunately, the data-
flow defined by the infra-red application, as well as the
requirements of some of the stages (which need to process all
of a column or the full frame) makes it not possible. Overall,
assuming that the sensor frame is divided in 64 blocks, we can
distinguish between four different execution phases executed
one after the other and summarized as follows (Figure 7):

 During phase 1, 16 parallel executions on clusters are
offloaded, each processing 4 blocks in parallel with the
three first processing stages.

 During the cluster phase 2, 8 parallel execution on
clusters are offloaded, each processing 8 blocks
(corresponding to 1 frame column) sequentially by the
fourth stage.

 During the IO phase, the complete frame is processed
in a single IO core in the fifth stage (requires all
frame).

 During the cluster phase 3, 64 executions on clusters
are offloaded (being able to execute only 16 in
parallel), each processing 1 block with the two last
stages in the loop.

 Finally, once the stages within the loop finish, the
cluster phase 4 offloads 64 executions on clusters
(being able to execute only 16 in parallel), each
processing 1 block by the final function.

www.embedded-world.eu

Table I provides the performance evaluation of the use
case. It compares the average execution time, the maximum
observed execution time, (also known as high water-mark in
the critical real-time embedded domain) and the standard
deviation of the infra-red application in milliseconds (ms),
when parallelizing the application using both the native Kalray
SDK, and the SDK developed within the project.

The execution time measurements presented have been
obtained by executing the application 100 times. We consider
that the loop iterates 5 times (#Groups = 5). We consider the
observed execution time of the end-to-end execution of the
application (labelled as TOTAL), and each of the execution
phases within one loop iteration as presented (labelled as
Cluster Phase 1, Cluster Phase 2, IO Phase, Cluster Phase 3 and
Cluster Phase 4). The initialization and end phase of the
application are not accounted for.

The table compares the average performance and the
performance speed-up, considering as a baseline the execution
time of the sequential version of the application executed in
one IO core. The table also presents the maximum theoretical
speed-up that the MPPA can exhibit. This maximum
theoretical speed-up corresponds to the number of cores that
can potentially execute in parallel.

TABLE I. PERFORMANCE EVALUAITON OF INFRA-RED USE CASE

The infra-red application achieves similar performance
speed-ups when parallelizing and executing the application by
using the Kalray SDK and the P-SOCRATES SDK, with 7.1x
and 6.9x respectively. This speed-up however, is very far from
the theoretical one (256x) due to the very limited parallelism
exposed by the application in each of the execution phases.

When analyzing each of the execution phases, speed-ups
are similar for the Kalray and P-SOCRATES SDKs, with
speed-ups of 16.7x and 18x during the first cluster phase, 3.8x
and 4.7x during the second phase, 10.6x and 9.7x during the
third phase and 4.0x and 3.3x during the fourth phase. The
theoretical speed-up accounts for the maximum number of
cores that can be used in each phase. Thus, in the first phase
executions are spawned across the 16 clusters, each using up to
4 cores, and so 16*4 = 48. It is important to note that the speed-
up also accounts for the impact of transferring code and data at
every offloading and the overhead of the OpenMP run-time,
very similar in both the Kalray and P-SOCRATES SDKs.

Overall, the P-SOCRATES SDK does not degrade the
average performance speed-up, being comparable to the MPPA
native SDK.

Table II shows the average power (in W) and the energy
consumption (in J) of the infra-red application when executing
it sequentially (in one IO core) and in parallel, using the Kalray
native SDK and the project SDK. The average power measured
in both MPPA and P-SOCRATES SDK are very similar,

resulting in similar energy consumptions. It is important to note
that numbers presented in the table have been obtained with the
k1-power tool provided by Kalray, and so the execution time
values differ from the ones obtained in the previous table
which are measured with instrumented code.

TABLE II. ENERGY EVALUAITON OF INFRA-RED USE CASE

C. The Complex Event Processing Engine use case

A Complex Event Processing (CEP) engine can be briefly
described as a software solution to collect raw data streams,
process them, and derive meaningful value-added information
to a third party. The pCEP (parallel Complex Event
Processing) is a parallel implementation of the lightweight
µCEP of Atos [13], ported to the MPPA architecture.

The architecture of the pCEP is composed by three main
elements (Figure 8). The Event Collector module responsible
for acquiring data from external sources and converting them
into Events; the output is the responsibility of the Complex
Event Publisher module. The core of the solution is the
Complex Event Processor module, which entails the case study
of the work. In brief, as depicted in Figure 8, this module
receives Events that trigger rules (conditions) and output
Complex Events, both being previously specified. Those rules
invoking complex functions make use of the Instruction
Evaluator sub-module, which is the part of the pCEP with the
most demanding and time consuming features. Particularly, the
Complex Event Processor module has been rewritten to offload
to the accelerator devices the catalogue of complex functions
that can be used.

Fig. 8. Structure of the pCEP

Initial experiments have shown that, as expected,
parallelizing the functions was only relevant if
computational intensive. Therefore, the evaluation was
performed with a complex function which implements a Fast
Fourier Transform (FFT) algorithm on a buffer of events.

Following the same procedure as for the previous use
cases, Table III compares the average execution time and the
maximum observed execution time of the pCEP engine
when it is executed with a list of events that trigger rules

invoking the execution of this complex function. This
implies spawning to compute clusters and offloading
parallel executions of the complex functions on the
accelerator devices. Sequential vs. native Kalray SDK vs.
project SDK versions are compared.

TABLE III. PERFORMANCE EVALUAITON OF PCEP USE CASE

For each input event, we launched the execution of a set
of 256 FFTs of 512 elements. Since the usage of different
number of threads changes the performance, also the
experiment cases using from 1 up to 256 parallel tasks in the
same cluster have been evaluated. Results show that
performance improvement (speed-up against sequential) is
achieved (stabilizing when the cluster is saturated). The
speed-up increases when the number of tasks grows,
achieving the best performance (speed-up x16) when using
16 tasks or more, since all the threads available in the
clusters are used.

Fig. 9. Power consumption of the pCEP application

Fig. 10. Energy consumption of the pCEP application.

Following the same methodology as in the previous use
case, we obtain the power and energy consumption of the
accelerator using the ‘k1-power’ tool provided by Kalray. The
power consumption remains quite constant for all the analyzed
cases, with values around 7 to 8 Watts (Figure 9). Because the
execution time decreases with the number of tasks used,

especially with the P-SOCRATES implementation, it is in
those cases that the energy consumption is significantly slower
(see Figure 10).

V. CONCLUSIONS

Integrating time-predictability in high-performance
embedded computing is of paramount importance to cope with
the requirements of future real-time applications. However, this
integration brings difficult challenges that need to be addressed
since high-performance hardware and software stacks are not
designed for predictability.

The P-SOCRATES project tackled this important challenge
by devising a methodology and a Software Development Kit
(the UpScale SDK) that allows to reason on the timing and
schedulability analysis of real-time high-performance
applications. Furthermore, the project evaluation shows that the
dynamic configuration of the software stack, allows to achieve
the same average performance and energy consumption than
the default SDK of the considered platform.

ACKNOWLEDGMENT

The work in this paper has been financially supported by
the European Commission through the PSOCRATES project
(grant agreement 611016).

REFERENCES

[1] P-SOCRATES Project, http://www.p-socrates.eu, last accessed January
2017.

[2] Pinho, L, Nélis, V, Yomsi, P, Quiñones, E, Bertogna, M, Burgio, P,
Marongiu, A, Scordino, C, Gai, P, Ramponi, M, Mardiak, M, "P-
SOCRATES: A parallel software framework for time-critical many-core
systems", Microprocessors and Microsystems, Elsevier. Nov 2015.

[3] OpenMP Consortium, OpenMP Specification. http://www.openmp.org/
wp-content/ uploads/openmp-4.5.pdf, last accessed January 2017.

[4] AbsInt Corp. aiT WCET analyser, http://www.absint.com/ait/, last
accessed January 2017.

[5] M. A. Serrano, A. Melani, M. Bertogna and E. Quinones, "Response-
time analysis of DAG tasks under fixed priority scheduling with limited
preemptions," 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), Dresden, 2016, pp. 1066-1071.

[6] UpScale SDK, htttp:www.upscale-sdk.com, last accessed January 2017.

[7] BSC, Mercurium source-to-source compiler, https://pm.bsc.es/mcxx, last
accessed January 2017.

[8] Nélis, V, Pinho, L, "Using Quicktrace to collect runtime execution traces
easily and automatically", RTSS@Word Demo Session, IEEE Real-
Time Systems Symposium (RTSS 2015). 1 to 4, Dec, 2015. U.S.A..

[9] D. Cesarini, A. Marongiu and L. Benini, "An optimized task-based
runtime system for resource-constrained parallel accelerators," 2016
Design, Automation & Test in Europe Conference & Exhibition
(DATE), Dresden, 2016, pp. 1261-1266.

[10] ERIKA Enterprise, http://erika.tuxfamily.org/, last accessed January
2017.

[11] Kalray, MPPA Processor, http://www.kalrayinc.com/kalray/products/,
last accessed January 2017

[12] ESA, NIR HAWAII-2RG benchmark, http://www.esa.int/

Our_Activities/Space_Engineering_Technology/Onboard_Data_Process

ing/General_Benchmarking_and_Specific_Algorithms, last accessed

January 2017.

[13] A. Akbar, F. Carrez, K. Moessner, J. Sancho, J. Rico, “Context-aware
stream processing for distributed IoT applications”, 2015 IEEE 2nd
World Forum on Internet of Things (WF-IoT),
http://ieeexplore.ieee.org/document/7389133/

 Execution time (secs.) Speed-Up

Tasks Sequential
Kalray
SDK

P-Socrates
SDK

Kalray
SDK

P-Socrates
 SDK

 135,65

1

152,77 131,45 0,89 1,03

2 76.28 65,73 1,78 2,06

4 38,01 32,82 3,57 4,13

8 18.99 16,41 7,14 8,27

16 9,53 8,29 14,24 16,37

32 9,53 8,29 14,24 16,36

64 9,53 8,29 14,24 16,37

128 9,53 8,28 14,24 16,37

256 9,53 8,29 14,24 16,37

6,00

6,50

7,00

7,50

8,00

8,50

1 2 4 8 16 32 64 128 256

Tasks

Power consumption (W)

Kalray SDK P-Socrates SDK Sequential

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1 2 4 8 16 32 64 128 256

Tasks

Energy consumption (J)

Kalray SDK P-Socrates SDK Sequential

