Login

Xhare-a-Ride: A Search Optimized Dynamic Ride Sharing System with Approximation Guarantee
Ref: CISTER-TR-181122       Publication Date: 19 to 22, Apr, 2017

Xhare-a-Ride: A Search Optimized Dynamic Ride Sharing System with Approximation Guarantee

Ref: CISTER-TR-181122       Publication Date: 19 to 22, Apr, 2017

Abstract:
Ride sharing is a sustainable, environmentallyfriendly mode of commute that is gaining in popularity. Though there are well-established commercial service providers, there are not many platforms for facilitating peer-to-peer ride sharing, especially in a dynamic scenario, integrated with multi-modal trip planners. Such systems would need to be highly searchoptimized for retrieval of multiple potential ride matches in real time, especially because multi-modal trip planners have a high look-to-book ratio. At the same time, validity of the matches need to be ensured, even in a dynamic setting, while addressing quality considerations and constraints such as maximum detour incurred by rides, walking distance for commuters, and time windows of requests. We describe Xhare-a-Ride (XAR) system, a platform for dynamic peer-to-peer ride sharing, that is scalable, efficient, and highly search-optimized for retrieving multiple potential matches for every ride request, while handling quality considerations. We propose a hierarchical discretization of the geographical region using grids, landmarks and clusters with theoretical guarantees, along with an efficient in-memory indexing of rides for maintaining spatio-temporal validity within a specified error tolerance. This helps eliminate shortest path computation in realtime during search, thus making XAR search-optimized, hence, suitable for integration with a multi-modal trip planner. We discuss modes of integrating XAR with such a trip planner for building an integrated system. Finally, we evaluate XAR thoroughly on ride share request data generated from the NY taxi trip data set on three fronts: (i) empirical performance against the theoretical guarantees as well as trade-off of performance with system parameters; (ii) benchmark XAR against a state-ofthe-art ride share system, showing a significant improvement in the search efficiency; and finally, (iii) the efficacy of combining ride sharing with public transportation.

Authors:
Raja Subramaniam Thangaraj
,
Koyel Mukherjee
,
Gurulingesh Raravi
,
Asmita Metrewar
,
Narendra Annamaneni
,
Koushik Chattopadhyay


33rd International Conference on Data Engineering 2017 (ICDE 2018), pp 1117-1128.
San Diego, CA, U.S.A..
ISBN: 978-1-5090-6543-1.
ISSN: 2375-026X.



Record Date: 14, Nov, 2018