

Online Intra-Task Device Scheduling for
Hard Real-Time Systems

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-120602

Version:

Date: 06-05-2012

Muhammad Ali Awan

Stefan M. Petters

Technical Report HURRAY-TR-120602 Online Intra-Task Device Scheduling for Hard Real-Time Systems

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Online Intra-Task Device Scheduling for Hard Real-Time Systems
Muhammad Ali Awan, Stefan M. Petters

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power
saving mechanisms, inter alia to enhance battery life. While I/O device scheduling has been studied in the past for real-
time systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are
crafted considering a very large overhead of device transitions. Technology enhancements have allowed the hardware
vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling
algorithm for real time systems that allows to shut-down devices while ensuring system schedulability. Our results show
an energy gain of up to 90% when compared to the techniques proposed in the state-of-the-art.

Online Intra-Task Device Scheduling for Hard
Real-Time Systems

Muhammad Ali Awan Stefan M. Petters
CISTER Research Unit, ISEP-IPP Porto, Portugal

maan,smp@isep.ipp.pt

Abstract—A large part of power dissipation in a system is

generated by I/O devices. Increasingly these devices provide

power saving mechanisms, inter alia to enhance battery life.

While I/O device scheduling has been studied in the past

for real-time systems, the use of energy resources by these

scheduling algorithms may be improved. These approaches are

crafted considering a very large overhead of device transitions.

Technology enhancements have allowed the hardware vendors to

reduce the device transition overhead and energy consumption.

We propose an intra-task device scheduling algorithm for real

time systems that allows to shut-down devices while ensuring

system schedulability. Our results show an energy gain of up to

90% when compared to the techniques proposed in the state-of-

the-art.

I. INTRODUCTION

Real-time (RT) embedded systems have to perform a set
of functions while adhering to additional timing constraints.
These systems interact with their environment and hence
use I/O devices. Typical domains in which such systems
are deployed includes avionics, automotive electronics and
control systems. Besides the timing constraints many RT
systems have limited or intermittent power supply. Therefore,
energy efficiency is another important aspect that needs to be
considered in the design process of such systems.

The demand of extra functionality on a single embedded
system also results in an increased number of I/O devices. As
I/O devices consume considerable amount of energy and are of
particular concern in mobile systems, they often equipped with
(a) power saving state(s) to minimise this energy consumption.
A device can only operate in the active mode, and its transition
into and out of sleep state incurs both time and energy
overheads. Moreover, the request instant and access interval of
the device can usually not be determined beforehand. In order
to guarantee the temporal correctness of such RT system, the
device transition delay to bring the device up from sleep needs
to be taken into account.

Considering the uncertainty in the device usage instant
during program execution, traditional device-scheduling al-
gorithms made a safe but pessimistic assumption that the
device will be used during the entire execution time of the
corresponding job. Therefore, a device active state is ensured
during the entire execution of the job. This category of device
scheduling is known as inter-task device scheduling. However,
most devices are used for very short intervals of time thus
resulting in wasted energy.

In contrast to this, in intra-task device scheduling a device
is only turned on when it is requested by the job. To the best
of our knowledge, online intra-task device scheduling for hard
real-time systems has not been explored in the state-of-the-art
techniques. Our algorithm explores online intra-task device
scheduling in a hard-real time systems setting, based on a
sporadic task model. The objective of this research is to utilise
the spare processing resources of the system to reduce the
energy consumption of the devices by allowing them to wake-
up on demand rather than in a predictive manner.

The contributions of this paper are: 1) the computation of
spare capacity in the schedule (slack management algorithms);
2) an intra-task device scheduling algorithm that utilises the
collated slack in the schedule and wake-up the devices on
demand to enhance the energy performance; 3) an online
mechanism to reclaim unused time allocations to devices in
the system; 4) a complexity comparison of our algorithm with
the state-of-the-art.

The rest of the paper is organised as follows. The next
section discusses the related work and is followed by our
system model. Our static slack container algorithm (SSC) and
corresponding slack management are described in Section IV.
Section VI compares the complexity of the state-of-the-art
with SSC. Finally, we present the evaluation and conclude
with future directions.

II. RELATED WORK

Initially the device power management was extensively
studied in a non-real-time setting. These techniques can be
divided into three main categories, 1) time-out based, 2)
predictive and 3) stochastic. Time-out based algorithms shut-
down the devices when they are idle for the specified thresh-
old. The system wakes up the device on the next request
of the task. Predictive techniques adopt themselves with the
varying workload of the system. Stochastic methods model the
requests behaviour with different probabilistic distributions.
The device shut-down times are estimated by solving the
stochastic models such as Markov chains. For a detailed
survey of device power management algorithms in a best effort
environment, the reader is directed to the work of Benini et
al. [1].

Swaminathan et al. [2] proposed an offline method for dy-
namic I/O power management with hard real-time constraints.
Their low energy device scheduler (LEDES) is based on look-
ahead information of the future task-arrival pattern to shut-

down the devices. It requires fixed task releases, which limits
its applicability in case of a sporadic task model or task-sets
with variable execution time. Later on, multi-state constrained
low-energy scheduler (MUSCLES), an extension of LEDES
for the multiple state devices was proposed by Swaminathan
and Chakrabarty [3].

The same authors also developed another energy optimal
device scheduler (EDS) [4]. EDS computes a schedule tree
for all possible scheduled combination, and prune it based
on temporal and energy constraints. Due to high spatial
requirement and temporal complexity of EDS, they provide
a heuristic which clusters the requests to the same devices
to prolong the idle intervals. It is based on the work of Lu et
al. [5] that was proposed for best-effort systems. Both heuristic
and EDS are based on an inter-task scheduling mechanism,
but are computationally expensive and are of limited utility
for sporadic task models.

A procrastination based I/O device scheduling algorithm is
proposed by Cheng and Goddard [6]. The basic idea is to
prolong the device’s sleep interval by procrastination of the
task execution that requires this device. This method assumes
inter-task device scheduling and is computationally expensive.
However, it can be applied to a sporadic task model with
varying execution times. Later, Devadas and Aydin et al. [7]
proposed the device power management algorithm for static
priority systems through device forbidden regions. It is based
on inter-task device scheduling and enforces idle intervals in
the schedule to prolong the device sleep interval. To preserve
the schedulability, the bounds on the explicit idle intervals are
computed using time bound analysis [8].

Isolation of device power management from CPU power
management gives system-wise sub-optimal solutions. Cheng
and Goddard [9] integrated device scheduling, and dynamic
voltage and frequency scheduling (DVFS). Their approach
predicts the device usage times based on future release patterns
and accordingly sets timers to initiate the respective device
wake-up. DVFS increases the execution time of tasks to reduce
dynamic power consumption and consequently, prolongs the
active time of the devices as well. The approach aimed to
select the processor frequency that minimises the overall
energy consumption, however, several strong simplifications
of the DVFS model limit the applicability of their work.

The system-level power management algorithm developed
by Devadas and Aydin [10] for the frame-based embedded
systems similarly addresses the interplay of DVFS and the
device power management. Their work finds the optimal
frequency set-point for the processor that minimises the energy
consumption. While their approach is promising in principle,
deficiencies of the power model and the restriction to frame-
based tasks would require further work.

The device schedulers proposed for hard real-time systems
in the literature assume inter-task device scheduling and are
based on unrealistic assumptions such as exact future release
information, a simplistic power model as well as consider the
device transitions overhead to be very large. Our proposed
algorithm has lower complexity and saves more energy while

eliminating unrealistic assumptions when compared to the
state-of-the-art techniques. It is based on a different paradigm
of intra-task device scheduling, which was previously not
investigated due to the large overheads of device sleep transi-
tions.

III. SYSTEM MODEL

We assume a hard-real time system containing a workload
comprised of a set of sporadic tasks each using an individual
peripheral device. The task set Γ consists of l independent
tasks i.e. Γ = {τ1, τ2, τ3, · · · , τl}. A task τi is specified
by a quadruple �Ci, Di, Ti,λi�, where Ci is the worst-case
execution time (WCET), Di is the relative deadline, Ti is the
minimum inter-arrival time and λi is the device used by the
task τi.

We used the Rate-Based Earliest Deadline first (RBED)
framework [11], which provides temporal isolation via en-
forced budgets. This temporal isolation allows for mixed
criticality workloads consisting of hard RT, soft RT and best-
effort type applications. The tasks are allocated a budget of
Ai and released as sequence of jobs ji,m. Each job ji,m has
an absolute deadline di,m, a budget ai,m, a release time ri,m
and an actual execution time ĉi,m.

In the original RBED work [11], the allocations of the
budget for a soft RT (SRT) or best-effort (BE) task is less
than or equal to their WCET (Ai ≤ Ci). Hard RT (HRT)
tasks are allocated a budget equal to their WCET (Ai = Ci),
to ensure the timely completion of their jobs. However, in this
paper, we assume HRT and SRT tasks are allocated a budget of
Ai = Ci. The scheduler pre-empts every job when it has used
up its allocated budget ai,m. Thus ji,m exceeding its budget
cannot affect the overall system schedulability.

Each device λi which is associated with exactly one task
(no sharing) is characterised with the following parameters:
the active mode power consumption; the sleep state power
consumption; the energy consumption during the state transi-
tion phase; and the transition delay ttri of the state switch. A
state transition can be from active to sleep mode or vice versa.
For the sake of simplicity, we assume the energy consumption
and the transition delay of λi is the same for transitioning
into or out of a sleep state. A complete transition-phase delay,
i.e. from active to sleep and sleep to active mode, of λi is
denoted as tswi = 2ttri .

The break-even-time tbei of λi is the amount of time a
system needs to compensate for the energy lost during the
transition phase. The definition and the measurement technique
used for tbei follows from the work of Cheng and Goddard [6].
Each device has only a single sleep state, but this model can
be easily adapted for the devices with multiple sleep states. A
transition is only initiated in stable state, i.e. active or sleep
state. In our algorithm, we assume a device is used once
during the job execution, but the exact time instances of the
device usage along with its duration within a job’s execution
is unknown.

IV. SLACK MANAGEMENT

In intra-task device scheduling, a device is only woken-
up on demand to reduce its active time and consequently the
energy consumption. However, the transition time imposes
an extra overhead and alters the system schedule, as the
task has to wait for a device to become active. Additionally,
inserting extra wake-up calls ahead of the device usage into the
application code is impractical. A slack management algorithm
in the scheduler is needed to collate the idle intervals. Before
going into the details of our algorithm, we briefly define the
sources of slack in the system.

The unused processing time in a system is called slack.
System slack can be categorised as static, execution and
sporadic slack. Static slack exists due to spare capacity in the
system, which is not loaded with what could be guaranteed
by the schedulability test. Execution slack (Es) comes from
the difference of the WCET and the actual execution time, as
the RT tasks mostly execute for less than their WCET and
subsequently the allocated budget. Finally, sporadic slack is
an extra arrival delay beyond the minimum inter-arrival time
Ti assumed in the analysis.

A. Device Budget

Definition 1: The device budget Db of the system is the
maximum available spare time in the schedulability test that
can be used to compensate for the devices transition delays
without causing any application to miss its deadline under
worst-case assumptions.

The device budget comes from the static slack of the system.
A lower bound on the size of the device budget is determined
by considering the temporal correctness of the system. The
used RBED framework is based on the Earliest Deadline
First algorithm (EDF). The schedulability analysis of the EDF
on uniprocessor [12], [13] is presented in the Theorem 1.
However, the overall demand bound function for a task-set
Γ can be represented as dbfΓ(L)

def
= maxL0 df(L0, L0 + L)

by following the definition of Rahni et al. [14], where L0 is
a time instant.

Theorem 1: A synchronous periodic task set T is schedula-
ble under EDF if and only if, ∀L ∈ L∗, df(0, L) ≤ L, where
L is an absolute deadline and L∗ is the first idle time in the
schedule.

Formally, the device budget is defined by exploiting the
demand bound function dbf . Considering Theorem 1, a lower
bound on the device budget Db is given in Equation 1, where
L is an absolute deadline and L∗ is the first idle time in the
schedule.

∀L ∈ L∗, Db = min (L− dbf(L)) (1)

A similar definition is used in our previous work [15], however
the objective was to use this static limit to find the maximum
feasible sleep interval. For the proof, the reader is referred to
[15].

B. Execution Slack

We also exploit the execution slack Es explicitly to use it
along with the device budget Db. Consumption of the sporadic
slack is implicit within our algorithm and will be explained
in later sections. When execution slack Es is generated, it
is identified with a size Es

sz and a corresponding deadline
Es

dl. The algorithm to manage Es is adapted from [15], [16].
The basic idea is to keep Es in a central container. If the
deadline of the job ji,m is greater than Es

dl (i.e. Es
dl < di,m),

then the deadline of Es is extended to the deadline of ji,m,
i.e. Edl = di,m. This algorithm is simple in both spatial and
temporal terms.

V. ALGORITHM

A. Shut Down and Wake Up

A general sketch of the Static Slack Container algorithm
(SSC) that utilises Db and Es to save the energy consumption
by switching off unused I/O devices is shown in Algorithms
1,2. Some of the notations used throughout this section are
given below.

• Φ: A set of intra-task device-scheduling compatible de-
vices.

• γi: The next utilisation time of any device λi. This value
is the next expected release time of the job ji,m using
device λi. It is computed with reference to the previous
release information.

• SSSR: The Static Slack Services Register contains refer-
ences to the inactive devices that acquired their wake-up
budget from Db.

• Ξi: The amount of pending workload of high priority than
a job ji,m currently residing in the ready queue.

• ESSR: The Execution Slack Serviced Register contains
references to the inactive devices prolonging their wake-
up time with the execution slack.

• HPW : The workload of higher priority tasks than τi
executed in the device λi transition interval.

• LPW : The workload of lower priority tasks than τi
executed in the device λi transition interval.

• IPW : Intermediate Priority Workload.
• si,k : Start time of ttri of λi for ji,k.
An example in Figure 1 visualises the different concepts of

Algorithms 1 and 2. The task-set is composed of two tasks
Γ = {τ1(2, 10, 10,λ1), τ2(9, 15, 15,λ2)}. λ1 has a transition
delay ttr1 = 1 and a break-even-time tbe1 = 3. Similarly, λ2 has
ttr2 = 3 and tbe2 = 9. Moreover, the given task-set has Db = 4.
All the jobs of τ1 executes for 2 time units. The first job j2,1
of τ2 executes for 8 time units, and second job j2,2 executes
for 5 time units.

1) Offline Phase: Initially, a system identifies the set of
devices compatible with the intra-task device scheduling Φ
by using Theorem 2. Non-compatible devices can be shut-
down, only in a case, when their corresponding tasks execute
for less than their Ci and Di − ĉi ≥ tswi . However, a system
needs to ensure the wake-up of non-compatible devices before
their corresponding task starts its execution. In the given

Fig. 1: Example

Execution Without Device Usage

Execution With Device Usage

Device Transition

τ1

τ2

λ1

λ2

Db

(Γ) = {τ1(2, 10, 10,λ1), τ2(9, 15, 15,λ2)}
ttr1 = 1, tbe1 = 3, ttr2 = 3, tbe3 = 9, Db = 4
ĉ1,1 = ĉ1,2 = ĉ1,3 = 2,ĉ2,1 = 8, ĉ2,2 = 5

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

18

18

20

20

22

22

24

24

26

26

28

28

30

30

0
1
2
3
4

Sporadic Delay

Active to Sleep Transition Sleep to Active Transition

Device Transition

example shown in Figure 1 all the devices are intra-task
device-scheduling compatible.

Theorem 2: A device λi associated to a task τi will be
compatible with intra-task device scheduling if and only if
the overhead of the device tswi plus the τi’s WCET Ci is less
than or equal to its relative deadline Di.

Proof: A proof of this theorem is trivial. Task τi using a
device λi will miss its deadline, if the condition tswi + Ci >
Di is true; assuming λi started its transition on τi release
time, woken-up on demand and completes its transition once
initiated.

2) Scheduling in Static Slack Container: On a system boot
up usually all the devices are in active mode. If a running
ji,m requests the associate device λi and λi is in active mode,
the job will continue its execution. In our example, Figure 1
j1,1 and j2,1 finds their corresponding devices on and continue
their execution. However, if λi is in sleep mode, then ji,m is
preempted and inserted into the device waiting queue. Once
an interrupt service routine signals that λi is ready, ji,m is
enqueued again in the ready queue and scheduled according
to its priority. For instance, j1,2, j1,3 and j2,2 in Figure 1 wait
for their corresponding devices to transition out of their sleep
state and use them in the interval [12; 13], [21; 22] and [23; 24]
respectively.

3) Device Shut-Down: Once ji,m has completed its use of
λi, the scheduler tries to shut it down. If λi ∈ Φ, the algorithm
takes a conservative approach and performs the shut down
when the difference of next utilisation time γi of λi and current
time instant t is greater or equal to its total transition delay tswi
(i.e. γi− t ≥ tswi). We considered tswi instead of tbei to exploit
the sporadic slack. A timer is set accordingly to wake up the
device. In the given example (Figure 1), all the jobs of τ1

have enough time to shut-down the devices. j2,1 completes its
device related execution at time instant 7 and has a difference
of 8 time units from its next utilisation time γ2 of 15, which
is less than its tbe2 . However, λ2 initiates a sleep transition
with an expectation that next job arrival will be delayed due a
sporadic slack and the total sleep duration will be more than
tbe2 . Similarly, j2,2 has γi− t = 8 > tswi and it initiates a sleep
transition based on the same reasoning given for j2,1.

On the other hand, this condition (γi − t ≥ tswi) may not
be applied to λi /∈ Φ, as the system needs to ensure that λi

should be active before its γi. Nevertheless, we can still shut-
down these devices with a condition that the jobs related to
these devices execute less than their Ci and γi − t > tbei .

4) Device Wake-up: The algorithm’s main objective is to
extend the sleep interval of the devices already in sleep mode.
Whenever, a timer associated to any λi ∈ Φ expires, the
system considers spare resources such as device budget Db

or the execution slack Es to prolong the currently inactive
device λi. However, this process to prolong the sleep interval
of λi is not considered for λi /∈ Φ, for which a timer
expiration triggers a process to activate the device without
any further delay. As mentioned previously in Section IV, Db

is a major source of slack used to extend the sleep interval of
the devices. Once a timer associated to any λi ∈ Φ lapse, the
system firstly tries to utilise Db. Db ≥ ttri allows to further
procrastinate the device activation process, while ensuring the
system schedulability. Consequently, ttri time is deducted from
Db and λi is registered in a special register called static slack
serviced register (SSSR). SSSR holds those inactive devices
that acquired their wake-up budget from Db. In our example of
Figure 1, timers associated to j1,1, j1,2, j1,3 and j2,1 expires at
time instances 9, 19, 29 and 12 respectively. For j1,1, j1,2 and

Algorithm 1 Static Slack Container Algorithm
1: Offline Phase

2: Separate the intra-task scheduling compatible devices
from the not compatible one’s.
Φ = {λj : Dj − Cj − tswj ≥ 0}

3: Calculate the Device Budget Db for a given task-set Γ
4: The device λi requested by job ji,m in the waiting

queue wakes up

5: Move ji,m from the device waiting queue to the ready
queue

6: if (ji,m on the head of the list) then

7: Reschedule
8: end if

9: Next Utilisation Time(γ):

10: On release of τi: Update τi next predicted arrival time in
the future release array rn i.e.
rni = γi = ri,m + Ti.

11: Device Shut-Down Procedure:

When ji,m has used λi, consider the following criteria to
shut-down and set the corresponding entry in the sorted
list of timer.

12: if (λi ∈ Φ) then

13: if (γi − t ≥ tswi) then

14: Shut-down the device
15: Timer = γi − ttri
16: else

17: Keep the device on
18: end if

19: else

20: if (γi − t > tbei) then

21: Shut-down the Device
22: Timer = γi − ttri
23: else

24: Leave the Device On (Otherwise we cannot guarantee
the schedulability)

25: end if

26: end if

j1,3 we deduct Db equal to 1 time unit and extend their sleep
state unless they are requested again from the subsequent jobs.
Similarly, j2,1 deducts 3 time units from Db at time instant
12 (3 time units before its γ2) and keep the device in sleep
mode unless requested again.

In case Db < ttri , the system relies on the Es. λi associated
to ji,m is eligible for Es if and only if di,m of ji,m that
will utilise λi in the future is greater than or equal to the
deadline of the execution slack Es

d. di,m of ji,m not released
yet can be conservatively predicted by considering its past
release information and Ti. The duration of the pending high-
priority workload compared to ji,m that currently resides in the
ready queue Ξi is added to compute the total interval for the
device to shut-down. The next wake up time is set to Es

sz −
ttri +

�
τi∈Ξi

Ci and the corresponding device is registered
in ESSR. A high priority workload from the future can also

Algorithm 2 Static Slack Container Algorithm (Continue)
1: Device Wake-up Procedure:

When the initial timer to wake-up λi expires.
2: if (λi ∈ Φ) then

3: if (ttri ≤ Db) then

4: Db = Db − ttri
5: Keep the device off and register its entry in the SSSR
6: else if (Es

sz > ttri &&Es
dl ≤ di,m) then

7: Where di,m is the deadline of the job ji,m that will
require λi in future.

8: if Ξi then

9: Register the device in ESSR
10: Timer = Es

sz − ttri +
�

τi∈Ξi
Ci

11: else

12: Timer= Es
sz − twi

13: end if

14: else

15: Wake-up the device
16: end if

17: else if (λi /∈ Φ) then

18: Wake-up the device
19: end if

20: Device Budget Db Replenishment:

21: if Ready Queue Empty && Device Waiting Queue Empty
then

22: Db = Initial Value of Db −
�

i∈SSSR ttri
23: end if

be included but it will increase the online complexity of the
algorithm.

In case {(Db < ttri)&&(Es
dl > di,m||Es

sz < ttri)}, one
can also consider only the high priority workload in the ready
queue and from the future. However, the computation of high
priority workload increases the overhead and is avoided in our
algorithm for the sake of simplicity.

Theorem 3: The schedulability of the system with EDF will
be preserved if the replenishment equal to Db−

�
i∈SSSR ttri

happens in idle mode when the ready queue along with the
device waiting queue is empty.

Proof: This theorem claims if the following two prop-
erties are satisfied system schedulability will be preserved.
1) Replenishment should be done in an idle mode when
the waiting queue is empty. 2) It should be equal to
Db −

�
i∈SSSR ttri .

1) The idle mode combined with no job in the waiting queue
equates in the worst case to the consideration of the critical
instant, resulting in Db units of time being available at any
point in the schedule without violating schedulability of the
system.

2) Since tasks in the SSSR have already reserved their share
of device budget equal to

�
i∈SSSR ttri . Would this not be

considered, time reserved by tasks in SSSR would be allocated
a second time to other tasks, potentially leading to a deadline
violation. Hence a replenishment of Db−

�
i∈SSSR ttri main-

tains a schedulability.

The replenishment of Db in an example Figure 1 is done
according to the criterion defined in Theorem 3 at time
instances 13 and 26. On the first time instant at 13, λ2 is
still in sleep mode and previously registered its entry in SSSR
at time instant 12, therefore, Db is only replenished with a
budget equal to its initial value minus the device transition
delay ttr2 of λ2 (i.e. 4 − 3 = 1). However, at time instant 26
both the devices are in sleep mode but not registered in SSSR,
hence, Db is replenished with a budget equal to its initial value
of 4.

B. Device Budget Reclamation Algorithm

The device budget Db is a precious resource in our algo-
rithm; therefore, we have also proposed the device budget
reclamation algorithm given in Algorithm 3. Db is only re-
claimed from the devices having entry in the SSSR; i.e. devices
allocated a device budget equal to their transition delay. All
devices discussed onwards in this section assume their entry
in SSSR, otherwise a device is not considered for reclamation.
Db by definition is the highest priority budget in the system.
When ji,m is allocated a part of Db to compensate for its
device transition, analysis assumes this additional budget will
be consumed by ji,m as a part of execution. This assumption
is made for a case when there is no other job executing
and/or waiting for its device transition during this interval.
When there actually is another job executing or waiting for its
device, the device budget may be reclaimed depending on the
priority of the workload executed in this interval. For instance
in Figure 1, within an interval of [20; 21] device transition time
of both devices (λ1 and λ2) overlaps, similarly, in an interval
of [21; 22] execution of j1,3 overlaps with the transition of λ2.
These two scenarios are discussed below in details. However,
a reclaimed budget is not added back in the given example
(Figure 1) for the ease of presentation.

1) Device Overlap: In this scenario multiple jobs are wait-
ing for their device active state. It is evident that a system
should only consider a budget consumption of single device in
the overlapping period as their wake-up transition happens in
parallel. Line 8 in Algorithm 3 reclaims such budget. Suppose
si,k is the transition start time of device λi requested by ji,k.
Assume ji,k is the first job that requested the device at si,k.
All jobs excluding ji,k that have their entry in the SSSR and
request λj after si,k and before si,k + ttri has overlap with
ji,m device transition and are entitled for slack reclamation.
The device budget of 1 time unit can be reclaimed at time
instant [20; 21] in Figure 1 as λ1 and λ2 device transition
overlap, and the scheduler should only consider a transition
delay of one device.

2) Execution Overlap: Assume a job ji,m, currently wait-
ing for the device transition to active state. ji,m’s device
transition interval is denoted as [t1, t2]. In this scenario, we
explore an overlap of [t1, t2] with the execution of other jobs.
The execution overlap is divided into two types based on it
priority compared to the priority of ji,m, i.e. high or low
priority workload. The workload having priority equal to ji,m
can be considered as a part of a high priority workload. If a

Algorithm 3 Device Budget Reclamation Algorithm

1: [t1, t2]: Device λi transition Interval
2: if (HPW ∩ [t1, t2]) then

3: Db+ = ttri −(HPW ∩ [t1, t2])
4: end if

5: if (LPW ∩ [t1, t2]) && ! IPW) then

6: Db+ = ttri −(LPW ∩ [t1, t2])
7: end if

8: Db+ = ω1 ∩ ω2

Where: ω1 = [si,k, ttri + si,k]

ω2 =
�

∀λj∈SSSR\λi

∀jobs k
∀�:si,k<sj,�+ttrj ∧si,k+ttri <sj,�

[sj,k, t
tr
j + sj,k]

high priority workload (HPW) executes during [t1, t2], then
the size of their overlap can be reclaimed because delayed
execution of ji,m due to transition time of its device does not
affect the high priority workload. Therefore, a device budget
of 1 time unit can be reclaimed for an overlap of λ2 with an
execution of j1,3 within an interval of [21; 22].

In the case of low priority workload (LPW) executes in
[t1, t2] then the system needs to consider the intermediate
priority workload (IPW) that may execute during the leftover
execution time of ji,m. This IPW consists of jobs that will
release in future and have deadlines between earliest deadline
of the LPW that executed in [t1, t2] and the deadline of the
ji,m. The IPW can be predicted by considering the previous
release information.

The delayed execution of ji,m due to the device transition
in this scenario can only affect the workload that we define
as the IPW. LPW that was executed during [t1, t2] will just
switch their execution slots with ji,m execution by an amount
they have executed in [t1, t2]. Jobs having priority higher and
lower than ji,m will not be affected anyway. The reclaimed
budget is added back to Db.

Theorem 4: If there’s a low priority task τl executing during
a wake-up transition of λi and there is no intermediate priority
task released prior to the completion of task τi (using λi) then
the wake-up transition time overlapped with τl execution can
be reclaimed and added back to Db.

Proof: Since no intermediate priority task is executing,
any change in the schedule can only affect the two tasks (τl
and τi) in question. All the tasks having priority higher than τi
will not be affected because they can preempt as soon as they
are released. Similarly, tasks with priority lower than τl cannot
preempt τi or τl, hence, will not affect the schedule. If the low
priority task τl execute during sleep transition, it will swap its
execution with the τi and either complete its execution earlier
or at its normal time. The potential extension of the response
time of task τi is already considered when obtaining the device
budget Db. As none of the tasks miss their deadlines therefore,
theorem holds.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

System Utilization

G
a

in
 O

ve
r

E
E

D
S

Ω = 0% to 5%

Ω = 25% to 30%

Ω = 45% to 50%

Ω = 70% to 75%

Ω = 0% to 30%

Ω = 0% to 50%

Ω = 0% to 70%

Fig. 2: Variation in Ω

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilization

G
a

in
 O

ve
r

E
E

D
S

|Γ|=5

|Γ|=10

|Γ|=15

|Γ|=20

Fig. 3: Variation in Γ against U

TABLE I: Overview of Simulator Parameters

Parameters Specifications

Task-set sizes |T| {5, 10, 15, 20}
Inter-arrival time Ti for RT tasks [30ms, 50ms]

Inter-arrival time Ti for BE tasks [50ms, 1sec]

Sporadic delay limit Υ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}
Best-Case execution-time limit Cb {0.25, 0.5, 0.75, 1}
Share of RT/BE tasks ξ = {ξ1, ξ2} {�40%, 60%�, �60%, 40%�}

VI. COMPLEXITY COMPARISON

Suppose p is the total number devices in the system. The
complexity of the near optimal algorithm MDO [3] is O(pH2),
where H is the hyper-period. SYS-EDF [9] has a complexity
of O(m×2p), where m is the number of frequency set-points
in the system. EEDS [6] complexity is O(pl). Their algorithm
performs the device transition decision on every job release,
job completion and when the timer to reactivate the device
expires. The state of all the devices is re-evaluated on each of
the instants mentioned above. DFR-RMS [10] has the same
complexity of EEDS, i.e. O(pl).

SSC proposes the more efficient device energy saving
algorithm with low complexity. The overall complexity of our
algorithm is O(l). In our algorithm, a device state decision
is made when a job requests the device, a job completes its
execution or when the timer to activate the device expires.
Unlike the state-of-the-art, only a device related to this job
will be serviced, the statues of the other devices is not re-
evaluated. Only the routine that has to compute the high
priority work load has the complexity of O(l). This routine is
only used when the timer associated to a device expires and
Db is insufficient. Otherwise, all the other routines have the
constant complexity of O(1). The device budget reclamation
algorithm has the same complexity of O(l).

TABLE II: Device Power Model Parameters

Device Name Pa Ps Ptr ttri

SST Flash SST39LF020 125 1 50 1

Simpletech Flash Card 225 20 100 2

Realtech Ethernet Chip 190 85 125 10

Texas Instrument CC2430 80.7 .0009 40 .525

MicroSSD(8GB) 412.5 2.31 ≈ 0 ≈ 0

TJA1043 Transceiver 325 .01 162.5 .05

Mica2Mote 29 .145 72.5 5

Lin TransceiverNCV 7321 19.2 .12 9.6 .15

IBM MicroDrive 1300 100 500 12

VII. EVALUATION

We have used a discrete event simulator SPARTS V-2.0
(Simulator for Power Aware and Real-Time System) [17] for
the experiments to evaluate the effectiveness of our proposed
algorithm. To cover the wide variety of applications we have
used task-sets ranging from a larger number of fine grained
small tasks (20) to a small number of coarse grained tasks (5).
We have extended SPARTS to account for I/O devices, in terms
of temporal behaviour and power consumption. Each task is
allocated a device and its time of device usage is randomly
chosen within its ĉ limit. Total usage time of a device within
a tasks execution is controlled with two variables that define
the lower and upper bounds. These bounds are defined in a
percentage of task’s WCET.

Generally, we have used the SPARTS simulator with the
parameters identified in Table I. This includes as indicated
task-set sizes between 5 and 20 tasks. The two different share
distributions ξ1 and ξ2 divide the task-set size and overall
system utilisation between RT and BE tasks. Moreover, the
utilisation allocated to each task type is randomly distributed
among the tasks of the same class. The minimum inter-arrival
times of RT tasks has been set to be in a range of 30ms to
50ms, while those of BE tasks are up to 1sec and SPARTS
computes the WCET Ci of τi to be Ui∗Ti. In our experiments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilization

G
a

in
 O

ve
r

E
E

D
S

ϒ=0.0

ϒ=0.2

ϒ=0.4

ϒ=0.6

ϒ=0.8

ϒ=1.0

Fig. 4: Variation in Υ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

System Utilization

G
a

in
 O

ve
r

E
E

D
S

Cb=0.25

Cb=0.50

Cb=0.75

Cb=1.00

Fig. 5: Variation in Cb

we have found essentially little impact to allow borrowing of
best-effort tasks and have hence concentrated on the effect of
longer task periods for BE tasks.

The sporadic delay has been set to be in the range of [0 : 1]
in steps of 0.2 units of time. We have also experimented with
different best-case execution time Cb

i ’s of a task. SPARTS
follows a two level approach, where the actual parameters
for an individual job ji,m are taken from bounds allocated
previously to the task τi. The interested reader is referred to
[17], [18] for more details of SPARTS.

Suppose the percentage share of the device usage time in
any job’s actual execution time is represented as Ω. Then the
device usage time by λi in any job ji,m is estimated as Ω∗ci,m.
The overall system utilisation is varied from 0.1 to 1 with an
increment of 0.05. Each task-set is simulated for 100 seconds.
For the comparison purposes we have also implemented the
EEDS approach [6] in the SPARTS simulator. Furthermore,
the power model for different devices used in our algorithm
is based on their data sheets values shown in Table II. All the
parameters given in Table II are in milliwatts/milliseconds.
Furthermore, tsw has been assumed when not given in the
data sheet.

We have computed the gain in energy consumption of our
algorithm against the EEDS for several scenarios. The effect
of variation in Ω on the gain of SSC over EEDS is illustrated
in Figure 2. We fixed |Γ| = 10, ξ = 1, Cb = 1,Υ = 0 for
this experiment. If the percentage of the device usage time
is within a range of 0% to 70% of ci,m, SSC outperforms
EEDS. However, if all the jobs use their corresponding devices
for a high percentage of their ci,m, the performance of SSC
declines eventually. For example, consider that the jobs use
their corresponding devices for more than 70% of ci,m, EEDS
performance tends to rise after U ≥ 0.4. Similarly, if the
device usage time is in an interval of 45% to 50% of ci,m
then EEDS saves more energy after U > 0.85. This occurs
because intra-task device scheduling algorithm is designed
with a consideration that devices are used for a very short

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

System Utilization

G
a

in
 O

ve
r

E
E

D
S

ξ
1

ξ
2

Fig. 6: Variation in ξ

interval, and hence woken up on demand. Systems with very
high utilisation of device times are favourable for EEDS.
Therefore, for all the following experiments we assume Ω that
defines the device usage time for each job is selected randomly
between 0% to 5% of the corresponding job’s ci,m.

We explored the energy gain of SSC over EEDS for different
task-set sizes against the different system utilisations as shown
in Figure 3. The parameters fixed for this experiment are
Cb = 1, ξ = 1 and Υ = 0 (i.e. tasks execute for their Ci

and are strictly periodic). Figure 3 shows that the gain of our
algorithm increases with an increase in the system utilisation.
EEDS cannot extend sleep intervals of the devices at higher
utilisation. Moreover, with an increase in the task-set size, Db

has to service extra devices and thus the gain decreases. The
gain of |T | = 5 is very high when compared to other task-set
sizes, as we used favourable devices with less overheads to
illustrate that the effectiveness of our approach tends to rise
with a decrease in device transition overhead.

In Figure 4, we have varied Υ with |Γ| = 10 and ξ = 1.
To only demonstrate the effect of variation in the sporadic

slack, Cb is set to 1. An increase in Υ injects more sporadic
slack in the system, and hence, extra sporadic slack allows for
larger gains in energy consumption. SSC makes an efficient
use of the sporadic slack because device is only woken up on
demand and kept in sleep mode if the task arrives later than its
Ti. However, EEDS has the requirement to keep the device on
during Ci; therefore, devices are woken up assuming a worst-
case scenario of task arrival after every Ti. Additionally, it is
hard to predict the sporadic slack in the system, thus no such
mechanism can be integrated into EEDS to make use of the
sporadic slack.

The third scenario shows the effect of variation in Cb

(variation in execution slack) on the energy gain of SSC over
EEDS in Figure 5. We fixed Υ = 0 (no sporadic slack), ξ = 1
and |Γ| = 10. SSC performs well with an increase in system
utilisation. However, the gain decreases with an increase in
execution slack for an obvious reason that if tasks finish their
execution earlier than Ci, EEDS has a chance to turn their
corresponding devices off immediately afterwards.

Figure 6 shows that the gain in energy consumption of ξ1
is higher than ξ2. In ξ1, the percentage of BE tasks in task-set
size is greater than ξ2. BE tasks usually run for long intervals.
Therefore EEDS in ξ2 keep the devices on for longer duration
for more BE tasks when compared to ξ1 and consequently
consumes slightly more energy. In SSC at U = 1, device
budget Db = 0 and hence, it has to just rely on the next device
usage time information of the device. However, the aggressive
nature of EEDS algorithm to re-evaluate each device’s status
on every job release, job completion and time-out, pays off
and saves more energy when compared to SSC.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents the intra-task device scheduling al-
gorithm SSC, which requests the device on demand rather
than keeping it unnecessary active throughout the execution
of its corresponding job. SSC makes explicit use of static
and dynamic slack. Our extensive evaluation demonstrates its
efficiency. Furthermore, sporadic slack is implicitly used in
our algorithm. It has low complexity when compared to the
state-of-the-art and reduces the assumptions that restrict the
practical implication of these approaches. In the future, we
intended to further relax the assumptions made in this research
effort that will enhance the applicability of this algorithm to
more versatile systems. Our goal is to allow device sharing
among jobs and add flexibility to use multiple devices in a
single job.

ACKNOLEDGEMENTS

This work was partially supported by National Funds through FCT (Por-
tuguese Foundation for Science and Technology) and by ERDF (European
Regional Development Fund) through COMPETE (Operational Programme
’Thematic Factors of Competitiveness’), within REPOMUC project, ref.
FCOMP–01-0124-FEDER-015050, and by FCT and the EU ARTEMIS JU
funding, within RECOMP project, ref. ARTEMIS/0202/2009, JU grant nr.
100202.

REFERENCES

[1] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of de-
sign techniques for system-level dynamic power management,” IEEE
Transactions on Very Large Scale Integration Systems, vol. 8, no. 3, pp.
299 –316, june 2000. 1

[2] V. Swaminathan, K. Chakrabarty, and S. Iyengar, “Dynamic i/o power
management for hard real-time systems,” in Proceedings of the 9th
International Symposium on Hardware/Software Codesign, 2001, pp.
237 –242. 1

[3] V. Swaminathan and K. Chakrabarty, “Energy-conscious, deterministic
i/o device scheduling in hard real-time systems,” IEEE Transactions on
CAD ICAS, vol. 22, no. 7, pp. 847 – 858, july 2003. 2, 7

[4] ——, “Pruning-based, energy-optimal, deterministic i/o device schedul-
ing for hard real-time systems,” ACM Transactions on Embedded
Computing Systems, vol. 4, pp. 141–167, February 2005. 2

[5] Y.-H. Lu, L. Benini, and G. De Micheli, “Low-power task scheduling
for multiple devices,” in Proceedings of the 8th International Workshop
on Hardware/Software Codesign, ser. CODES ’00. New York, NY,
USA: ACM, 2000, pp. 39–43. 2

[6] H. Cheng and S. Goddard, “Online energy-aware i/o device scheduling
for hard real-time systems,” in Proceedings of the 43rd ACM/IEEE
Conference on Design Automation Conference. Leuven, Belgium:
European Design and Automation Association, 2006, pp. 1055–1060.
2, 7, 8

[7] V. Devadas and H. Aydin, “Real-time dynamic power management
through device forbidden regions,” in Proceedings of the 14th IEEE
Real-Time and Embedded Technology and Applications Symposium.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 34–44. 2

[8] J. P. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic schedul-
ing algorithm: Exact characterization and average case behavior,” in
Proceedings of the 10th IEEE Real-Time Systems Symposium, 1989,
pp. 166–171. 2

[9] H. Cheng and S. Goddard, “Integrated device scheduling and processor
voltage scaling for system-wide energy conservation,” in Proceedings of
the 2005 Workshop on Power Aware Real-time Computing, Sep. 2005.
2, 7

[10] V. Devadas and H. Aydin, “On the interplay of dynamic voltage scaling
and dynamic power management in real-time embedded applications,” in
Proceedings of the 8th International Conference on Embedded Software.
Atlanta, GA, USA: ACM, 2008, pp. 99–108. 2, 7

[11] S. A. Brandt, S. Banachowski, C. Lin, and T. Bis-
son, “Dynamic integrated scheduling of hard real-
time, soft real-time and non-real-time processes,” in
Proceedings of the 24th IEEE Real-Time Systems Symposium,
Cancun, Mexico, Dec. 2003. 2

[12] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor,” Journal of Real–Time Systems, vol. 2, pp. 301–
324, 1990. 3

[13] R. Pellizzoni and G. Lipari, “Feasibility analysis of real-time periodic
tasks with offsets,” Journal of Real–Time Systems, vol. 30, pp. 105–128,
2005. 3

[14] A. Rahni, E. Grolleau, and M. Richard, “Feasibility analysis of
non-concrete real-time transactions with edf assignment priority,” in
Proceedings of the 16th Conference Real-Time and Networked Systems,
Oct. 2008. 3

[15] M. A. Awan and S. M. Petters, “Enhanced race-to-halt: A leakage-
aware energy management approach for dynamic priority systems,” in
Proceedings of the 23rd Euromicro Conference on Real-Time Systems,
2011, pp. 92–101. 3

[16] C. Lin and S. A. Brandt, “Improving soft real-time
performance through better slack management,” in
Proceedings of the 26th IEEE Real-Time Systems Symposium, Miami,
FL, USA, Dec. 2005. 3

[17] B. Nikolic, M. A. Awan, and S. M. Petters, “SPARTS: Simulator
for power aware and real-time systems,” in Proceedings of the 8th
IEEE International Conference on Embedded Software and Systems.
Changsha, China: IEEE, Nov. 2011. 7, 8

[18] ——, “SPARTS: Simulator for power aware and real-time systems,”
2011, http://www.cister.isep.ipp.pt/projects/sparts/. 8

